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Abstract

Let Tε, 0 ≤ ε ≤ 1/2, be the noise operator acting on functions on the boolean cube {0, 1}n.
Let f be a distribution on {0, 1}n and let q > 1. We prove tight Mrs. Gerber-type results for
the second Rényi entropy of Tεf which take into account the value of the qth Rényi entropy
of f . For a general function f on {0, 1}n we prove tight hypercontractive inequalities for
the `2 norm of Tεf which take into account the ratio between `q and `1 norms of f .

1 Introduction

This paper considers the problem of quantifying the decrease in the `2 norm of a function on
the boolean cube when this function is acted on by the noise operator.

Given a noise parameter 0 ≤ ε ≤ 1/2, the noise operator Tε acts on functions on the boolean
cube as follows: for f : {0, 1}n → R, Tεf at a point x is the expected value of f at y, where
y is a random binary vector whose ith coordinate is xi with probability 1 − ε and 1 − xi with
probability ε, independently for different coordinates. Namely, (Tεf) (x) =

∑
y∈{0,1}n ε

|y−x|(1−
ε)n−|y−x|f(y), where | · | denotes the Hamming distance. We will write fε for Tεf , for brevity.

Note that fε is a convex combination of shifted copies of f . Hence, the noise operator decreases

norms. Recall that the `q norm of a function is given by ‖f‖q = (E |f |q)
1
q (the expectations

here and below are taken w.r.t. the uniform measure on {0, 1}n). The norms {‖f‖q}q increase
with q. An effective way to quantify the decrease of `q norm under noise is given by the
hypercontractive inequality [4, 9, 3] (see also e.g., [8] for background), which upperbounds the
`q norm of the noisy version of a function by a smaller norm of the original function.

‖fε‖q ≤ ‖f‖1+(1−2ε)2(q−1). (1)

This inequality is essentially tight in the following sense. For any p < 1 + (q− 1)(1− 2ε)2 there
exists a non-constant function f : {0, 1}n → R with ‖fε‖q > ‖f‖p.

Entropy provides another example of a convex homogeneous functional on (nonnegative) func-
tions on the boolean cube. For a nonnegative function f let the entropy of f be given by
Ent(f) = E f log2 f − E f log2 E f . The entropy of f is closely related to Shannon’s entropy
of the corresponding distribution f/Σf on {0, 1}n, and similarly the entropy of fε is related
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to Shannon’s entropy of the output of a binary symmetric channel with error probability ε on
input distributed according to f/Σf (see below and, e.g., the discussion in the introduction of
[22]). The decrease in entropy (or, correspondingly, the increase in Shannon’s entropy) after
noise is quantified in the ”Mrs. Gerber’s Lemma” [24]:

Ent (fε) ≤ nE f · ψ
(
Ent(f)

nE f
, ε

)
, (2)

where ψ = ψ(x, ε) is an explicitly given function on [0, 1] × [0, 1/2], which is increasing and
strictly concave in its first argument for any 0 < ε < 1

2 . Equality holds iff f is a product
function with equal marginals. That is, there exists a function g : {0, 1} → R, such that for
any x = (x1, ..., xn) ∈ {0, 1}n holds f(x) =

∏n
i=1 g (xi).

One has ψ(0, ε) = 0 and ∂ψ
∂x |x=0

= (1− 2ε)2. Hence ψ(x, ε) ≤ (1− 2ε)2 · x, with equality only at

x = 0. Hence the inequality (2) has the following weaker linear approximation version

Ent (fε) ≤ (1− 2ε)2 · Ent(f), (3)

in which equality holds if and only if f is a constant function.

Rényi entropies. There is a well-known connection between `q norms of a nonnegative function
f and its entropy (see e.g., [5]): Assume, as we may by homogeneity, that E f = 1. Then
Ent(f) = limq→1

1
q−1 log2 ||f ||

q
q. The quantity Entq(f) = 1

q−1 log2 ||f ||
q
q is known as the qth

Rényi entropy of f ([19]).1 The entropies {Entq(f)}q increase with q. Restating the inequality
(1) in terms of Rényi entropies gives

Entq (fε) ≤
(1− 2ε)2q

(1− 2ε)2(q − 1) + 1
· Ent1+(1−2ε)2(q−1)(f).

Note that taking q → 1 in this inequality recovers only the (weaker) linear approximation
version (3) of Mrs. Gerber’s inequality (2). This highlights an important difference between
inequalities (1) and (2). Mrs. Gerber’s lemma takes into account the distribution of a function,
specifically the ratio between its entropy and its `1 norm. When this ratio is exponentially large
in n, which typically holds in the information theory contexts in which this inequality is applied,
(2) is significantly stronger than (3). On the other hand, hypercontractive inequalities seem to
be typically applied in contexts in which the ratio between different norms of the function is
subexponential in n, and there are examples of such functions for which (1) is essentially tight.
With that, there are several recent results [18, 14, 26] which show that (1) can be strengthened,

if the ratio
‖f‖q
‖f‖1 , for some q > 1, is exponentially large in n. In the framework of Rényi entropies,

the possibility of a result analogous to (2) for higher Rényi entropies was discussed in [6].

Our results. This paper proves a Mrs. Gerber type result for the second Rényi entropy, and a
hypercontractive inequality for the `2 norm of fε which take into account the ratio between `q
and `1 norms of f . We try to pattern the results below after (2).

We start with a Mrs. Gerber type inequality.

1Note that this notion is defined for all, not necessarily nonnegative, functions on {0, 1}n.
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Proposition 1.1: Let q > 1, and let f be a nonnegative function on {0, 1}n such that E f = 1.
Then

Ent2 (fε)

n
≤ ψ2,q

(
Entq(f)

n
, ε

)
, (4)

where ψ2,q is an explicitly given function on [0, 1]× [0, 1/2], which is increasing and concave in
its first argument.

This inequality is essentially tight in the following sense. For any 0 < x < 1 and 0 < ε < 1
2 ,

and for any y < ψ2,q(x, ε) there exists a sufficiently large n and a nonnegative function f on

{0, 1}n with E f = 1,
Entq(f)

n ≤ x and Ent2(fε)
n > y.

Let us make some comments about this result.

– The functions {ψ2,q}q are somewhat cumbersome to describe. Their precise definition will be
given below.

– Inequality (4) upper bounds Ent2 (fε) in terms of Entq(f) for q > 1, and ε. Taking q = 2
gives an upper bound on Ent2 (fε) in terms of Ent2(f) and ε, in analogy to (2).

– Recall that for a point x ∈ {0, 1}n and 0 ≤ r ≤ n, the Hamming sphere of radius r around
x is the set {y ∈ {0, 1}n : |y − x| = r}. As will be seen from the proof of Proposition 1.1, (4)
is essentially tight for a certain convex combination of the uniform distribution on {0, 1}n and
the characteristic function of a Hamming sphere of an appropriate radius (depending on q, ε,
and the required value of Entq(f)).

– In information theory one typically considers a slightly different notion of Rényi entropies:
For a probability distribution P on Ω, the qth Renyi entropy of P is given by Hq(P ) =
− 1
q−1 log2

(∑
ω∈Ω P

q(ω)
)
. To connect notions, if f is a nonnegative (non-zero) function on

{0, 1}n with expectation 1, then P = f
2n is a probability distribution, and Entq(f) = n−Hq(P ).

Furthermore, Entq (fε) = n−Hq (X ⊕ Z), where X is a random variable on {0, 1}n distributed
accordinng to P and Z is an independent noise vector corresponding to a binary symmetric
channel with crossover probability ε. Hence, (2) can be restated as

H (X ⊕ Z) ≥ n · ϕ
(
H(X)

n
, ε

)
,

and Proposition 1.1 can be restated as

H2 (X ⊕ Z) ≥ n · ϕ2,q

(
Hq(X)

n
, ε

)
Here ϕ is an explicitly given function on [0, 1] × [0, 1/2], which is increasing and convex in its
first argument (ϕ(x, ε) = 1− ψ(1− x, ε)), and similarly for ϕ2,q.

Next, we describe our main result, a hypercontractive inequality for the `2 norm of fε which

takes into account the ratio between `q and `1 norms of f , and more specifically Entq

(
f
‖f‖1

)
=

q
q−1 log2

(
‖f‖q
‖f‖1

)
.
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Theorem 1.2: Let q > 1, and let f be a non-zero function on {0, 1}n. Then

‖fε‖2 ≤ ‖f‖κ, (5)

where κ = κ2,q

(
Entq

(
f
‖f‖1

)
n , ε

)
, and κ2,q is an explicitly given function on [0, 1]× [0, 1/2], which

is decreasing in its first argument and which satisfies κ2,q(0, ε) = 1+(1−2ε)2, for all 0 ≤ ε ≤ 1
2 .

This inequality is essentially tight in the following sense. For any 0 < x < 1 and 0 < ε < 1
2 ,

and for any y < κ2,q(x, ε) there exists a sufficiently large n and a function f on {0, 1}n with
Entq(f/‖f‖1)

n ≥ x and ‖fε‖2 > ‖f‖y.

Some comments (see also Lemma 4.2 below).

– The precise definition of the functions {κ2,q}q will be given below. At this point let us just
observe that since the sequence {Entq(f)}q increases with q, we would expect the fact that
Entq(f) is large to become less significant as q increases. This is expressed in the properties
of the functions {κ2,q}q in the following manner: If q ≥ 2 then for any 0 < ε < 1

2 the function
κ2,q(x, ε) starts as a constant-

(
1 + (1− 2ε)2

)
function up to some x = x(q, ε) > 0, and becomes

strictly decreasing after that. In other words x(q, ε) is the largest possible value of
Entq

(
f
‖f‖1

)
n

for which Theorem 1.2 provides no new information compared to (1). For 1 < q < 2 there is
a value 0 < ε(q) < 1

2 , such that for all ε ≤ ε(q) the function κ2,q(x, ε) is strictly decreasing (in
which case we say that x(q, ε) = 0). However, x(q, ε) > 0 for all ε > ε(q). The function ε(q)
decreases with q (in particular, ε(q) = 0 for g ≥ 2). The function x(q, ε) increases both in q
and in ε.

– Notably, taking q → 1 in Theorem 1.2 gives (see Corollary 1.4)

‖fε‖2 ≤ ‖f‖κ,

where κ = κ2,1

(
Ent

(
f
‖f‖1

)
/n, ε

)
= −

Ent
(

f
‖f‖1

)
/n

φε
(

1−Ent
(

f
‖f‖1

)
/n
) . The function κ2,1(x, ε) = − x

φε(1−x) is

strictly decreasing in x for any 0 < ε < 1
2 . It satisfies κ2,1(0, ε) = limx→0 κ2,1(x, ε) = 1+(1−2ε)2,

for all 0 ≤ ε ≤ 1
2 . Hence, this is stronger than (1) for any non-constant function f and for

any 0 < ε < 1
2 , with the difference between the two inequalities becoming significant when

Ent
(

f
‖f‖1

)
/n is bounded away from 0.

– As will be seen from the proof of Theorem 1.2, (5) is essentially tight for a certain convex
combination of the uniform distribution on {0, 1}n and characteristic functions of one or two
Hamming spheres of appropriate radii (the number of the spheres and their radii depend on q,

ε, and the required value of Entq

(
f
‖f‖1

)
).

– Let f be a non-constant function and let 0 < ε < 1
2 be fixed. Consider the function F (q) =

Ff,ε(q) = κ2,q

(
Entq

(
f
‖f‖1

)
n , ε

)
. It will be seen that there is a unique value 1 < q(f, ε) ≤

1 + (1 − 2ε)2 of q for which F (q) = q. Furthermore, q(f, ε) = minq≥1 F (q). Hence it provides
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the best possible value for κ in Theorem 1.2. With that, determining q(f, ε) might in principle
require knowledge of all the Renyi entropies Entq(f), for 1 ≤ q ≤ 1 + (1− 2ε)2, while typically
we are in possession of one of the ”easier” Rényi entropies, such as Ent(f) or Ent2(f).

