
KOLMOGOROV WIDTH OF

DISCRETE LINEAR SPACES: AN

APPROACH TO MATRIX RIGIDITY

Alex Samorodnitsky, Ilya Shkredov,

and Sergey Yekhanin

February 12, 2016

Abstract. A square matrix V is called rigid if every matrix V ′ obtained
by altering a small number of entries of V has sufficiently high rank.
While random matrices are rigid with high probability, no explicit con-
structions of rigid matrices are known to date. Obtaining such explicit
matrices would have major implications in computational complexity
theory. One approach to establishing rigidity of a matrix V is to come
up with a property that is satisfied by any collection of vectors arising
from a low-dimensional space, but is not satisfied by the rows of V even
after alterations. In this paper we propose such a candidate property
that has the potential of establishing rigidity of combinatorial design
matrices over the field F2.
Stated informally, we conjecture that under a suitable embedding of Fn2
into Rn, vectors arising from a low dimensional F2-linear space always
have somewhat small Kolmogorov width, i.e., admit a non-trivial si-
multaneous approximation by a low dimensional Euclidean space. This
implies rigidity of combinatorial designs, as their rows do not admit
such an approximation even after alterations. Our main technical con-
tribution is a collection of results establishing weaker forms and special
cases of the conjecture above.

Keywords. Matrix rigidity, linear codes, Kolmogorov width.

Subject classification. F.1.2; E.4



2 Samorodnitsky, Shkredov & Yekhanin

1. Introduction

The notion of matrix rigidity was introduced by Leslie Valiant
in Valiant (1977). In this paper we say that an n × n matrix
A defined over a field is (R,D)-rigid, if it is not possible to reduce
the rank of A below R by arbitrarily altering each row of A in up
to D coordinates. Explicit rigid matrices are known to imply lower
bounds for computational complexity of explicit functions.

The most prominent reduction of this nature is due to Valiant
(1977) who showed that for each (Ω(n), nε)-rigid matrix A ∈ Fn×n
the linear transformation induced by A cannot be computed by a
linear circuit that simultaneously has size O(n) and depth O(log n).
Two other reductions that call for explicit (R,D)-rigid matrices
with a sub-linear value of R, are given in Razborov (1989); Servedio
& Viola (2012). Reductions above naturally lead to the challenge
of constructing rigid matrices explicitly. After more than three
decades of efforts, however, this challenge remains elusive Lokam
(2009).

None of the existing techniques for constructing rigid matri-
ces Alon & Cohen (2013); Alon et al. (2009); Dvir (2011); Kashin
& Razborov (1998); Lokam (2001); Saraf & Yekhanin (2011) sur-
passes the basic untouched minor argument of Shokrollahi et al.
(1997) that amounts to taking a matrix where every minor has full
rank, and using the bound from the Zarankiewicz problem (Jukna
2001, p. 25) to show that after up to D arbitrary changes per row
there remains a somewhat large minor that has not been touched.
Quantitatively, this yields explicit(

R,Ω
( n
R

log
n

R

))
rigid matrices over fields of size Ω(n), when log2 n ≤ R ≤ n/2.
Similar parameters are known to be attainable over small finite
fields Friedman (1993). Rigidity parameters above are vastly weaker
the parameters of random matrices. In particular, it is not hard to
show that a random matrix over any field is at least(n

2
,Ω(n)

)
rigid with a very high probability.
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1.1. Combinatorial designs. A family F of w-subsets of a uni-
verse of size n is called an (n,w, λ) combinatorial design if every
pair of distinct elements of [n] belongs to exactly λ sets in F . A
combinatorial design is symmetric if |F| = n. Geometric designs
are a well studied class of symmetric combinatorial designs. A ge-
ometric design is defined by the incidence relation between points
and hyperplanes in an m-dimensional projective space PG(m+1, q)
over the finite field Fq. Such a relation yields (n,w, λ) symmetric
designs, where

(1.1) n =
qm+1 − 1

q − 1
w =

qm − 1

q − 1
λ =

qm−1 − 1

q − 1
.

With a slight abuse of notation we write Gm,q or just Gm to denote
both geometric designs and their incidence matrices, (e.g., binary
matrices whose rows / columns correspond to points / hyperplanes
in PG(m + 1, q), and that contain a one in location (i, j) iff the
point corresponding to the i-th row is contained in the hyperplane
corresponding to the j-th column.)

