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Abstract

The Newton radius of a code is the largest weight of a uniquely correctable error. We establish a lower bound
for the Newton radius in terms of the rate. In particular we show that in any family of linear codes of rate below
one half, the Newton radius increases linearly with the codeword length.

1 Introduction

Let C be a linear [n, k]q code, that is, a code of length n and dimension k over the finite field Fq. Consider
an arbitrary coset v + C. A coset leader is a vector of the minimal Hamming weight in the coset. An error z is
uniquely correctable by the maximum likelihood decoder for the code C if and only if z is the unique coset leader
in the coset containing z. That is equivalent to saying that for all c ∈ C \ {0n} we have wt(z) < d(z, c). The
Newton radius ν(C) is defined as the largest weight of a uniquely correctable error

ν(C) = max{wt(z) | wt(z) < d(z, c) for all c ∈ C \ {0n}}.

The definition of the Newton radius strongly resembles that of the covering radius, i.e., the maximal distance of a
vector from the code

rad(C) = max{wt(z) | wt(z) ≤ d(z, c) for all c ∈ C \ {0n}}.

Newton radius has been introduced in [2] and further studied in [1, 3]. In particular in [1] it was shown that for
any [n, k]q code C

ν(C) ≥ rad(C)− k. (1)

In this note we present a lower bound (Corollary 2 and Theorem 3) for the Newton radius in terms of solely the
rate of the code. Our bound is sometimes stronger than the bound above. In particular it allows us to conclude
that in any family of linear codes of rate below one half, the Newton radius increases linearly with the codeword
length.

Our bound can also be sometimes weaker than (1) since we use less information about the code. In particular
we do not get any lower bounds for codes of rate above one half.

2 The result

In what follows we denote the set of all vectors of Hamming weight at most w in the space Fnq by Bw. For sets
A,B ⊆ Fnq the sumset A+B is defined by {a+ b | a ∈ A, b ∈ B}.



Proposition 1 Let k ≤ n
2 be positive integers and q be a prime power. Let C be an [n, k]q linear code. There exists

a [n− k, k]q linear code D such that
ν(C) ≥ rad(D).

Proof: Let H ∈ F(n−k)×n
q be a parity check matrix for C = {x | Hxt = 0}. Without loss of generality after a

permutation of coordinates we have H = [I |M ], for some matrix M ∈ F(n−k)×k
q . Let D ⊆ Fn−kq be an arbitrary

linear space of dimension k that contains the space spanned by the columns of the matrix M. Let w = rad(D) and
let x ⊆ Fn−kq be a point that is w-far from the code D. Let v = x ◦ 0k be the n-dimensional vector obtained by
padding x by k zeros. Observe that Hvt = xt. We now argue that v is the unique vector of weight at most w in
the coset

C′ = {y ∈ Fnq | Hyt = xt}.

Fix an arbitrary y ∈ C′, where wt(y) ≤ w. Let y = y1 ◦y2, where y1 has dimension n−k and y2 has dimension
k. If y2 6= 0k; then wt(y1) ≤ w − 1 and we get

xt = Hyt = yt1 +Myt2 ∈ Bw−1 +D

contradicting the fact that x is w-far from the spaceD. Thus we have y2 = 0k and xt = Hyt = yt1, which implies
y = v.

Proposition 1 allows one to translate lower bounds for the covering radius of [n − k, k]q codes to lower bounds
for the Newton radius of [n, k]q codes. The following corollary combines Proposition 1 with the most basic lower
bound for the covering radius. Let Bq(n, t) = {x ∈ Fnq | wt(x) ≤ t} denote the Hamming ball of radius t.
Clearly, |Bq(n, t)| =

∑t
i=0

(
n
i

)
(q − 1)i.

Corollary 2 Let k ≤ n
2 be positive integers and q be a prime power. Let t be the smallest integer such that

|Bq(n− k, t)| ≥ qn−2k. For all [n, k]q codes C we have ν(C) ≥ t.

Proof: For any [n−k, k]q codeD, the value of the product qk · |Bq(n−k, rad(D))| has to be at least qn−k. Thus
rad(D) ≥ t holds. An application of Proposition 1 completes the proof.

We now obtain the asymptotic form of Corollary 2. It is well known that for prime power q, positive λ ≤ q−1
q , and

growing n we have |Bq(n, bλnc)| = qHq(λ)n+o(n), where where Hq(·) denotes the of the q-ary entropy function.
See e.g., [4, Lemma 5.1.6]. Combining this asymptotic formula with Corollary 2 we get

Theorem 3 Let 0 < r ≤ 1
2 be a fixed rational number and q be a prime power. Let C be an [n, rn]q linear code.

We have

ν(C) ≥ H−1
q

(
1− 2r
1− r

)
(1− r)n+ o(n).

Remark 4 Corollary 2 and Theorem 3 give nontrivial lower bounds for the Newton radius of a rate r code C as
long as r < 1/2. Observe that for larger values of the rate no such bounds exist. Indeed, for any k ≥ n/2 the
[n, k]q code

C = {x ◦ x ◦ y | x ∈ Fn−kq ,y ∈ F2k−n
q }

satisfies ν(C) = 0. To see this consider an arbitrary vector z ∈ Fnq . Let z = z1 ◦ z2 ◦ z3, where z1 and z2 have
dimension n − k, and z3 has dimension 2k − n. Observe that the distance between z and the code C is given by
wt(z1 + z2). Therefore assuming z1 6= z2 we have two distinct elements z1 ◦ z1 ◦ z3 and z2 ◦ z2 ◦ z3 of C that are
closest to the vector z. Thus the code C cannot uniquely correct any pattern of one or more errors.
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