Full statements of Proposition 1.1 and Theorem 1.2

We now define the functions {ψ2,q}q in Proposition 1.1 and {κ2,q}q in Theorem 1.2, completing
the statements of these claims. We start with introducing yet another function on [0, 1]×[0, 1/2]
which will play a key role in what follows (we remark that this function was studied in [14]).

For 0 ≤ x ≤ 1 and 0 ≤ ε ≤ 1
2 , let σ = H−1(x) and let y = y(x, ε) =

−ε2+ε
√
ε2+4(1−2ε)σ(1−σ)

2(1−2ε) . Let

Φ(x, ε) =
1

2
·
(
x− 1 + σH

( y
σ

)
+ (1− σ)H

(
y

1− σ

)
+ 2y log2(ε) + (1− 2y) log2(1− ε)

)
.

The function Φ is nonpositive. It is increasing and concave in its first argument. Additional
relevant properties of Φ are listed in Lemma 2.3 below. For a fixed ε, it will be convenient to
write φε(x) = Φ

(
x, 2ε(1− ε)

)
, viewing φε as a univariate function on [0, 1].

Definition 1.3:

Let 0 ≤ x ≤ 1 and 0 ≤ ε ≤ 1
2 .

• If φ′ε(1− x) < 1
q , let α0 = (φ′ε)

−1
(

1
q

)
. Define

ψ2,q(x, ε) = 2 ·

{
q−1
q · x+

(
φε (α0) + 1−α0

q

)
if φ′ε(1− x) < 1

q

φε(1− x) + x otherwise

• Let y = q−1
q · x + 1

q . Let q0 = 1 + (1 − 2ε)2. If y ≥ 1
q0

, let α0 be determined by

1− α0 − α0φε(α0)
1−α0

= y. If x = 0, define κ2,q(x, ε) = q0. Otherwise, define

κ2,q(x, ε) =


q0 if y ≤ 1

q0
− x
φε(1−x) if y > 1

q0
and − x

φε(1−x) ≥ q
α0−1
φε(α0) if y > 1

q0
and − x

φε(1−x) < q

We remark that it is not immediately obvious that the functions ψ2,q and κ2,q are well-defined.
This will be clarified in the proofs of Proposition 1.1 and Theorem 1.2.

We state explicitly some special cases of Theorem 1.2, which seem to be the most relevant
for applications. They describe the improvement over (1), given non-trivial information about
Ent(f) and ‖f‖2.

Corollary 1.4:
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1. Taking q → 1 in Theorem 1.2 gives:

‖fε‖2 ≤ ‖f‖κ, with κ = −
Ent

(
f
‖f‖1

)
/n

φε

(
1− Ent

(
f
‖f‖1

)
/n
) .

2. Taking q = 2 in Theorem 1.2 gives, for x =
Ent2

(
f
‖f‖1

)
n and q0 = 1 + (1− 2ε)2

‖fε‖2 ≤ ‖f‖κ, with κ =

{
q0 if x+1

2 ≤
1
q0

α−1
φε(α) otherwise

In the second case α is determined by 1− α− αφε(α)
1−α = x+1

2 .

We observe that both Proposition 1.1 and Theorem 1.2 are based on the following claim ([14],
Corollary 3.2). This claim also explains the relevance of function Φ.

Theorem 1.5: Let 0 ≤ x ≤ 1. Let f be a function on {0, 1}n supported on a set of cardinality
at most 2xn. Then, for any 0 ≤ ε ≤ 1

2 holds

〈fε, f〉 ≤ 2(2Φ(x,ε)+1−x)·n · ‖f‖22,

Moreover, this is tight, up to a polynomial in n factor, if f is the characteristic function of a
Hamming sphere of radius H−1(x) · n.

Applications

We describe some applications of the results above, related mainly to coding theory. The
idea of using hypercontractivity to study binary codes was discussed already in [12]. In [1]
the hypercontractive inequality (1) was used to obtain bounds on the distance components and
other parameters of binary codes. We first observe (a similar observation was made in [14]) that
these bounds can be strengthened by replacing (1) by (stronger) inequalities of Theorem 1.2.
We do not go into details.

Next, we consider some implications of Theorem 1.2, focussing on the behavior of the norm
κ = κ2,2 for values of the noise parameter ε in the vicinity of 0. Clearly, for any 0 ≤ x ≤ 1 the
function κ2,2(x, ε) is 2 at ε = 0. We prove the following technical claim.

Lemma 1.6:

Assume 0 < x < 1. Let κ(ε) = κ2,2(x, ε).

1.

κ′(0) =
4

ln 2
·

(
2
√
H−1 (1− x) (1−H−1 (1− x))− 1

)
x

.
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2. Let ε ∼ 0 express the fact that ε is a sufficiently small absolute constant. Then for ε ∼ 0
holds |κ′(ε)−κ′(0)| ≤ O(ε), where the asymptotic notation hides absolute constants which
may depend on x.

We use this claim to rederive two known results, a logarithmic Sobolev inequality and a version
of an uncertainty principle for the Hamming cube, as simple corollaries of Theorem 1.2. We
then present some implications of these results.

Logarithmic Sobolev inequalities. Viewing both sides of (1) as functions of ε, and writing L(ε)
for the LHS and R(ε) for the RHS, we have L(0) = R(0) = ‖f‖2, and L(ε) ≤ R(ε) for 0 ≤ ε ≤ 1

2 .
Since both L and R are differentiable in ε this implies L′(0) ≤ R′(0). This inequality is the
logarithmic Sobolev inequality [9] for the Hamming cube. We proceed to describe it in more
detail. Recall that the Dirichlet form E(f, g) for functions f and g on the Hamming cube

is defined by E(f, g) = Ex
∑

y∼x

(
f(x) − f(y)

)(
g(x) − g(y)

)
. Here y ∼ x means that x

and y differ in precisely one coordinate. The logarithmic Sobolev inequality then states that
E(f, f) ≥ 2 ln 2 · Ent

(
f2
)
. Applying the same approach to (5) leads to a family of logarithmic

Sobolev inequalities of the form E(f, f) ≥ c·Ent
(
f2
)
, where the constant c depends on Entq(f)

and belongs to the interval [2 ln 2, 2]. In particular, for q = 2 we obtain the following result.

Here and below we write H(t) = t log2

(
1
t

)
+ (1− t) log2

(
1

1−t

)
for the binary entropy function.

Corollary 1.7: For any function f on {0, 1}n holds

E(f, f) ≥ `

Ent2
(

f
‖f‖1

)
n

 · Ent (f2
)
,

where `(x) = 2 · 1−2
√
H−1(1−x)(1−H−1(1−x))

x is a convex and increasing function on [0, 1], taking
[0, 1] onto [2 ln 2, 2].

Let us point out that this result is not new. A somewhat stronger logarithmic Sobolev inequality

E(f, f) ≥ `

Ent

(
f2

‖f‖22

)
n

 · Ent (f2
)

was shown using a different approach in [20] (see also

Theorem 6 in [18]).2 We do believe that it is instructive to rederive it here as a limit case of a
more general result, namely the corresponding hypercontractive inequality. We remark that the
hypercontractive inequality (1) was shown in [9] to be essentially equivalent to the logarithmic
Sobolev inequality E(f, f) ≥ 2 ln 2 ·Ent

(
f2
)
, since (1) can be recovered by (roughly speaking)

integrating this inequality over the noise parameter. However, establishing such equivalence
between the claim of Corollary 1.7 and the second claim of Corollary 1.4 seems to be more
challenging. For instance in [18] integrating the appropriate logarithmic Sobolev inequalities
led only to understanding the behavior of the norm κ in the vicinity of ε = 0.

2It seems that it might be possible to recover this stronger inequality by differentiating a corresponding
hypercontractive inequality at zero, if one considers a more general version of Theorem 1.2 which takes into
account the ratio between `q and `p norms of f , for q > p (and in this case taking both q and p to be very close
to 2). We omit the details.
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An uncertainty principle on {0, 1}n.

We recall some basic notions in Fourier analysis on the Hamming cube (see [8]). For α ∈
{0, 1}n, define the Walsh-Fourier character Wα on {0, 1}n by setting Wα(y) = (−1)

∑
αiyi , for

all y ∈ {0, 1}n. The weight of the character Wα is the Hamming weight |α| of α. The characters
{Wα}α∈{0,1}n form an orthonormal basis in the space of real-valued functions on {0, 1}n, under

the inner product 〈f, g〉 = 1
2n
∑

x∈{0,1}n f(x)g(x). The expansion f =
∑

α∈{0,1}n f̂(α)Wα defines

the Fourier transform f̂ of f . We also have the Parseval identity, ‖f‖22 =
∑

α∈{0,1}n f̂
2(α).

Uncertainty principle asserts that a function and its Fourier transform cannot be simultane-
ously narrowly concentrated. One way to formalize this statement for the Hamming cube was
presented in [18] (see also the discussion following Theorem 1.10 in [14]). If f is a function on

{0, 1}n with
Ent2

(
f
‖f‖1

)
n ≥ 1 −H(ρ), then its Fourier transform f̂ cannot attain its `2 norm in

a Hamming ball of radius much smaller than
(

1
2 −

√
ρ(1− ρ)

)
· n. Here we rederive this result

from Theorem 1.2. More specifically we show the following.

Corollary 1.8:

Let f be a non-zero function on {0, 1}n such that
Ent2

(
f
‖f‖1

)
n = 1−H(ρ), for some 0 ≤ ρ < 1.

Let 0 ≤ µ < 1
2 −

√
ρ(1− ρ). Then∑

|α|≤µn

f̂2(α) ≤ 2−cn ·
∑
α

f̂2(α),

where c is an absolute constant depending on ρ and µ.

Before listing some implications of Corollaries 1.7 and 1.8, let us provide some relevant context
from coding theory. A binary error-correcting code C of length n and minimal distance d is a
subset of {0, 1}n in which the distance between any two distinct points is at least d. Let A(n, d)
be the maximal size of such a code. A well-known open problem in coding theory is to determine,
given 0 < δ < 1

2 , the asymptotic maximal rate R(δ) = lim supn→∞
1
n log2A (n, bδnc) of a code

with relative distance δ. The best known upper bounds on R(δ) were obtained in [16] using the
linear programming relaxation, constructed in [7], of the combinatorial problem of bounding
A(n, d). Let ALP (n, d) be the value of the appropriate linear program of [7] and let RLP (δ) =
lim supn→∞

1
n log2ALP (n, bδnc). By construction, ALP (n, d) ≥ A(n, d) for all n and d and

hence RLP (δ) ≥ R(δ). The first JPL bound of [16] is R(δ) ≤ RLP (δ) ≤ H
(

1/2−
√
δ(1− δ)

)
.

This bound is the best known for a subrange of values of δ. The value of RLP (δ) is also

unknown, for all 0 < δ < 1
2 . A lower bound RLP (δ) ≥

1−H(δ)+H
(

1/2−
√
δ(1−δ)

)
2 was shown in

[21]. It was improved, for a subrange of δ, in [17].