In his original paper (Valiant 1977, Problem 4) Valiant pro-
posed matricesG2 defined above as natural candidates for (Ω(n), nε)-
rigidity over the field F2. Taken literally, this conjecture is not true
as some matrices G2 have low rank over F2. In fact, the rank of
geometric designs is a well studied quantity in design theory. Let
rankp denote matrix rank over the field Fp. By Smith (1969) rank
rankpGm,q is given by

(1.2)


n if q 6= pe, w + (n− 1)λ 6= 0 mod p;
n− 1 if q 6= pe, w + (n− 1)λ = 0 mod p;(
p+m−1
m

)e
if q = pe.

Thus in some cases the rank of geometric designs turns out to be
surprisingly low, e.g., when char Fq = 2, for fixed m and growing
q we have

(1.3) rank2Gm,q = Θ
(
n

log2(m+1)
m

)
.

Identity (1.3) implies that any proof of (R,D)-rigidity of matri-
ces Gm with r = Ω(n) cannot just rely on the combinatorial struc-
ture of these matrices as this structure does not seem to change
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much with the characteristic of the field underlying the projective
space. Thus any rigidity proof that relies solely on the design prop-
erties of Gm (and thus applies to all designs with the parameters
of geometric designs) has to be aiming at the regime of polynomi-
ally low remaining rank R = O(nδ). In Section 1.3 we outline our
approach to proving a result like this.

1.2. Hamada’s conjecture. In what follows let Vm denote an
incidence matrix (or the set of rows of an incidence matrix) of a
combinatorial (n,w, λ) design that has the parameters of the geo-
metric design Gm,q. Clearly, any proof of (R,D)-rigidity of Vm has
to imply that matrices Vm have rank at least r when no alterations
are allowed. Bounding the rank of matrices Vm over finite fields
has received some attention in design theory.

It is not hard to show that when q 6= pe we have, rankpVm ≥
n−1. A conjecture due to Noboru Hamada (1973) asserts that when
q = pe, geometric designs Gm,q have the lowest possible Fp-rank
among all designs Vm with the same parameters. Relatively little
is known about the validity of Hamada’s conjecture (Jungnickel &
Tonchev 2009, Section 4). (A stronger version of Hamada’s conjec-
ture that asserts that every design Vm whose Fp-rank equals that of
Gm,q has to be isomorphic to Gm,q is known to be false Jungnickel
& Tonchev (2009).)

One easier natural question to ask that fits well with our ap-
proach to rigidity is whether one can prove any non-trivial lower
bounds on the rank of design matrices Vm. We are particularly
interested in the asymptotic setting of fixed m and growing q.
Hamada’s conjecture and identity (1.2) suggest that

(1.4) rankpVm ≥ Ω

(
n

logp( p+m−1
m )

m

)
.

The trivial lower bound is rankpVm ≥ n
1
m . We are not aware of any

better bound.

1.3. Our approach. In order to establish rigidity of matrices Vm
over the field F2 we propose a certain property that is not satisfied
by the rows of Vm even after alterations, yet that we conjecture to
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hold for any collection of vectors arising from a low-dimensional
F2-linear space.

As a first step of our argument we consider a natural embedding
of the space Fn2 into Rn. We treat elements of Fn2 as real {0, 1}-
vectors and normalize them to have L2 norm one. Thus a non-zero
x ∈ Fn2 gets mapped to x

‖x‖ . In what follows we assume that this
embedding is implied and treat vectors in Fn2 as real vectors.

Next for sets X ⊆ Rn we consider the quantity Ar(X) that
we call the approximability measure. Ar(X) is defined to be the
maximum over all r-dimensional Euclidian linear spaces W of the
square of the smallest projection of a vector from X onto W. See
formula (3.1) for a formal definition. Thus sets with large value
of Ar are precisely those that are well approximated by some r-
dimensional Euclidian linear space.

Now let m = 1
ε
. We argue that for all values of r = ω(n1−ε), the

approximability measure Ar(Vm) ≈ Ar (Fn2 ) . Thus for sufficiently
large r, approximating rows of an incidence matrix of a combina-
torial design is no easier than approximating all of the Hamming
space. The claim remains true even if we allow rows of Vm be
altered in up to O (n1−2ε) coordinates.

Finally, we conjecture that for any F2-linear space L, dim L ≤
n2ε+δ, and some r = ω(n1−ε), the approximability measure Ar(L) ≥
(1 +α)Ar (Fn2 ) , for some positive α. In other words, we conjecture
that low dimensional F2-linear spaces keep some tiny amount of
resemblance to Euclidian linear spaces after the embedding, and
can be approximated better than all of the Hamming cube. It
is easy to see that this conjecture implies (n2ε+δ, n1−2ε)-rigidity
of matrices Vm, since if one of these matrices had low rank after
alterations, its rows would belong to a low dimensional F2-linear
space, and thus admit a non-trivial Euclidian approximation.

We measure our progress towards the conjecture by looking at
the largest value of dimension k for that we are indeed able to
prove that all k-dimensional F2-linear spaces L satisfy Ar(L) ≥
(1 + α)Ar (Fn2 ) , for some r = ω(n1−ε). Currently, our main Theo-
rem 5.12 gives this for all k = o(nε log n). Apart from this result,
we also establish the conjecture for a certain restricted class of
linear spaces called cut-spaces. While substantial further progress



6 Samorodnitsky, Shkredov & Yekhanin

is needed to establish rigidity of matrices Vm, our current results
(Corollary 5.14) already suffice to get the bound

(1.5) rankpVm ≥ Ω
(
n

1
m log2 n

)
,

for all values of p, a result that seems to be new.
From the technical viewpoint our main contribution is a new

relation between discrete (F2) linear spaces and Euclidian linear
spaces, yielding some insight into combinatorics of low weight code-
words in linear codes.

1.4. Organization. In Section 3 we formally introduce the ap-
proximability measure Ar. We argue that for sufficiently large val-
ues of dimension r, we have Ar(Vm) ≈ Ar(Fn2 ). We establish a sim-
ilar result for perturbed matrices Vm. Next, we introduce our main
conjecture stating that low-dimensional F2-linear spaces L always
have a somewhat large value of Ar. We show how this conjecture
implies rigidity of matrices Vm.

In Sections 4 through 6 we prove our main results regarding ap-
proximability of low-dimensional F2-linear spaces L. In Section 4
we deal with low-dimensional approximations and obtain bounds
for A1(L) and A3(L). The proof of the latter bound is deferred to
Section 7. In Section 5 we deal with high dimensional approxima-
tions and state the implications of our results for the Hamada’s
conjecture. All our results in Sections 4 and 5 apply not just to
F2-linear spaces but to all families of vectors that have bounded
triangular rank Newman & Rabinovich (2013) (see Definition 4.1).

In Section 6 we establish our main approximability conjecture
for a certain class a linear spaces called cut-spaces and give a sim-
pler proof of a slightly weaker version of the results from Section 5.
Our constructions of approximating real spaces use low weight vec-
tors in the dual space of L. Finally, in Section 8 we discuss the
relation of our approach to the natural proofs lower bounds barrier
of Razborov & Rudich (1997).

2. Notation

We use the following standard mathematical notation:
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◦ ‖ · ‖ denotes the Euclidian norm;

◦ For an integer n, [n] = {1, . . . , n};

◦ For a vector v, the set of non-zero coordinates of v is denoted
supp(v);

◦ We write f(n) ≈ g(n), if f(n) = g(n)(1 + o(1)). We adopt
the same agreement for .,& .

3. The conjecture

We now introduce our approximability measure Ar. Following that,
in Section 3.2 we argue that for sufficiently large values of dimen-
sion r, collections of rows of incidence matrices of combinatorial
designs have essentially the smallest possible value of Ar even after
alterations. Finally, in Section 3.3 we introduce our main conjec-
ture stating that low-dimensional F2-linear spaces always have a
somewhat large value of Ar. We show how this conjecture implies
rigidity of incidence matrices of combinatorial designs.