A different approach to obtain upper bounds on the cardinality of binary codes was presented in
[10]. For a subset D ⊆ {0, 1}n, let MD be the adjacency matrix of the subgraph of the discrete
cube induced by the vertices of D. Let λ(D) be the maximal eigenvalue of MD. The following
claim was proved in [10] for binary linear codes (and extended in [17] to general binary codes):
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Let D be subset of {0, 1}n with λ(D) ≥ n− 2d+ 1. Let C be a code of length n and minimal
distance d. Then |C| . |D| (here we use the approximate inequality sign to indicate that the
inequality holds up to lower order terms). Choosing for D the Hamming balls of different radii
with their corresponding parameters leads to a simple proof of the first JPL bound on R(δ).
[10] posed the natural problem of finding subsets of {0, 1}n with the largest possible eigenvalue
for their cardinality.

We show the following results to be simple consequences of Corollaries 1.7 and 1.8.

Corollary 1.9:

• Let D be a subset of {0, 1}n of cardinality |D| = 2H(ρ)n, for some 0 ≤ ρ ≤ 1. Then

λ(D) ≤ 2
√
ρ(1− ρ) · n.

This is almost tight if D is a Hamming ball of exponentially small cardinality.

• Let 0 ≤ s ≤ n
2 and let f be a polynomial of degree s on {0, 1}n (that is, f a restriction of

a degree s polynomial on Rn to {0, 1}n). Then, writing σ for s
n ,

1

n
log2

(
‖f‖2
‖f‖1

)
≤

1−H
(

1
2 −

√
σ(1− σ)

)
2

.

• For any 0 ≤ δ ≤ 1
2 holds

RLP (δ) ≥
1−H(δ) +H

(
1/2−

√
δ(1− δ)

)
2

.

Some comments.

– The first and the second claims of this corollary will be shown to follow from the logarithmic
Sobolev inequality of Corollary 1.7. The first claim was already shown in [20], where it was also
derived from the appropriate logarithmic Sobolev inequality.3 We remark that it answers the
question of [10] and seems to indicate that at least the straightforward version of the approach
of [10], as described above, does not lead to an improvement of the first JPL bound.

The question of the maximal possible ratio ‖f‖2‖f‖1 for a polynomial f of degree s on {0, 1}n was

considered in [2, 11] in connection with a conjecture of Pelczynski. The bound in the second
claim of this corollary is an immediate consequence of the logarithmic Sobolev inequality of
Corollary 1.7. It improves the estimate of [2] for 0.3.. ≤ s

n <
1
2 .

– The third claim of this corollary recovers the bound in [21], showing it to be a consequence
of the uncertainty principle stated in Corollary 1.8. We find this connection between notions
to be rather intriguing.

3Apart from this claim being a simple corollary of Theorem 1.2, an additional reason for stating it here is
that it has only appeared in the unpublished arXiv preprint [20].
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Related work

In [18] it was shown that if
‖f‖p
‖f‖1 ≥ 2ρn, for some p ≥ 1 and ρ ≥ 0, then ‖f‖p ≥ ‖fε‖1+ p−1

(1−2ε)2
+∆(p,ρ,ε),

where ∆(p, ρ, ε) > 0 for all p > 1, ε, ρ > 0 (cf. with (1), which can be restated as ‖f‖p ≥
‖fε‖1+ p−1

(1−2ε)2
, for p = 1 + (1 − 2ε)2(q − 1)). The function ∆(p, ρ, ε) is ”semi-explicit”, in the

following sense: it is an explicit function of the (unique) solution of a certain explicit differential
equation.

In [26] it was shown, using a different approach, that (restating the result in the notation of
this paper) ‖fε‖2 ≤ ‖f‖q, where q is determined by Ff,ε(q) = q (in the notation of the last
comment above to Theorem 1.2). As we have observed, this is the best possible value for κ
in Theorem 1.2, but it might not be easy to determine explicitly in practice (compare with
Corollary 1.4).

In [25] Mrs. Gerber type inequalities for Rényi divergence and arbitrary distributions on Polish
spaces were proved, using a different approach. The results in [25] apply in higher generality,
but they seem to be somewhat less explicit than these in Proposition 1.1.

This paper is organized as follows. We prove Proposition 1.1 in Section 2 and Theorem 1.2 in
Section 3. We prove the remaining claims, including some technical lemmas and claims made
above in the comments to the main results, in Section 4.

2 Proof of Proposition 1.1

We first prove (4) and then show it to be tight. We prove (4) in two steps, using Theorem 1.5
to reduce it to a claim about properties of the function φε, and then proving that claim.

We start with the first step. It follows closely the proof of Theorem 1.8 in [14], and hence
will be presented rather briefly, and not in a self-contained manner. Let f be a function on
{0, 1}n, for which we want to show (4). Recall that, by assumption, E f = 1. This means that
‖f‖∞ ≤ 2n, and that the points at which f < 2−n, say, contribute little to both sides ot (4),
so we may ignore them for the sake of the discussion (that is, we may and will assume that
f vanishes on these points). All the remaining points can be partitioned into O(n) level sets
A1, ...Ar such that f varies by a factor of 2 at most in each level set. Let αi = 1

n log2 (|Ai|),
and let νi = 1

n log2 (vi), where vi is the minimal value of f on Ai. Then, as shown in the proof

of Theorem 1.8 in [14], up to an additive error term of O
(

log(n)
n

)
, we have,

Ent2 (fε)

n
=

1

n
log2 ‖fε‖22 ≤ 2 · max

1≤i≤r

{
φε (αi) + νi

}
.

The negligible error here contributes towards a negligible error in (4), which can then be removed
by a tensorization argument, so we will ignore it from now on.

Let N = 1
n log2 (‖f‖q). Note that N = q−1

q ·
Entq(f)

n . Hence, in particular, N ≤ q−1
q . Note

also that for any 1 ≤ i ≤ r holds αi + νi ≤ 1 (since E f = 1) and αi−1
q + νi ≤ N (since

|Ai|
2n 2qνin ≤ 1

2n
∑

x∈Ai f
q(x) ≤ ‖f‖qq). We also have 0 ≤ αi ≤ 1 and −1 ≤ νi ≤ 1. This discussion
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leads to the definition of the following two subsets of R2, which will play an important role in
the proof of Theorem 1.2 as well. (We remark that the relevance of the set Ω in the following
definition is not immediately obvious. It will be made clear in the following arguments.)

Definition 2.1: Let q > 1 and 0 < N ≤ q−1
q . Let Ω0 ⊆ R2 be defined by

Ω0 =

{
(α, ν) : 0 ≤ α ≤ 1, − 1 ≤ ν ≤ 1, α+ ν ≤ 1,

α− 1

q
+ ν ≤ N

}
.

Let Ω ⊆ Ω0 be the set of all pairs (α, ν) ∈ Ω0 with ν ≥ 0.

By the preceding discussion, (4) will follow from the following claim.

Lemma 2.2: For all 0 ≤ ε ≤ 1
2 holds

max
(α,ν)∈Ω0

{
φε(α) + ν

}
=

1

2
· ψ2,q

(
qN

q − 1
, ε

)
,

where ψ2,q is defined in Definition 1.3.

Before proving Lemma 2.2, we collect the relevant properties of the function φε in the following
lemma.

Lemma 2.3:

Let 0 < ε < 1
2 . Let q0 = q0(ε) = 1 + (1− 2ε)2. The function φε has the following properties.

1. φε(α) is strictly concave and increasing from φε(0) = −
log2

(
4
q0

)
2 to 0 on 0 ≤ α ≤ 1.

2. φ′ε(0) = 1, φ′ε(1) = 1
q0

.

3. α−1
φε(α) is strictly increasing in α, going up to q0, as α→ 1.

4. The function g(α) = 1−α− α
1−α ·φε (α) is strictly decreasing on [0, 1]. Moreover, g(0) = 1

and g(1) = 1
q0

.

This lemma will be proved in Section 4. For now we assume its correctness, and proceed with
the proof of Lemma 2.2

Proof:

Our first observation is that the maximum of φε(α) + ν on Ω0 is located in Ω, since for any
point (α, ν) ∈ Ω0 with ν < 0, the point (α, 0) is in Ω. So we may and will replace Ω0 with Ω in
the following argument.
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Since φε is increasing, any local maximum of φε(α) + ν is located on the upper boundary of
Ω, that is on the piecewise linear curve which starts as the straight line α

q + ν = N + 1
q , for

0 ≤ α ≤ 1− qN
q−1 and continues as the straight line α+ ν = 1 for 1− qN

q−1 ≤ α ≤ 1.

Note that, since φ′ε < 1 for α > 0, the function φε(α) + ν decreases (as a function of α) on the

line α + ν = 1 for 1 − qN
q−1 ≤ α ≤ 1. Next, let h(α) = φε(α) − α

q +
(
N + 1

q

)
. The function

h describes the restriction of φε(α) + ν to the line α
q + ν = N + 1

q , and we are interested on

the maximum of h on the interval I =
{

0 ≤ α ≤ 1− qN
q−1

}
. We have h′(α) = φ′ε(α) − 1

q . By

Lemma 2.3, the function h is concave, and hence there are two possible cases:

• φ′ε
(

1− qN
q−1

)
≥ 1

q . In this case h is increasing on I and we get

max
(α,ν)∈Ω

{
φε(α) + ν

}
= max

α∈I
{h(α)} = h

(
1− qN

q − 1

)
=

φε

(
1− qN

q − 1

)
+

qN

q − 1
=

1

2
· ψ2,q

(
qN

q − 1
, ε

)
.

The last equality follows from the definition of ψ2,q in this case.

• φ′ε
(

1− qN
q−1

)
< 1

q . Note that, by Lemma 2.3, 1 = φ′ε(0) > 1
q . Hence, in this case the

maximum of h on I is located at the unique zero of its derivative, that is at the point α0

such that φ′ε (α0) = 1
q . Using the definition of ψ2,q in this case, we get

max
(α,ν)∈Ω

{
φε(α) + ν

}
= h (α0) = N +

(
φε (α0) +

1− α0

q

)
=

1

2
· ψ2,q

(
qN

q − 1
, ε

)
.

This concludes the proof of (4). The fact that ψ2,q (x, ε) is strictly increasing and concave in its
first argument is an easy implication of Lemma 2.3.

We pass to showing the tightness of (4). Let 0 < ε < 1
2 and 0 < x < 1. Set N = q−1

q · x. Let Ω
be the domain defined in Definition 2.1, and let (α∗, ν∗) be the maximum point of φε(α) + ν on
Ω (note that the discussion above determines this point uniquely). We proceed to define the
function f . Let n be sufficiently large. For y ∈ {0, 1}n, let |y| denotes the Hamming weight of y,
that is the number of 1-coordinates in y. Let r = bH−1 (α∗) ·nc. Let S = {y ∈ {0, 1}n, |y| = r}
be the Hamming sphere around zero of radius r in {0, 1}n. Now there are two cases to consider.

• If φ′ε(1− x) < 1
q , then by the discussion above, the point (α∗, ν∗) lies on the line α

q + ν =

N + 1
q , but not on the line α + ν = 1. Observe that 2α

∗n−o(n) ≤ |S| ≤ 2α
∗n (the first

estimate follows from the Stirling formula, for the second estimate see e.g., Theorem 1.4.5.
in [15]). As the first attempt, let g = 2ν

∗n · 1S . Then N − o(n) ≤ α∗−1
q + ν∗ − o(n) ≤

1
n log2 ‖g‖q ≤ α∗−1

q + ν∗ = N . That is, x − on(1) ≤ Entq(g)
n ≤ x. However, E g is

exponentially small. To correct that, we define f to be v = 2(ν∗−δ)·n on S, and 2n−|S|v
2n−|S|
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on the complement of S. Then E f = 1. We choose δ to be as small as possible, while

ensuring that
Entq(f)

n ≤ x. Since the contribution of the constant-1 function to ‖f‖q
is exponentially small w.r.t. ‖f‖q, we can choose δ = on(1). We now have E f = 1,
Entq(f)

n ≤ x, and

Ent2(fε)

n
=

1

n
log2 ‖fε‖22 =

1

n
log2

〈
f2ε(1−ε), f

〉
≥

2 · (φε (α∗) + ν∗)− on(1) ≥ ψ2,q(x, ε)− on(1).