3.1. The approximability measure. We consider a natural
embedding of Fn2 into Rn. We treat elements of Fn2 as real {0, 1}-
vectors and normalize them to have L2 norm one. Thus a non-zero
v ∈ Fn2 gets mapped to v

‖v‖ . Zero is mapped to zero. In what follows
we assume that this embedding is implied and treat vectors in Fn2
as real vectors. Let V be an arbitrary subset of Fn2 . Our approach
is centered around the following approximability measure

(3.1) Ar(V ) = max
dimW≤r

min
v∈V
‖PrW (v)‖2,

where the maximum is over all linear spaces W ∈ Rn, dimW = r,
the minimum is over the non-zero elements of V, and PrW (v) de-
notes the projection of v onto W. Observe that our notion of ap-
proximability measure is equivalent to the classical concept of Kol-
mogorov width Kr(V ) =

√
1− Ar(V ), also known as ”poperech-

nik” of a family of vectors. See Temlyakov (1998); Uskov (2002).
We remark the importance of the normalization step in formula

(3.1). In essence normalizing elements of V pushes all high weight
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vectors in V to the center of the positive orthant in Rn, and makes
Ar(V ) governed by the distribution of low weight vectors in V as
these vectors are still pointing in different directions. This is a
desirable feature, as our final goal is to argue rigidity of design
matrices, whose rows have (relatively) low weight. Thus these are
low weight vectors in linear spaces that interest us.

We now derive a formula for approximability measure of the
whole Boolean cube.

Lemma 3.2. Let r = o(n) be arbitrary. We have

(3.3) Ar (Fn2 ) ≈ r

n
.

Proof. Let ei, i ∈ [n] denote the i-th unit vector. First we show
that

(3.4) Ar (Fn2 ) ≤ Ar ({e1, . . . , en}) ≤
r

n
.

Let W be an arbitrary r-dimensional linear space with an or-
thonormal basis {w1, . . . ,wr}. Consider an n× r matrix M, where
Mij = (ei,wj)

2. Clearly, the sum of values in M is equal to r. Thus
for some i ∈ [n] we have

∑
j(ei,wj)

2 ≤ r
n

and (3.4) follows.
We now exhibit a space W such that for all non-zero binary

vectors v, ‖PrW (v)‖2 & r
n
. The space W is spanned by r unit

vectors {wi}. These vectors have disjoint supports that partition
[n]. Every support is of size dn

r
e or bn

r
c. Each vector wi is constant

on its support. Let v be an arbitrary vector of weight w. Assume
that the support of v intersects the supports of t different vectors
{wi}, namely, wi1 , . . . ,wit . Clearly, t ≤ w. For j ≤ t, let aj =
|supp(v) ∩ supp(wij)|. We have

∑t
j=1 aj = w. We also have

∑t
j=1(v,wij)

2 ≥
∑t

j=1

a2jr

(n+r)w

= r
(n+r)w

∑t
j=1 a

2
j

≥ r
w(n+r)

(
w
t

)2
t & r

n
.

This concludes the proof.
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3.2. Inapproximability of combinatorial designs. In this
section we argue that approximating rows of a combinatorial de-
sign by a high-dimensional real space is as hard as approximating
all of the Boolean cube. We also establish a robust version of this
result.

Lemma 3.5. Let V ⊆ Fn2 , |V | = n. Let B be the n×n real matrix,
where the rows of B are the normalized elements of V. Let λ1 ≥
. . . ≥ λn ≥ 0 be the eigenvalues of BBt; then for all r,

(3.6) Ar(V ) ≤ 1

n

∑
i≤r

λi.

Proof. This is a simple corollary of a result in Ismagilov (1968).
A special case of this result states that for all r

(3.7)
1

n

∑
i≤r

λi = max
dimW≤r

Ev∈V ‖PrW (v)‖2,

where the expectation is taken with respect to the uniform distri-
bution on V . Since the RHS of this equality is at least as large as
Ar(V ), the claim of the lemma follows.

Let Vm be an incidence matrix of a combinatorial (n,w, λ) de-
sign with the parameters (1.1) of the geometric design Gm,q for
some value of q. Let m = 1

ε
. We assume that m is fixed and q

grows to infinity. Thus w ≈ n1−ε and λ ≈ n1−2ε. Lemma 3.5 yields

Corollary 3.8. With the notation above, we have

(3.9) Ar
(
V1/ε

)
.
n1−ε + r

n
.