Here the second equality follows from the semigroup property of the noise operator: Tε ◦
Tε = T2ε(1−ε). The first inequality follows from the tightness part of Theorem 1.5 and the
definition of φε. The second inequality follows from Lemma 2.2.

The tightness of (4) in this case now follows, taking into account the fact that ψ2,q is
strictly increasing.

• If φ′ε(1 − x) ≥ 1
q , the point (α∗, ν∗) lies on the intersection of the lines α

q + ν = N + 1
q ,

and α + ν = 1. Hence the function g = 2ν
∗n · 1S has both x − on(1) ≤ Entq(g)

n ≤ x, and
1 − on(1) ≤ E g ≤ 1. It is easy to see that g can be corrected as in the preceding case,
by decreasing it slightly on S and adding a constant component, to obtain a function f
with expectation 1 and Entq(f) ≤ x, and with Ent2(fε)

n ≥ ψ2,q(x, ε) − on(1), proving the
tightness of (4) in this case as well. We omit the details.

3 Proof of Theorem 1.2

The high-level outline of the argument in this proof is similar to that of Proposition 1.1. We
start with proving (5), doing this in two steps. In the first step Theorem 1.5 is used to reduce
(5) to a claim about properties of the function φε. That claim is proved in the second step.

We will give only a brief description of the first step since, similarly to the first step in the
proof of Proposition 1.1, it follows closely the proof of Theorem 1.8 in [14]. Let f be a function
on {0, 1}n, for which we may and will assume that f ≥ 2−n and that E f = ‖f‖1 = 1. There
are O(n) real numbers 0 ≤ α1, ..., αr ≤ 1 and −1 ≤ ν1, ..., νr ≤ 1, such that, up to a negligible
error, which may be removed by tensorization, we have

1

n
log2 ‖fε‖2 ≤ max

1≤i≤r

{
φε (αi) + νi

}
and

1

n
log2 ‖f‖q = max

1≤i≤r

{αi − 1

q
+ νi

}
.

Hence (5) reduces to claim (6) in the following proposition.

Proposition 3.1:

Let q > 1 and let 0 ≤ α1, ..., αr ≤ 1, −1 ≤ ν1, ..., νr ≤ 1 with max1≤i≤r

{
(αi − 1) + νi

}
= 0.

Let N = max1≤i≤r

{
αi−1
q + νi

}
. Then for any 0 ≤ ε ≤ 1

2 holds

max
1≤i≤r

{
φε (αi) + νi

}
≤ max

1≤i≤r

{αi − 1

κ
+ νi

}
, (6)

13



where κ = κ2,q

(
qN
q−1 , ε

)
is defined in Definition 1.3.4

Moreover, this is tight, in the following sense. For any 0 < N < q−1
q and 0 < ε < 1

2 , and for any

κ̃ < κ2,q(x, ε), there exist 0 ≤ α1, α2 ≤ 1 and −1 ≤ ν1, ν2 ≤ 1 such that max1≤i≤2

{
(αi − 1) +

νi

}
= 0, max1≤i≤2

{
αi−1
q + νi

}
= N , and max1≤i≤2

{
φε (αi) + νi

}
> max1≤i≤r

{
αi−1
κ̃ + νi

}
.

Proof: (of Proposition 3.1).

We start with verifying simple boundary cases. First, we observe that φ0(x) = x−1
2 (Lemma 4.1)

and that φ 1
2
(x) = x− 1 (see the relevant discussion in the proof of Corollary 1.4). In addition,

it is easy to see that κ2,q

(
x, 1

2

)
= 1 for all q ≥ 1 and 0 ≤ x ≤ 1; and (bearing in mind that

φ0(x) = x−1
2 ) that κ2,q(x, 0) = 2 for all q ≥ 1 and 0 ≤ x ≤ 1. Therefore (6) is an identity for

ε = 0 and ε = 1
2 . Hence we may and will assume from now on that 0 < ε < 1

2 .

Let q0 = 1 + (1− 2ε)2. We proceed to consider the (simple) cases N = 0 or N + 1
q ≤

1
q0

. Note

that in these cases we have κ = κ2,q

(
qN
q−1 , ε

)
= q0. Next, observe that, by the first and the

second claims of Lemma 2.3, for any 0 ≤ α ≤ 1 holds φε(α) ≤ α−1
q0

= α−1
κ and hence (6) holds

trivially in these cases.

We continue to prove (6), assuming from now on that N > 0 and that N + 1
q >

1
q0

. Let Ω ⊆ R2

be the set defined in Definition 2.1. We now define a family of continuous functions on Ω,
which will play an important role in the following argument. Let (α1, ν1) be a point in Ω with
α1−1
q + ν1 = N . Define a function f = fα1,ν1 on Ω as follows. For (α, ν) ∈ Ω with α < 1 let

f(α, ν) be the value of κ for which φε (α) + ν = max
{
α1−1
κ + ν1,

α−1
κ + ν

}
. In addition, let

f(1, 0) = 1−α1
ν1

.

Lemma 3.2: For any choice of (α1, ν1) as above the function fα1,ν1 is well-defined and contin-
uous on Ω.

Let M (α1, ν1) = maxΩ fα1,ν1 . The inequality (6) will follow from the next main technical claim,
describing the behavior of M (α1, ν1), as a function of α1 and ν1. Before stating this claim, let

us make some preliminary comments. Note that the points
(

1− qN
q−1 ,

qN
q−1

)
and

(
0, N + 1

q

)
are

possible choices for (α1, ν1). Note also that α0 in the third part of the claim is well-defined, by
the fourth claim of Lemma 2.3.

Proposition 3.3:

1.

M

(
1− qN

q − 1
,
qN

q − 1

)
=

− qN
q−1

φε

(
1− qN

q−1

) .
4It is easy to see that 0 ≤ N ≤ q−1

q
, and hence κ is well defined.
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2. If
− qN
q−1

φε
(

1− qN
q−1

) ≥ q, then for any choice of (α1, ν1) holds

M (α1, ν1) ≤ M

(
1− qN

q − 1
,
qN

q − 1

)
.

3. If
− qN
q−1

φε
(

1− qN
q−1

) ≤ q, then for any choice of (α1, ν1) holds

M

(
1− qN

q − 1
,
qN

q − 1

)
≤ M (α1, ν1) ≤ M

(
0, N +

1

q

)
=

α0 − 1

φε (α0)
,

where α0 is determined by 1− α0 −
α0φε (α0)

1− α0
= N +

1

q
.

We will prove Lemma 3.2 and Proposition 3.3 in Sections 3.1 and 3.2. For now we assume their
validity and complete the proof of Proposition 3.1.

We first prove (6). Note that if x = qN
q−1 then in the definition of κ2,q(x, ε) we have y =

q−1
q · x+ 1

q = N + 1
q . Recall also that we may assume that N > 0 and that y = N + 1

q >
1
q0

.

By assumption αi + νi ≤ 1, and αi−1
q + νi ≤ N for all 1 ≤ i ≤ r . Moreover there is an index

1 ≤ i ≤ r for which αi−1
q + νi = N . Assume, w.l.o.g., that i = 1. We apply Proposition 3.3 to

the function fα1,ν1 . Observe that the claim of the proposition together with the definition of
κ imply M (α1, ν1) ≤ κ. By the definition of fα1,ν1 , this means that for any point (α, ν) ∈ Ω
holds φε (α) + ν ≤ max

{
α1−1
κ + ν1,

α−1
κ + ν

}
. We now claim that this inequality holds for all

the points (αi, νi), 1 ≤ i ≤ r, which will immediately imply (6). In fact, points (αi, νi) with
0 ≤ νi ≤ 1 lie in Ω and hence the inequality holds for these points. Furthermore, if νi < 0 for

some 1 ≤ i ≤ r, then the point (αi, 0) lies in Ω, and hence φε (αi) ≤ max
{
α1−1
q + ν1,

αi−1
q

}
.

But then φε (αi) + νi ≤ max
{
α1−1
q + ν1,

αi−1
q + νi

}
, proving the inequality in this case as well.

We pass to proving the tightness of (6), starting with the case N + 1
q ≤

1
q0

. In this case, by
definition, κ = q0. Let κ̃ < κ be given. Observe that since, by assumption, N > 0, we have

q > q0. Set α1 =
1
q0
− 1
q
−N

1
q0
− 1
q

. Set ν1 = 1−α1
q0

. Let δ > 0 be sufficiently small (depending on N

and κ̃). Set α2 = 1− δ and ν2 = δ. It is easy to see that α1, α2 and ν1, ν2 satisfy the required

constraints. We claim that φε (α2)+ν2 > max1≤i≤2

{
αi−1
κ̃ +νi

}
. In fact, for a sufficiently small

δ we have, using the second claim of Lemma 2.3 (and observing that φ′ε is continuous), that

φε (α2) + ν2 = φε(1− δ) + δ ≈ − δ

q0
+ δ > − δ

κ̃
+ δ =

α2 − 1

κ̃
+ ν2,

and

φε (α2) + ν2 ≈ − δ

q0
+ δ > 0 ≥ α1 − 1

κ̃
+

1− α1

q0
=

α1 − 1

κ̃
+ ν1.
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We pass to the case N + 1
q > 1

q0
and

− qN
q−1

φε
(

1− qN
q−1

) ≥ q. In this case κ =
− qN
q−1

φε
(

1− qN
q−1

) . Set

α1 = α2 = 1 − qN
q−1 and ν1 = ν2 = qN

q−1 . It is easy to see that α1, α2 and ν1, ν2 satisfy the
required constraints. It is also easy to see that for any κ̃ < κ holds

φε (α1) + ν1 =
α1 − 1

κ
+ ν1 >

α1 − 1

κ̃
+ ν1.

It remains to deal with the case N + 1
q >

1
q0

and
− qN
q−1

φε
(

1− qN
q−1

) < q. Let α0 be determined by

1 − α0 − α0φε(α0)
1−α0

= N + 1
q . Then κ = α0−1

φε(α0) . Set α1 = 0 and ν1 = N + 1
q . Set α2 = α0 and

ν2 = 1−α0. It is easy to see that in this case the function 1−α− αφε(α)
1−α is larger than N + 1

q at

α = 1− qN
q−1 , and hence the fourth claim of Lemma 2.3 implies that α2 = α0 > 1− qN

q−1 . Using
this, it is easy to see that α1, α2 and ν1, ν2 satisfy the required constraints. Furthermore, note
that α2 < 1 (again, using the fourth claim of Lemma 2.3). It is also easy to verify, using the
definition of α0, that

φε (α2) + ν2 =
α1 − 1

κ
+ ν1 =

α2 − 1

κ
+ ν2,

which implies that for any κ̃ < κ holds φε (α2) + ν2 > max1≤i≤2

{
αi−1
κ̃ + νi

}
. This completes

the proof of Proposition 3.1.

We now prove Lemma 3.2 and Proposition 3.3. Recall that we may assume N > 0 and N + 1
q >

1
q0

.

3.1 Proof of Lemma 3.2

Let (α1, ν1) be a point in Ω with α1−1
q + ν1 = N . We start with some simple but useful

observations about α1 and ν1.

Lemma 3.4:

1. α1 ≤ 1− qN
q−1 and ν1 ≥ qN

q−1 .

2. 1−α1
ν1

< q0.