Proof. Let B be the n×n matrix, where the rows of B are the
normalized elements of Vm. Clearly, B = 1√

w
Vm. We have

BBt =
w − λ
w

I +
λ

w
J,
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where I denotes the identity matrix and J denotes the all-ones
matrix. It is not hard to see that the eigenvalues of BBt are1

λ1 ≈ n1−ε and λ2 = . . . = λn ≈ 1.

An application of Lemma 3.5 completes the proof.

Combining (3.3) and (3.9), we conclude that for r = ω(n1−ε) and
r = o(n),

(3.10) Ar(V1/ε) ≈ Ar(Fn2 ) ≈ r

n
.

Observe that identity (3.7) and the eigenvalue computation above
can be used to show that matrices Vm are inapproximable on av-
erage and not just in the worst case. The following lemma gives a
stability result for Ar :

Lemma 3.11. Let V = {v1, . . . ,vn} ⊆ Fn2 be a set of vectors of
Hamming weight w. Assume the new set V ′ = {v′1, . . . ,v′n} ⊆ Fn2
is obtained from V by altering at most D coordinates of each vi,
where d < w; then for all r,

(3.12) Ar(V
′) ≤

(√
Ar(V ) +

√
d

w

)2

.

Proof. Let v,v′ be arbitrary binary vectors such that the Ham-
ming weight of v is w and the Hamming distance between v and
v′ is at most d. It is not hard to see that after the embedding in
the real space we have

(3.13) (v,v′) ≥
√

1− d

w
.

The minimum in (3.13) is attained by a vector v′ of Hamming
weight w − d, where the support of v′ is a subset of the support

1The first eigenvalue λ1 ≈ n1−ε corresponds to the obvious eigenvector
v1 = (1, . . . , 1). Since every other eigenvector {vi}i≥2 satisfies v1 ⊥ vi, we can
obtain eigenvalues {λi}i≥2 by considering the matrix BBt − λ

wJ = w−λ
w I. At

which point it becomes clear that λ2 = . . . = λn ≈ 1.
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of v. Let W be an r-dimensional real space in Rn that attains the
maximum in (3.1) for approximating the set V ′. Let w1, . . . ,wn be
a family of unit vectors in W such that for all i ∈ [n], (v′i,wi)

2 ≥
Ar (V ′) . Let A =

√
Ar(V ). By definition of A there exists i ∈ [n]

such that

(3.14) |(vi,wi)| ≤ A.

We introduce notation for angles between vectors vi,v
′
i, and wi.

Let
α = ∠(v′i,wi), β = ∠(vi,v

′
i), γ = ∠(vi,wi).

Clearly α, β ∈ [0, π/2], γ ∈ [0, π], and α ≥ γ − β. First suppose
that γ − β ≥ 0; then

(v′i,wi) = cosα ≤ cos(γ − β)

= cos γ cos β + sin γ sin β

≤ | cos γ|+ sin β

≤ A+
√

d
w
,

where the last inequality follows from (3.13) and (3.14). Now note
that if 0 ≤ γ ≤ β ≤ π/2; then

(v′i,wi) ≤ 1 ≤ cos γ + sin β ≤ A+

√
d

w
.

The inequality (3.12) follows.

The above lemma and identity (3.10) yield

Proposition 3.15. Let Vm be an n×n matrix of a combinatorial
design with the parameters of a geometric design Gm. Assume m =
1
ε

is fixed and n grows to infinity. Let V ′m be obtained from Vm by
altering each row in up to O (n1−2ε) coordinates. Let r = ω(n1−ε)
and r = o(n). We have

(3.16) Ar
(
V ′1/ε

)
≈ r

n
.
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3.3. The conjecture and rigidity implications. We now in-
troduce our main conjecture stating that low-dimensional F2-linear
spaces L always have a somewhat large value of Ar and show how
this conjecture implies rigidity of design matrices Vm. We begin
with a formal definition of rigidity.

Definition 3.17. Let V be an n × n matrix over a field F. We
say that V is (R,D)-rigid; if for every matrix V ′ that differs from
V in at most D coordinates in each row, we have rankFV ≥ R.

Conjecture 3.18. There exists positive constants α, δ, and ε =
1
m

(for an integer m) such that for all linear spaces L ⊆ Fn2 where
dimL ≤ n2ε+δ, for some r = ω(n1−ε),

(3.19) Ar(L) ≥ (1 + α)
r

n
.

The conjecture above trivially implies
(
n2ε+δ, n1−2ε

)
-rigidity of de-

sign matrices Vm over the field F2. If some matrix V ′m had rank be-
low n2ε+δ afterO(n1−2ε) alterations in each row; then its rows would
belong to a n2ε+δ-dimensional linear space over F2, and thus have
non-trivial approximation measure, contradicting Proposition 3.15.
Currently we can only prove the conjecture for all linear spaces L
with dimL = o (nε log n) . (Theorem 5.12).

Remark 3.20. Replacing the condition dim(L) ≤ n2ε+δ in the

Conjecture above by the condition dim(L) ≤ O
(
nε log( 1

ε
+1)
)

makes

the Conjecture invalid as by formula (1.3) matrices V1/ε may have

have F2 rank of O
(
nε log( 1

ε
+1)
)
.

4. Low dimensional approximations from
bounded triangular rank

In this and the following two sections we prove our main results
regarding approximability of low-dimensional F2-linear spaces L. In
the current section we deal with low-dimensional approximations.
We first obtain a lower bound A1(L) and then present a stronger
lower bound for A3(L) deferring the proof to Section 7. All results



Kolmogorov Width of Discrete Linear Spaces 13

obtained in this section apply not just to F2-linear spaces but to
all families of vectors that have bounded triangular rank.

Definition 4.1. Let T = {v1, . . . ,vt} be a sequence of binary
vectors of of dimension n. We say that T is a tower of height t if
for all j ≤ t :

supp(vj) 6⊆
⋃

s≤j−1

supp(vs).

Further, let V be an arbitrary collection of binary vectors. We
define the triangular rank of V, denoted trk(V ) to be the largest
height of a tower that can be constructed from elements of V.

The term triangular rank is explained by following observation.
Consider a binary matrix M, whose rows are elements of V. Tri-
angular rank of V is exactly the size of the largest square upper-
triangular minor of M (after arbitrary row / column permutations)
that has ones on the diagonal.

It is easy to see that for any subset V of an F2-linear space L we
always have trk(V ) ≤ dimL. Let L ⊆ Fn2 , trk(L) ≤ k. For i ∈ [n],
let

(4.2) wi = min
v∈L : i∈supp(v)

|supp(v)|.

If i ∈ [n] does not belong to the support of any vector in L; we
define wi =∞. We set

(4.3) µ =
n∑
i=1

w−1
i .

Our proof of the following lemma resembles some of the arguments
in (Newman & Rabinovich 2013, Section 2).

Lemma 4.4. Let L ⊆ Fn2 , trk(L) ≤ k; then

µ ≤ k,

where µ is defined by (4.3).
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Proof. Assume µ > k. We derive a contradiction by exhibiting
a collection V = {v1, . . . ,vk+1} ⊆ L such that for every j ∈ [k+1],
there exists ij ∈ supp(vj), such that ij 6∈ supp(vs), for all s <
j. Consider an n-node hypergraph, where the hyperedges are the
supports of the elements of L. Color all nodes white. Set Φ =
µ, V = ∅. On the j-th step:

1. We choose a white node i whose wi is the smallest among the
white nodes;

2. We set vj to be a weight-wi element of L such that i ∈
supp(vj);

3. We set

∆ =
∑

s∈supp(vj) | s is white

w−1
s .

It is important to note that ∆ is necessarily at most 1 since
all w−1

s in the above sum are at most w−1
i = 1/|supp(vj)|.

4. We reduce Φ by ∆ and color all nodes s ∈ supp(vj) black.

On each step we reduce Φ by at most one and increase trk(V ) by
one. Thus after k + 1 steps we necessarily have trk(V ) > k.

Theorem 4.5. Let L ⊆ Fn2 , trk(L) ≤ k; then

(4.6) A1(L) ≥ 1

k
.

Proof. Let {wi} and µ be as defined in (4.2) and (4.3). Fix a

vector w ∈ Rn, where for all i ∈ [n], wi =
√

1
µwi

. Clearly ‖w‖ = 1.