Proof:

The first claim of the lemma is an easy consequence of the inequalities α1−1
q + ν1 = N and

α1 + ν1 ≤ 1. We omit the details.

We pass to the second claim of the lemma, distinguishing two cases, q ≤ q0 and q > q0. If
q ≤ q0, then ν1 = N + 1−α1

q > 1−α1
q ≥ 1−α1

q0
. If q > q0, we use the fact that N + 1

q >
1
q0
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to obtain 1−α1
q0

< (1− α1)
(
N + 1

q

)
= (1− α1)

(
α1
q + ν1

)
. Viewing the last expression as a

function of α1, it is easy to see that it equals ν1 at α1 = 0 and that it decreases in α1. Hence

ν1 ≥ (1− α1)
(
α1
q + ν1

)
> 1−α1

q0
, completing the argument in this case as well.

We now show that the function f = fα1,ν1 is well-defined and that its values lie in the interval
(0, q0). By Lemma 3.4, α1 < 1 and 0 < f(1, 0) = 1−α1

ν1
< q0. Let now α < 1. In this

case the function g(κ) = max
{
α1−1
κ + ν1,

α−1
κ + ν

}
is a strictly increasing continuous function

of κ, which is −∞ at κ = 0. Furthermore, by Lemma 2.3, φε(α) < α−1
q0

, implying that
g (q0) > φε (α) + ν. Hence, by the intermediate value theorem, there exists a unique 0 < κ < q0

for which φε(α) + ν = max
{
α1−1
κ + ν1,

α−1
κ + ν

}
.

Next, we argue that f is continuous on Ω. Let (α, ν) ∈ Ω. If α < 1, then there exists a compact
neighborhood of (α, ν) in which both one-sided derivatives of g(κ) are positive and bounded.
This, together with the fact that φε(α) + ν is continuous, implies that f is continuous at (α, ν).

It remains to argue that f is continuous at (1, 0). Let O be a sufficiently small neighbourhood
of (1, 0) in Ω. Let (α, ν) ∈ O, with α < 1. Then φε(α) + ν is close to φε(1) + 0 = 0. We would
like to claim that f(α, ν) is close to f(1, 0) = 1−α1

ν1
. In fact, assume towards contradiction that

f(α, ν) is significantly larger than 1−α1
ν1

. In this case φε(α)+ν = max
{
α1−1
f(α,ν) + ν1,

α−1
f(α,ν) + ν

}
≥

α1−1
f(α,ν) +ν1 is significantly larger than 0 (taking into account that α1 < 1), reaching contradiction.

On the other hand, assume that f(α, ν) is significantly smaller than 1−α1
ν1

, and hence significantly
smaller than q0 (by the second claim of Lemma 3.4). Recall that φε(1) = 0 and that φ′ε(1) =
1
q0

. Hence φε (α) = α−1
q0

+ O
(
(1− α)2

)
> α−1

f(α,ν) . This means that φε(α) + ν = α1−1
f(α,ν) + ν1,

which is significantly smaller than 0, again reaching contradiction. This completes the proof of
Lemma 3.2.

We collect some useful properties of f = fα1,ν1 in the following claim.

Corollary 3.5:

1. For any (α, ν) ∈ Ω holds φε(α) + ν = max
{
α1−1
f(α,ν) + ν1,

α−1
f(α,ν) + ν

}
.

2. 0 < f ≤M (α1, ν1) < q0 on Ω.

3. For any (α, ν) ∈ Ω holds f(α, ν) ≤ α−1
φε(α) . (If α = 1 we replace the RHS of this inequality

with q0.)

Proof:

3.2 Proof of Proposition 3.3

Let (α1, ν1) be given, let f = fα1,ν1 , and let M = M (α1, ν1) = maxΩ f . Let (α∗, ν∗) be a
maximum point of f . Then f (α∗, ν∗) = M and hence φε (α∗)+ν∗ = max

{
α1−1
M + ν1,

α∗−1
M + ν

}
.
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Clearly either α1−1
M + ν1 6= α∗−1

M + ν∗ or α1−1
M + ν1 = α∗−1

M + ν∗. In the first case we say that
(α∗, ν∗) is a maximum point of the first type, and otherwise it is a maximum point of the second
type.

The following two claims constitute the main steps of the proof of Proposition 3.3. They
describe the respective behavior of maxima points of the first and the second type.

Lemma 3.6: Let (α∗, ν∗) be a maximum point of f of the first type. Then the following two
claims hold.

• α1−1
f(α∗,ν∗) + ν1 >

α∗−1
f(α∗,ν∗) + ν∗.

• α∗ ≤ 1− qN
q−1 .

Lemma 3.7:

If (α1, ν1) =
(

1− qN
q−1 ,

qN
q−1

)
, then

(
1− qN

q−1 ,
qN
q−1

)
is the unique maximum point of f . This is a

maximum point of the second type.

If (α1, ν1) 6=
(

1− qN
q−1 ,

qN
q−1

)
, then there are two possible cases.

•
− qN
q−1

φε
(

1− qN
q−1

) ≥ q. Let (α∗, ν∗) be a maximum point of f of the second type in this case.

Then α∗ ≤ 1− qN
q−1 .

•
− qN
q−1

φε
(

1− qN
q−1

) < q. In this case f has a unique maximum point (α∗, ν∗). This point is of the

second type. Furthermore, α∗ > 1 − qN
q−1 , and it is uniquely determined by the following

identity:

α∗ − 1

φε(α∗)
=

α∗ − α1

α∗ − (1− ν1)
.

Lemmas 3.6 and 3.7 will be proved in Section 3.3. At this point we prove Proposition 3.3
assuming these lemmas hold.

We start with the first claim of Proposition 3.3. Let α1 = 1− qN
q−1 and ν1 = qN

q−1 . Let f = fα1,ν1 .
By the first claim of Lemma 3.7, we have

M (α1, ν1) = f (α1, ν1) =
α1 − 1

φε (α1, ν1)
=

− qN
q−1

φε

(
1− qN

q−1

) .

We pass to the second claim of the proposition. Assume that
− qN
q−1

φε
(

1− qN
q−1

) ≥ q. Let f = fα1,ν1 ,

for some α1 and ν1. Let (α∗, ν∗) be a maximum point of f . Then Lemmas 3.6 and 3.7 imply
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that α∗ ≤ 1− qN
q−1 . Hence

M (α1, ν1) = f (α∗, ν∗) ≤ α∗ − 1

φε (α∗)
≤

− qN
q−1

φε

(
1− qN

q−1

) = M

(
1− qN

q − 1
,
qN

q − 1

)
.

Here in the second step we have used the third claim of Corollary 3.5, in the third step the
third claim of Lemma 2.3 and in the fourth step the first claim of the proposition.

We pass to the third claim of the proposition. Assume that
− qN
q−1

φε
(

1− qN
q−1

) < q. Let f = fα1,ν1 , for

some α1 and ν1. Then, by Lemma 3.7, f has a unique maximum point (α∗, ν∗). This means
that α∗ is determined by α1 and ν1, and furthermore, since ν1 = N + 1−α1

q , α∗ is a function of
α1. We will show the following claim below.

Lemma 3.8: If (α1, ν1) 6=
(

1− qN
q−1 ,

qN
q−1

)
and

− qN
q−1

φε
(

1− qN
q−1

) < q, then α∗ is a decreasing function

of α1.

Assume Lemma 3.8 to hold. We have

M (α1, ν1) = f (α∗, ν∗) =
α∗ (α1)− 1

φε (α∗ (α1))
≤ α∗ (0)− 1

φε (α∗ (0))
= M

(
0, N +

1

q

)
.

The second step uses the fact that (α∗, ν∗) is a maximum point of the second type, and hence
f (α∗, ν∗) = α∗−1

φ(α∗) . The third step uses Lemma 3.8 and the third claim of Lemma 2.3, and the

fourth step the fact that α1 = 0 implies ν1 = N + 1
q .

Next, by Lemma 3.7, α = α∗ (0) is determined by the identity α−1
φε(α) = α

α−
(
q−1
q
−N

) which,

after rearranging, gives 1 − α − αφε(α)
1−α = N + 1

q . Hence, by the fourth claim of Lemma 2.3,

α∗ (0) = α0 and M
(

0, N + 1
q

)
= α0−1

φε(α0) .

To conclude the proof of the third claim of the proposition, observe that since α∗ > 1 − qN
q−1 ,

we have

M (α1, ν1) = f (α∗, ν∗) =
α∗ − 1

φε (α∗)
>

− qN
q−1

φε

(
1− qN

q−1

) ,
where the last inequality is by the third claim of Lemma 2.3. This completes the proof of
Proposition 3.3.

It remains to prove Lemmas 3.6, 3.7, and 3.8.
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3.3 Proofs of the remaining lemmas

Proof of Lemma 3.6

We start with the first claim of the lemma. Assume towards contradiction that α1−1
f(α∗,ν∗) + ν1 <

α∗−1
f(α∗,ν∗) + ν∗. Since f is a positive continuous function on Ω, there is a neighborhood O of

(α∗, ν∗) in Ω on which α1−1
f(α,ν) + ν1 <

α−1
f(α,ν) + ν. This means that any point (α, ν) ∈ O satisfies

φε (α) + ν = α−1
f(α,ν) + ν, and hence f(α, ν) = α−1

φε(α) . Since f (α∗, ν∗) ≥ f (α, ν), this implies that
α∗−1
φε(α∗)

≥ α−1
φε(α

, and hence, by the third claim of Lemma 2.3, that α∗ ≥ α. It follows that α∗ has

to be 1, and hence (α∗, ν∗) = (1, 0). But in this case α1−1
f(α∗,ν∗) + ν1 = α∗−1

f(α∗,ν∗) + ν∗ = 0, reaching
contradiction.

We pass to the second claim of the lemma. By the first claim α1−1
f(α∗,ν∗) + ν1 >

α∗−1
f(α∗,ν∗) + ν∗. We

claim that this implies that (α∗, ν∗) is a local maximum of φε(α) +ν. In fact, arguing as above,
there is a neighborhood O of (α∗, ν∗) on which α1−1

f(α,ν) + ν1 >
α−1
f(α,ν) + ν. This means that for

any point (α, ν) ∈ O we have φε (α) + ν = α1−1
f(α,ν) + ν1. Since f (α∗, ν∗) ≥ f (α, ν), this implies

that φε(α) + ν ≤ φ (α∗) + ν∗. To complete the proof, recall that any local maximum (α, ν) of
φ(α) + ν has α ≤ 1− qN

q−1 (as shown in the proof of Proposition 1.1).

Proof of Lemma 3.7

Let (α∗, ν∗) be a maximum point of f of the second type. The first observation is that (α∗, ν∗)
has to lie on the upper boundary of Ω. In fact, assume not. Then for a sufficiently small
τ > 0 the point (α, ν) = (α∗, ν∗ + τ) is in Ω. Since f (α, ν) ≤ f (α∗, ν∗), we have φε (α) +
ν > φε (α∗) + ν∗ = α1−1

f(α∗,ν∗) + ν1 ≥ α1−1
f(α,ν) + ν1. Hence f (α, ν) is determined by the equality

φε (α) + ν = α−1
f(α,ν) + ν, which implies f (α, ν) = f (α∗, ν∗) = α∗−1

φε(α∗)
. Hence (α, ν) is a point of

maximum of f of the first type with α1−1
f(α,ν) + ν1 <

α−1
f(α,ν) + ν. This, however, contradicts the

first claim of Lemma 3.6.

Recall that the upper boundary of Ω is a piecewise linear curve which starts as the straight
line α

q + ν = N + 1
q , for 0 ≤ α ≤ 1 − qN

q−1 and continues as the straight line α + ν = 1 for

1 − qN
q−1 ≤ α ≤ 1. Hence there are two cases to consider: In the first case α∗ ≤ 1 − qN

q−1 and
α∗

q + ν∗ = N + 1
q . In the second case 1− qN

q−1 < α∗ ≤ 1 and α∗ + ν∗ = 1.

Assume that the second case holds. Then (α∗, ν∗) satisfies

1. α1−1
f(α∗,ν∗) + ν1 = α∗−1

f(α∗,ν∗) + ν∗ = φε (α∗) + ν∗.

2. 1− qN
q−1 < α∗ ≤ 1 and α∗ + ν∗ = 1.

In particular, f (α∗, ν∗) = α∗−1
φε(α∗)

= α∗−α1
α∗−(1−ν1) . Consider the following two functions of α:

g1(α) = α−1
φε(α) and g2 (α) = α−α1

α−(1−ν1) , for α > 1 − qN
q−1 . Note that g2 is well-defined since, by

Lemma 3.4, ν1 ≥ qN
q−1 . By the third claim of Lemma 2.3, g1 is strictly increasing. On the
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other hand, g2(α) = 1 + 1−α1−ν1
α−(1−ν1) is non-increasing. Note also that g1(1) = q0 (more precisely,

limα→1 g1(α) = q0) and, by Lemma 3.4, g2(1) = 1−α1
ν1

< q0. This means that g1 and g2 coincide

at a (unique) point 1− qN
q−1 < α < 1 iff g1

(
1− qN

q−1

)
< g2

(
1− qN

q−1

)
.

Observe that if (α1, ν1) =
(

1− qN
q−1 ,

qN
q−1

)
then g2 is the constant 1-function. Furthermore, by

the first and the third claims of Lemma 2.3, g1

(
1− qN

q−1

)
≥ g1(0) = 2

log2(4/q0) ≥ 1, and hence

in this case g1 and g2 cannot coincide for α > 1 − qN
q−1 . If (α1, ν1) 6=

(
1− qN

q−1 ,
qN
q−1

)
then it is

easy to see (recall that α1
q + ν1 = N + 1

q ) that g2

(
1− qN

q−1

)
= q, and hence the two functions

have a unique intersection at some α > 1− qN
q−1 iff g1

(
1− qN

q−1

)
=

− qN
q−1

φε
(

1− qN
q−1

) is smaller than q.

To recap, the second case can hold only provided (α1, ν1) 6=
(

1− qN
q−1 ,

qN
q−1

)
and

− qN
q−1

φε
(

1− qN
q−1

) < q.

Furthermore, if it holds then 1− qN
q−1 < α∗ < 1 is uniquely determined by the equality g1 (α∗) =

g2 (α∗).

We can now complete the proof of the lemma. First, let (α1, ν1) =
(

1− qN
q−1 ,

qN
q−1

)
. By the

preceding discussion, in this case a maximum point (α∗, ν∗) of f of the second type has to have
α∗ ≤ α1. Moreover, taking into account Lemma 3.6, this is true for any maximum point of f .
By the third claim of Corollary 3.5, this means that M (α1, ν1) ≤ α1−1

φε(α1) = f (α1, ν1). Hence

(α1, ν1) is a maximum point of f . It is trivially a maximum point of the second type. To see
that it is a unique maximum point, note that for any point (α, ν) on the upper boundary of Ω,
if α = α1, then necessarily ν = ν1. So, for any other putative maximum point (α, ν), we would
have α < α1 and hence, by the third claims of Lemma 2.3 and the third claim of Corollary 3.5,
f(α, ν) ≤ α−1

φε(α) <
α1−1
φε(α1) = f (α1, ν1). This proves the first claim of the lemma.

Assume now that (α1, ν1) 6=
(

1− qN
q−1 ,

qN
q−1

)
. Let (α∗, ν∗) be a maximum point of f of the

second type. If g1

(
1− qN

q−1

)
=

− qN
q−1

φε
(

1− qN
q−1

) ≥ q, then the preceding discussion implies that

α∗ ≤ 1− qN
q−1 , proving the second claim of the lemma.

If
− qN
q−1

φε
(

1− qN
q−1

) < q, let α be the unique solution for g1(α) = g2(α) on 1 − qN
q−1 < α < 1. Set

α∗ = α and ν∗ = 1 − α. We claim that (α∗, ν∗) is the unique maximum point of f (note
that by Lemma 3.6 it would necessarily be of the second type). In fact, let us first verify that
α1−1
κ + ν1 = α∗−1

κ + ν∗ = φε (α∗) + ν∗, for κ = α∗−1
φε(α∗)

. The second equality is immediate, by

the definition of κ. The first equality is equivalent to κ = α∗−α1
α∗−(1−ν1) , which follows from the

definitions of α∗ and κ. Hence f (α∗, ν∗) = κ = α∗−1
φε(α∗)

. For any other putative maximum point

(α, ν), we would have, by the preceding discussion, that α ≤ 1− qN
q−1 < α∗ and hence, as above,

f(α, ν) ≤ α−1
φε(α) < f (α∗, ν∗). This proves the third claim of the lemma.
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Proof of Lemma 3.8

In the assumptions of the lemma, α∗ is the unique solution on
(

1− qN
q−1 , 1

)
of the identity

α∗ − 1

φε(α∗)
=

α∗ − α1

α∗ − (1− ν1)
.

Here the LHS is a strictly increasing and the RHS a strictly decreasing (since by assumption
α1 6= 1 − qN

q−1 , and hence α1 + ν1 < 1) functions of α∗. It follows that to prove the claim of

the lemma it suffices to show that for a fixed α∗ > 1 − qN
q−1 the RHS is a decreasing function

of α1 (keeping in mind that ν1 = −α1
q +

(
N + 1

q

)
). But this is easily verifiable by a direct

differentiation of the RHS w.r.t. α1.

This completes the proof of Proposition 3.1 and of (5). We proceed to complete the proof of
Theorem 1.2. The tightness of (5) follows from the tightness of (6), similarly to the way the
tightness of (4) was shown in the proof of Proposition 1.1. We omit the details.

It remains to consider the properties of the function κ2,q. We first remark that it is easy to see,
using the properties of the function φε given in Lemma 2.3, that κ2,q is a continuous function
of its first variable (we omit the details). In particular, we can replace strict inequalities with
non-strict ones in the definition of κ2,q in Definition 1.3. Now there are two cases to consider.

• q ≥ q0. In this case, by the third claim of Lemma 2.3, − x
φε(1−x) is never larger than q,

and hence

κ2,q(x, ε) =

{
q0 if y ≤ 1

q0
α0−1
φε(α0) if y ≥ 1

q0

Here y = q−1
q · x+ 1

q , q0 = 1 + (1− 2ε)2, and α0 is determined by 1− α0 − α0φε(α0)
1−α0

= y.
Note that α0 is well-defined, by the fourth claim of Lemma 2.3. The fact that κ2,q is
decreasing in x follows from combining the third and the fourth claims of Lemma 2.3.
In fact, κ2,q is a constant-

(
1 + (1− 2ε)2

)
function for 0 ≤ x ≤ q−q0

(q−1)q0
, and it is strictly

decreasing for larger x.

• q < q0. In this case y is always greater than 1
q0

and we have that

κ2,q(x, ε) =

{
− x
φε(1−x) if − x

φε(1−x) ≥ q
α0−1
φε(α0) if − x

φε(1−x) ≤ q

It suffices to show that κ2,q is decreasing on both relevant subintervals of [0, 1], and this
again follows from the third and the fourth claims of Lemma 2.3. In this case κ2,q is
strictly decreasing on [0, 1].
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4 Remaining proofs

Proof of Lemma 2.3

Proof: The strict concavity of φε and the bounds on its derivative were shown in [14],
Lemma 2.13 (note that φε(x) = 1

2 φ̃(x, 2ε(1 − ε)) in terms of [14]). The value of φε at the
endpoints of the interval [0, 1] are directly computable.

We pass to the third claim of the lemma. Taking the derivative and rearranging, it suffices to
prove that for any α ∈ (0, 1) holds φε(α) > (α − 1)φ′ε(α). This follows immediately from the
strict concavity of φε and the fact that φε(1) = 0.

We pass to the last claim of the lemma. Taking the derivative and rearranging, it suffices to
prove that for any α ∈ (0, 1) holds

(1− α)
(
αφ′ε(α) + (1− α)

)
> −φε(α).

Since (1 − α) · φ′ε(α) > −φε(α), it suffices to show that αφ′ε(α) + (1 − α) ≥ φ′ε(α), and this
follows from the first two claims of the lemma. The values of the function g at the endpoints
are directly computable.

Proof of Lemma 1.6

Proof:

We start with a technical lemma which deals with the behavior of the function φε(x) in the
vicinity of ε = 0. We write ε ∼ 0 as a shorthand for ”ε close to 0”. We again use the fact that
φε(x) = Φ(x, 2ε(1− ε)) = 1

2 φ̃(x, 2ε(1− ε)), where the function φ̃ was defined and studied in [14].
In the calculations below φ(x, ε) is written instead of φε(x), for notational convenience.

Lemma 4.1:

Let 0 < t < 1. Then

1.

φ(t, 0) =
t− 1

2
and for ε ∼ 0 holds

∣∣∣φ(t, ε)− t− 1

2

∣∣∣ ≤ O(ε).

2.

∂φ

∂ε
(t, 0) =

2
√
H−1(t) (1−H−1(t))− 1

ln(2)
and for ε ∼ 0 holds

∣∣∣∂φ
∂ε

(t, ε)−
2
√
H−1(t) (1−H−1(t))− 1

ln(2)

∣∣∣ ≤ O(ε).
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3.

∂φ

∂t
(t, 0) =

1

2
and for ε ∼ 0 holds

∣∣∣∂φ
∂t

(t, ε)− 1

2

∣∣∣ ≤ O(ε).

Proof: (of Lemma 4.1)

Notation. Here and below we write a± ε as a shorthand for the interval [a− ε, a+ ε].

Recall that

φ̃(t, ε) = t− 1 + σH
( z
σ

)
+ (1− σ)H

(
z

1− σ

)
+ 2z log2(ε) + (1− 2z) log2(1− ε),

where σ = H−1(t) and z = z(t, ε) =
−ε2+ε

√
ε2+4(1−2ε)σ(1−σ)

2(1−2ε) .

The fact that φ(t, 0) = 1
2 φ̃(t, 0) = t−1

2 is verified by inspection, observing that z(t, 0) = 0 for

any t. Note also that, by assumption, σ > 0, and hence z(t, ε) ∈
√
σ(1− σ) · ε ± O

(
ε2
)

for a
sufficiently small ε.

Using (as in the proof of Lemma 2.13 in [14]) the fact that for ε > 0 holds (σ−z)(1−σ−z)
z2

= (1−ε)2
ε2

,
and writing δ = 2ε(1− ε), we have that

∂φ(t, ε)

∂ε
=

1

2
· ∂φ̃(t, δ)

∂ε
=

1− 2ε

ln(2)
· 2z − δ
δ(1− δ)

.

Hence for ε ∼ 0 we have ∂φ(t,ε)
∂ε ∈ 2

√
σ(1−σ)−1

ln(2) ±O(δ), or equivalently ∂φ(t,ε)
∂ε ∈ 2

√
σ(1−σ)−1

ln(2) ±O(ε).

In particular,

∂φ(t, ε)

∂ε |ε=0
= lim

ε→0

∂φ(t, ε)

∂ε
=

2
√
σ(1− σ)− 1

ln(2)
=

2
√
H−1(t) (1−H−1(t))− 1

ln(2)
.