Let v ∈ L be arbitrary, |supp(v)| = w. Note that for all i ∈
supp(v), wi ≤ w. It remains to note that

(w,v) ≥
w
√

1/µw√
w

=
1
√
µ
≥ 1√

k
,

where the last inequality follows from Lemma 4.4.
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Theorem 4.5 exhibits a vast gap between A1 (Fn2 ) ≈ 1
n

and
A1(L) ≥ 1

k
for F2-linear spaces L that have polynomially low di-

mension k. This theorem alone already implies that our main Con-
jecture 3.18 holds for all linear spaces of dimension up to o(nε). In
fact it shows that even one-dimensional approximations of discrete
linear spaces suffice to get this result. To see this set k = β(n) ·nε,
for an arbitrary nonzero β(n) that goes to zero as n grows. Further,
set r = n1−ε/2β(n). By Theorem 4.5, for all L, with trk(L) ≤ k we
have

Ar(L) ≥ A1(L) ≥ 1

k
=

1

βnε
= 2 · r

n
.

The approximation measure Ar(L) is obviously non-decreasing
with r. In fact it seems natural to expect that Ar(L) should grow
rapidly at least when r is small. The next theorem partly confirms
this intuition showing that A3(L) is indeed a constant fraction
larger than the bound (4.6). (We do not have a result like that for
A2(L).) We defer the proof to Section 7.

Theorem 4.7. There exist positive constants δ and k0 such that
for all k ≥ k0, for all sets L ⊆ Fn2 , trk(L) ≤ k :

(4.8) A3(L) ≥ 1 + δ

k
.

5. High dimensional approximations from
bounded triangular rank

In this section we deal with high dimensional approximations and
state the implications of our results for the Hamada’s conjecture.
Our main result is given by Theorem 5.12. As in the previous
section our arguments apply not just to F2-linear spaces but to
all families of vectors that have bounded triangular rank. To sim-
plify notation in this section we do not distinguish between binary
vectors v and their support sets supp(v).

Definition 5.1. Let L be a family of subsets of some universe.
Let S be a subset of the same universe. We say that S is a (c, k)-
attractor for L if trk(L) ≤ k and for all v ∈ L such that v∩S 6= ∅,

(5.2) |v ∩ S| ≥ c · |S|
k
.
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Informally, an attractor is a subset of coordinates such that every
low weight vector (i.e., a vector of weight around n

k
or less) in L

whose support intersects the subset, intersects it by more than one
would expect. Below is the key lemma of this section.

Lemma 5.3. Let L be a family of binary vectors. Let [N ] be the
union of supports of vectors in L. Let trk(L) ≤ k. Assume that
Hamming weights of all vectors in L lie in the segment [w, 2w].
Further assume k ≥ 25c+2 where c is an integer. Then there exists
a (c, k)-attractor for L of size at least N

24c
.

Proof. Note that if N
24c+2 < w, then the set [N ] is a (c, k)-

attractor for L. In fact, let v ∈ L be arbitrary. We have

|supp(v) ∩ [N ]| ≥ w ≥ N

24c+2
≥ c · N

25c+2
≥ c · |[N ]|

k
.

Thus without loss of generality we assume

(5.4)
N

24c+2
≥ w.

We now execute the following simple greedy algorithm that con-
structs a tower in the family L.

1. Set the tower T to be an empty family of sets. Set R = [N ].

2. WHILE R 6= ∅ DO

3. BEGIN

4. Identify v ∈ L yielding the smallest non-zero |v ∩R|;
5. Add v to the tower T ;

6. Drop the elements in v from R;

7. END

The algorithm above terminates producing a tower of height at
most k. On step j the algorithm adds a new vector to T and reduces
the set R by ∆j = v ∩ R. We partition the steps of the algorithm
into stages. A step falls into stage number i if in the beginning of
the step

(5.5)
N

2i
< |R| ≤ N

2i−1
.
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Observe that among the first 4c stages there is at least one stage
i, such that the height of T increases by t ≤ k

4c
during that stage.

Let S be the change in the set R on the stage i. We have

|S| ≥
(
N

2i−1
− 2w

)
− N

2i
≥ N

2i+1
.

The first inequality above follows from the fact that in the begin-
ning of stage i the size of R is at least N

2i−1 minus the size of the last
step of stage (i−1) and the fact that every step size is bounded by
2w. The second inequality follows from (5.4). Let a be the index
of the first step of stage i. We have

a+t−1∑
j=a

|∆j| = |S| ≥
N

2i+1
.