This proves both the first and the second claims of the lemma.

We pass to the third claim of the lemma. As shown in the proof of Lemma 2.13 in KS2 we have
∂φ̃
∂t (t, ε) =

ln( 1−σ−z
σ−z )

ln( 1−σ
σ )

. Hence

∂φ(t, ε)

∂t
=

1

2
· ∂φ̃(t, δ)

∂t
=

1

2
·

ln
(

1−σ−z
σ−z

)
ln
(

1−σ
σ

) ,

where z = z(t, δ). Recall for any 0 < t < 1 we have z(t, 0) = 0 and in addition for δ ∼ 0 we
have z(t, δ) ∈

√
σ(1− σ) · δ±O

(
δ2
)
. The third claim of the lemma now follows by inspection.

(of Lemma 4.1)

We proceed with the proof of Lemma 1.6. First, consider the definition of κ = κ2,2. For ε
sufficiently close to zero, we have that x+1

2 > 1
q0

(recall that q0 = 1 + (1 − 2ε)2) and hence
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κ = α−1
φ(α,ε) , where α = α(ε) is determined by 1−α+ αφ(α,ε)

α−1 = x+1
2 . Taking the derivative w.r.t.

ε in the definition of α and rearranging gives

α′(ε) = −
α(α− 1)∂φ∂ε (α, ε)

α(α− 1) ∂φ∂α(α, ε)− φ(α, ε)− (α− 1)2
.

Using the first claim of Lemma 4.1, it is easy to see that α(0) = 1− x. Hence, using all claims
of Lemma 4.1, we have that

α′(0) = − 2

ln 2
·
α(0)

(
2
√
H−1 (α(0)) (1−H−1 (α(0)))− 1

)
1− α(0)

=

− 2

ln 2
·

(1− x)
(

2
√
H−1 (1− x) (1−H−1 (1− x))− 1

)
x

Next, we compute κ and κ′ at 0. Note that by the definition of κ, we have 1 − α + α
κ = x+1

2 .

Hence, κ = α
x+1
2

+α−1
and κ′ = κ(1−κ)α′

α . In particular, κ(0) = 2 and

κ′(0) = = − 2α′(0)

α(0)
=

4

ln 2
·

(
2
√
H−1 (1− x) (1−H−1 (1− x))− 1

)
x

,

proving the first claim of the proposition.

Let now ε ∼ 0. We start with estimating α(ε) and κ(ε). From the identity 1 − α + αφ(α,ε)
α−1 =

x+1
2 , using the monotonicity of the LHS in α (by Lemma 2.3) and Lemma 4.1, it is easy to

see that α(ε) ∈ 1 − x ± O(ε). From this, and from the identity 1 − α + α
κ = x+1

2 , we get

κ(ε) = α(ε)
x+1
2

+α(ε)−1
∈ 2±O(ε).

Proceeding in a similar vein, using the above expression for α′, we get that

α′(ε) ∈ 2

ln(2)
· 1− x

x
·
(

1− 2
√
H−1(1− x) (1−H−1(1− x))

)
±O(ε),

and

κ′(ε) =
κ(ε)(1− κ(ε))α′(ε)

α(ε)
∈ = − 2α′(ε)

α(ε)
⊆

4

ln 2
·

(
2
√
H−1 (1− x) (1−H−1 (1− x))− 1

)
x

±O(ε),

completing the proof of the lemma.
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Proof of Corollary 1.7

Proof: Let q = 2 and κ = κ2,2 (see the second claim of Corollary 1.4 for a more explicit
statement of Theorem 1.2 in this case). Viewing both sides of (5) as functions of ε, and writing
L(ε) for the LHS and R(ε) for the RHS, we have L(0) = R(0) = ‖f‖2, and L(ε) ≤ R(ε) for
0 ≤ ε ≤ 1

2 . It is easy to see that both L and R are differentiable, and we may deduce that
L′(0) ≤ R′(0). Computing the derivatives (see e.g., [9]) gives

L′(0) = − 1

2
· E(f, f)

‖f‖2
and R′(0) =

ln(2)κ′(0)

4
·
Ent

(
f2
)

‖f‖2
,

where we write κ′(0) for ∂κ
∂ε |ε=0

. Hence L′(0) ≤ R′(0) is equivalent to

E(f, f) ≥ − ln(2)κ′(0)

2
· Ent

(
f2
)
. (7)

The claim of the corollary now follows from the first claim of Lemma 1.6. It only remains to
add that the fact that `(·) a convex and increasing function on [0, 1], taking [0, 1] onto [2 ln 2, 2]
was proved in [20].

Proof of Corollary 1.8

Let us point out that our argument follows along the same lines as the proof of the same result
in [18]. We do believe that the argument here is worth presenting in full, since it seems to be
somewhat more explicit and easier to parse.

We use the simple fact (see e.g., [8]) that for any 0 ≤ ε ≤ 1
2 and for any α ∈ {0, 1}n holds

f̂ε(α) = (1− 2ε)|α|f̂(α). Hence, using Parseval’s identity in the first step below, we have

‖fε‖22 =
∑

α∈{0,1}n
(1− 2ε)2|α|f̂2(α) ≥ (1− 2ε)2µn ·

∑
|α|≤µn

f̂2(α).

Since this holds for any 0 ≤ ε ≤ 1
2 , we deduce that

·
∑
|α|≤µn

f̂2(α) ≤ min
0≤ε≤ 1

2

‖fε‖22
(1− 2ε)2µn

≤ min
0≤ε≤ 1

2

‖f‖2κ
(1− 2ε)2µn

,

where we have used Theorem 1.2 with q = 2 in the second step, and κ = κ(ε) = κ2,2

(
Ent2

(
f
‖f‖1

)
n , ε

)
.

Let F (ε) = 1
n log2

(
‖f‖2κ

(1−2ε)2µn

)
= 1

n log2

(
‖f‖2κ

)
−2µ log2(1−2ε). Since κ(0) = 2, we have F (0) =

1
n log2

(
‖f‖22

)
. Hence the claim of the corollary is equivalent to the claim that min0≤ε≤ 1

2
F (ε)

is negative and bounded away from F (0) by some absolute constant. To show this, it suffices
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to show that F ′(ε) is negative and bounded away from 0 by an absolute constant for ε in a
constant length interval [0, ε0].

Recall that for any nonnegative non-zero function g on {0, 1}n holds
Ent(g2)

E g2 ≥ log2

(
E g2
E2 g

)
=

Ent2

(
g
‖g‖1

)
(see e.g., [18]). Recall also that ∂

∂ε log2

(
‖f‖κ(ε)

)
= κ′

κ2
· Ent(|f |

κ)
‖f‖κκ

.

Hence, recalling that, by Lemma 1.6, κ′ < 0 in the vicinity of 0, we have

F ′(ε) = 2
κ′

κ2
· 1

n

Ent (|f |κ)

‖f‖κκ
+

4

ln(2)
· µ

1− 2ε
≤ 2

κ′

κ2
· 1

n
log2

(
E (|f |κ)

E2 |f |κ/2

)
+

4

ln(2)
· µ

1− 2ε
.

Let x =
Ent2

(
f
‖f‖1

)
n = 1 −H(ρ). Recalling again that κ(0) = 2 and applying the first claim of

Lemma 1.6 we get

F ′(0) ≤ κ′(0)

2
· x+

4µ

ln(2)
=

4

ln(2)
·
(
µ−

(
1

2
−
√
ρ(1− ρ)

))
< 0.

It now suffices to show that for sufficiently small ε we have F ′(ε) ≤ F ′(0) + O(ε). Taking the

second claim of Lemma 1.6 into account, it is enough to show that 1
n log2

(
E(|f |κ)

E2 |f |κ/2

)
≥ x−O(ε).

Let G(ε) = 1
n log2

(
E(|f |κ)

E2 |f |κ/2

)
. Then G(0) = x and it suffices to show that |G′| is bounded by an

absolute constant. A simple calculation gives that

G′ =
κ′

κ
·

(
1

n

Ent (|f |κ)

E |f |κ
− 2

n

Ent
(
|f |κ/2

)
E |f |κ/2

+G

)
.

The RHS in the last expression is bounded by a constant, since for any nonnegative non-zero

function g on {0, 1}n both Ent(g)
E g and log2

(
E g2
E2(g)

)
are bounded by n.

Proof of Corollary 1.9

The first claim of the corollary

Let D ⊆ {0, 1}n, |D| = 2H(ρ)n. Let MD be the adjacency matrix of the subgraph of the discrete
cube induced by the vertices of D. Let λ(D) be the maximal eigenvalue of MD. Let f be a
maximal eigenvector of MD. We view f as a function on D and extend it to a function on
{0, 1}n by defining it to be zero outside D. Let A be the adjacency matrix of {0, 1}n. Then

λ(D) = 〈f,MDf〉
〈f,f〉 = 〈f,Af〉

〈f,f〉 . Note also that since f is supported on D we have

E2|f | =
(
〈f, sign(f) · 1D〉

)2
≤ E f2 ·E

(
sign(f) ·1D

)2
= E f2 · |D|

2n
= E f2 ·2(H(ρ)−1)n.

It follows that
Ent2

(
f
‖f‖1

)
n ≥ 1−H(ρ).
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Next, it is easy to check that for any function g on {0, 1}n holds E(g, g) = 2 〈g, (nI −A)g〉,where

I is the 2n × 2n identity matrix. Hence, using Corollary 1.7 and the fact that
Ent(f2)

E f2 ≥

log2

(
E f2
E2 |f |

)
= Ent2

(
f
‖f‖1

)
, we have, writing x for 1

nEnt2

(
f
‖f‖1

)
,

λ(D) =
〈f,Af〉
〈f, f〉

= n− 1

2

E(f, f)

〈f, f〉
≤ n− 1

2

` (x) · Ent
(
f2
)

E f2
≤

n− n

2
x` (x) ≤ n

(
1− 1

2
(1−H(ρ)`

(
1−H(ρ)

))
= 2

√
ρ(1− ρ) · n.

This is almost tight if we set r = dρne and take D = {x ∈ {0, 1}n : |x| ≤ r} to be the Hamming
ball of radius r around 0. In fact, recall that |D| ≈ 2H(ρ)n (see e.g., [10]) and, as shown in [10],
λ(D) ≥ 2

√
ρ(1− ρ) · n− o(n).

The second claim of the corollary

Let 0 ≤ s ≤ n/2 and let f be a polynomial of degree s on {0, 1}n. We need two simple and
well-known facts from Fourier analysis on {0, 1}n. First, that the Fourier expansion of f is
supported on characters of weight at most s; and second, that for any function g on {0, 1}n
holds E(g, g) = 4

∑
α∈{0,1}n |α|ĝ2(α). Combining these two facts implies that

E(f, f) = 4
∑

α∈{0,1}n
|α|f̂2(α) = 4

∑
|α|≤s

|α|f̂2(α) ≤ 4s ·
∑
|α|≤s

f̂2(α) = 4s · E f2,

where in the last step we used Parseval’s identity.

Write σ for s/n and x for 1
nEnt2

(
f
‖f‖1

)
. We have, similarly to the argument above

4σn = 4s ≥ E(f, f)

E f2
≥ `(x)·

Ent
(
f2
)

E f2
≥ nx`(x) = n·

(
2− 4

√
H−1(1− x) (1−H−1(1− x))

)
.

Rearranging and simplifying, this is equivalent to

1

n
log2

(
‖f‖2
‖f‖1

)
=

x

2
≤

1−H
(

1
2 −

√
σ(1− σ)

)
2

,

completing the proof.

The third claim of the corollary

Let 0 < δ < 1
2 . Let d = bδnc, and let f be a feasible solution of the dual linear program of [7]

with parameters n and d. Then, as observed by [13] f can be viewed as a function on {0, 1}n
with the following properties:

• f is symmetric, that is f(x) depends only on |x|.
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• f(x) ≤ 0 for |x| ≥ d.

• f̂ ≥ 0 and f̂(0) = 1.

• f(0) ≤ 2RLP (δ)·n+o(n).

To prove the claim, we will show that any function f with the first three of these properties

satisfies 1
n log2(f(0)) ≥

1−H(δ)+H
(

1
2
−
√
δ(1−δ)

)
2 − on(1).

Notation: We write ‖g‖q,F for
(∑

α∈{0,1}n |g(α)|q
)1/q

. Note that Parseval’s identity states

‖f‖2 = ‖f̂‖2,F . We write ≈, ., and & to denote equality or inequality which hold up to lower
order terms. To give an example, recall that for 0 < ρ ≤ 1

2 the cardinalities of the Hamming

ball {x ∈ {0, 1}n : |x| ≤ r} and the Hamming sphere {x ∈ {0, 1}n : |x| = r} are 2H(ρ)n, up to
lower order terms. We write this as 1

n log2 (| {x ∈ {0, 1}n : |x| ≤ r} |) ≈ H(ρ).

We start with some preliminary observations. First, we need some simple and well-known facts
from Fourier analysis on {0, 1}n. If f is symmetric, then so is f̂ . Next, f̂(0) = E f ≤ ‖f‖1.
And finally, using the fact that in our case f̂ ≥ 0, f(0) =

∑
α∈{0,1}n f̂(α) = ‖f̂‖1,F .

Next, we claim that if f is symmetric and if, for some 0 ≤ i ≤ n holds 1
2n

(
n
i

)
|f(i)| ≥ Ω

(
1
n

)
·‖f‖1

then ‖f‖2‖f‖1 ≥ Ω
(

1
n

)
·
√

2n

(ni)
. In fact, we will have

‖f‖22 ≥
1

2n

(
n

i

)
f2(i) ≥ Ω

(
1

n2

)
· 1

2n

(
n

i

)(
2n(
n
i

)‖f‖1)2

= Ω

(
1

n2

)
· 2n(

n
i

)‖f‖21.
Similarly, if for some 0 ≤ j ≤ n holds

(
n
j

)
f̂2(j) ≥ Ω

(
1
n

)
· ‖f̂‖22,F then

‖f̂‖1,F
‖f̂‖2,F

≥ Ω
(

1
n

)
·
√(

n
j

)
.

Finally, we need a slight extension of Corollary 1.8. As stated, it shows that if f has a large
second entropy, then f̂ cannot attain its `2 norm in a Hamming ball of small radius around
0. We claim, as was also observed in [18], that this holds more generally for Hamming balls
with arbitrary centers in {0, 1}n. To see that, let z ∈ {0, 1}n, and define g = f ·Wz, where Wz

is the corresponding Walsh-Fourier character. It is easy to see that for any y ∈ {0, 1}n holds
ĝ(y) = f̂(y + z), and hence g has the same first and second norms as f . Moreover, writing
B(z, r) for the Hamming ball of radius r around z, we have

∑
α∈B(z,r) f̂

2(α) =
∑

β∈B(0,r) ĝ
2(β).

We pass to the proof of the claim. Note that since f(x) ≤ 0 for |x| ≥ d and since E f ≥ 0, there
exists 0 ≤ i ≤ d− 1 such that 1

2n

(
n
i

)
|f(i)| ≥ Ω

(
1
n

)
· ‖f‖1. Hence

1

n
Ent2

(
f

‖f‖1

)
=

1

n
log2

(
‖f‖22
‖f‖21

)
& 1−H

(
i

n

)
≥ 1−H(δ).

By Corollary 1.8 this means that f̂ cannot attain its `2 norms inside Hamming balls or radii

much smaller than r(δ) :=
(

1
2 −

√
δ(1− δ)

)
· n around the all-0 and all-1 vectors. Hence there

exists r(δ)− o(n) ≤ j ≤ r(δ) + o(n) such that
(
n
j

)
f̂2(j) ≥ Ω

(
1
n

)
· ‖f̂‖22,F . It follows that

1

n
log2

(
‖f̂‖1,F
‖f̂‖2,F

)
&

H
(
j
n

)
2

&
H
(

1
2 −

√
δ(1− δ)

)
2

.
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We can now complete the proof. We have

0 =
1

n
log2

(
f̂(0)

)
≤ 1

n
log2 (‖f‖1) .

1

n
log2 (‖f‖2)− 1−H(δ)

2
=

1

n
log2

(
‖f̂‖2,F

)
− 1−H(δ)

2
.

1

n
log2

(
‖f̂‖1,F

)
−

1−H(δ) +H
(

1
2 −

√
δ(1− δ)

)
2

=

1

n
log2 (f(0))−

1−H(δ) +H
(

1
2 −

√
δ(1− δ)

)
2

.

Proof of Corollary 1.4

Proof:

We start with the first claim of the corollary. First consider the case ε = 1
2 . It is easy to see

that φ 1
2
(x) = x − 1 (note that in the definition of Φ(x, ε) we have y

(
x, 1

2

)
= limε→ 1

2
y (x, ε) =

H−1(x)
(
1−H−1(x)

)
) and hence in this case the value of κ given by the claim is 1 (as it should

be).

Assume now ε < 1
2 . This implies that q0 = 1 + (1− 2ε)2 > 1. By the first claim of Lemma 2.3,

this means that for any 0 ≤ x ≤ 1 we have −x
φε(1−x) ≥ −

1
φε(0) = 2

log2

(
4
q0

) > 1. Hence, it is easy

to see that for q sufficiently close to 1 the first and the third clauses in the definition of κ2,q in
Definition 1.3 do not apply, and we have κ2,q(x, ε) = −x

φε(1−x) . Theorem 1.2 then gives

‖fε‖2 ≤ ‖f‖κ, with κ = −
Entq

(
f
‖f‖1

)
n

φε

(
1−

Entq
(

f
‖f‖1

)
n

) .

Taking q → 1 and recalling that Entq(·)→q→1 Ent(·) completes the proof of the claim.

We pass to the second claim of the corollary. First consider the case ε = 0. Note that in this
case q0 = 2. Furthermore, by the first claim of Lemma 4.1, φ0(x) = x−1

2 , and hence the value
of κ given by the claim is 2 (as expected).

Assume now ε > 0. This implies that q0 < 2, and hence, by the third claim of Lemma 2.3, for
any 0 ≤ x ≤ 1 we have −x

φε(1−x) ≤ q0 < 2 = q. Hence the second clause in the definition of κ2,q

in Definition 1.3 does not apply. The remaining two clauses give the claim, as stated.
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Proofs of comments to Theorem 1.2

Some of the claims in these comments require a proof. These claims are restated and proved
in the following lemma.

Lemma 4.2:

• If q ≥ 2 then for any 0 < ε < 1
2 the function κ2,q(x, ε) starts as a constant-

(
1 + (1− 2ε)2

)
function up to some x = x(q, ε) > 0, and becomes strictly decreasing after that. For
1 < q < 2 there is a value 0 < ε(q) < 1

2 , such that for all ε ≤ ε(q) the function κ2,q(x, ε)
is strictly decreasing (in which case we say that x(q, ε) = 0). However, x(q, ε) > 0 for
all ε > ε(q). The function ε(q) decreases with q (in particular, ε(q) = 0 for g ≥ 2). The
function x(q, ε) increases both in q and in ε.

• The function κ2,1(x, ε) = − x
φε(1−x) is strictly decreasing in its first argument for any

0 < ε < 1
2 . It satisfies κ2,1(0, ε) = limx→0 κ2,1(x, ε) = 1 + (1− 2ε)2, for all 0 ≤ ε ≤ 1

2 .

• Let f be a non-constant function on {0, 1}n. Let 0 < ε < 1
2 . Let F (q) = Ff,ε(q) =

κ2,q

(
Entq

(
f
‖f‖1

)
/n, ε

)
. There is a unique value 1 < q(f, ε) ≤ 1+(1−2ε)2 of q for which

F (q) = q. Moreover, q(f, ε) = minq≥1 F (q). Furthermore, limε→0 q(f, ε) = 2 for any f .

Proof: The first claim of the lemma follows from the properties of κ2,q as shown in the proof

of Theorem 1.2. In particular, it is easy to see that for q ≤ 2 we have ε(q) = 1−
√
q−1

2 and

for ε ≥ ε(q) we have x(q, ε) =
q−(1+(1−2ε)2)

(1+(1−2ε)2)·(q−1)
. The claim that ε(q) decreases with q and that

x(q, ε) increases in both q and ε follows by direct verification.

The second claim of the lemma follows immediately from the third claim of Lemma 2.3.

We pass to the third claim of the lemma. Note that the function x(q) = Entq

(
f
‖f‖1

)
/n is

positive and strictly increasing in q. We need the following auxiliary claim.

Lemma 4.3: The function y(q) = q−1
q · x(q) + 1

q is strictly decreasing in q.

Proof: (of Lemma 4.3)

Assume w.l.o.g. that f ≥ 0 and that E f = 1. Let P = f
2n be a distribution on {0, 1}n. A

simple calculation gives that

y(q) = 1 +
1

n
· log2


 ∑
a∈{0,1}n

P (a)q

 1
q

 ,

which is strictly decreasing in q, by Hölder’s inequality.
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We proceed with the proof of of the third claim of Lemma 4.2. Let q0 = 1 + (1 − 2ε)2. We
claim, first, that F is strictly increasing on q0 ≤ q <∞. In fact, for these values of q the second
clause of Definition 1.3 does not apply (by the third claim of Lemma 2.3) and we have

κ2,q(x, ε) =

{
q0 if y ≤ 1

q0
α0−1
φε(α0) if y > 1

q0

,

where y = y(q) and α0 is determined by 1 − α0 − α0φε(α0)
1−α0

= y. The claim now follows by
combining Lemma 4.3, and the third and fourth claims of Lemma 2.3.

Next, we claim that there exists a unique value 1 ≤ q = q∗ ≤ q0 for which −x
φε(1−x) = q (here

x = x(q)). Moreover, F decreases for 1 ≤ q ≤ q∗ and increases for q ≥ q∗. Finally, F (q∗) = q∗.
Observe that verifying these claims will essentially complete the proof of the third claim of
Lemma 4.2 (apart from the fact that limε→0 q(f, ε) = 2).

In fact, by the first and third claims of Lemma 2.3, and the fact that x is strictly increasing in
q, the function −x

φε(1−x) is strictly decreasing in q, taking values between 2

log2

(
4
q0

) and q0. This

means that it has a unique intersection q = q∗ with the function q in [1, q0]. Next, observe that
by Definition 1.3 for q ≤ q0 we have

κ2,q(x, ε) =

{
− x
φε(1−x) if − x

φε(1−x) ≥ q
α0−1
φε(α0) if − x

φε(1−x) ≤ q

This means that for q < q∗ we have F (q) = κ2,q(x, ε) = − x
φε(1−x) , which is decreasing in q,

and for for q > q∗ we have F (q) = α0−1
φε(α0) , which increases in q . Finally, for q = q∗, we have

F (q) = − x
φε(1−x) = q.

It remains to verify that limε→0 q(f, ε) = 2. By the first claim of Lemma 4.1, φ0(x) = x−1
2 .

This means that for any 0 < x ≤ 1 we have limε→0
−x

φε(1−x) = 2. The claim follows since, by the

preceding discussion, q = q(f, ε) = −x(q)
φε(1−x(q)) .
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