Thus at stage i there exists a step j such that

|∆j| ≥
N

2i+1
· 4c

k
.

Let A be the set R at the beginning of step j. As step j belongs to
stage i, by (5.5) we have

|A| ≤ N

2i−1
.

Combining the last two inequalities we get

|A|
|∆j|

≤ k

c
.

Therefore by the greedy property of our algorithm for every set
v ∈ L that intersects A we have

|A|
|A ∩ v|

≤ k

c
,

or equivalently

|A ∩ v| ≥ c · |A|
k
.

Thus A is a (c, k)-attractor for L of size at least N
24c
.



18 Samorodnitsky, Shkredov & Yekhanin

Lemma 5.6. Let L be a family of binary vectors, trk(L) ≤ k.
Assume that Hamming weights of all vectors in L lie in some seg-
ment [

√
2w, 2w]. Further assume k ≥ 25c+2 where c is an integer.

We have

(5.7) Ac·24c (L) ≥ Ω
( c
k

)
,

where the constant in Ω-notation is absolute.

Proof. Let [N ] be the union of supports of vectors in L. Clearly,
N ≤ 2wk. We now construct a basis for the approximating real
space.

1. π = {πi}i≥−1 is a partition of [N ]. Initially π consists of two
sets: π−1 = ∅, π0 = [N ] and i = 0.

2. WHILE ((i < c · 24c) AND (π0 6= ∅)) DO

3. BEGIN

4. Find a (c, k)-attractor πi for L of relat. size at least 1
24c;

5. Remove elements of πi from π0 and from all sets v ∈ L;

6. Add the set πi to π;

7. Drop every element v such that |v| < w from L;

8. Move elements of π0 with no support in L to π−1;

9. Increment i;

10. END

Our algorithm above maintains the invariant that the union of sup-
ports of elements of L is π0 and every element of L has weight in the
segment [w, 2w]. Thus in step 4, we can safely invoke Lemma 5.3 to
obtain an the attractor. Observe that by the end of the execution
of the algorithm we have

(5.8) |π0| ≤ N ·
(

1− 1

24c

)c·24c
≤ N

c
.

Recall that π = {πi}i≥−1 is a partition of [N ]. Let r = |π| − 2. Let
W be the real linear space spanned by binary vectors p0, . . . ,pr
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whose supports are the corresponding elements of this partition.
Clearly, dimW ≤ c · 24c. We claim that W approximates all v ∈ L
well. Consider two cases:

◦ |v ∩ π0| < w. At least (
√

2 − 1)w elements of supp(v) fall
onto (c, k)-attractors in π. Let i ∈ [r] be the index of the
step at that v has been removed from L; if v has not been
removed from L by the end of the execution we set s = r. To
approximate v ∈ L consider the set

J = {j ∈ [1, s] | v ∩ πj 6= ∅}.

For all j ∈ J by (5.2) we have

|v ∩ πj| ≥ c · |πj|
k
.

Therefore

(5.9) |πj| ≤ |v ∩ πj| ·
k

c
.

Consider the vector p =
∑

j∈J pj. Summing (5.9) over all
j ∈ J we obtain

wt(p) ≤ 2w · k
c
,

where wt(p) denotes the Hamming weight. Thus(
p

‖p‖
,

v

‖v‖

)2

≥ |v ∩ supp(p)|2

wt(v)
· c

2wk
≥ (
√

2− 1)2

4
· c
k
.

◦ |v ∩ π0| ≥ w. By (5.8) we have |π0| ≤ 2wk
c
. Consider the

binary real vector p whose support is π0. We have(
p

‖p‖
,

v

‖v‖

)2

≥ w2

2w
· c

2wk
=

c

4k
.

In what follows all log’s are base 2 unless otherwise specified.
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Theorem 5.10. Let L ⊆ Fn2 , trk(L) ≤ k. Assume k ≥ 25c+2 where
c is an integer. We have

(5.11) A2c·24c·logn (L) ≥ Ω
( c
k

)
,

where the constant in Ω-notation is absolute.

Proof. Partition the set L into 2 log n subsets L1, . . . , L2 logn

where every set Li contains elements of L whose Hamming weight
is between 2(i−1)/2 an 2i/2. Apply Lemma 5.6 to each Li. Consider
the joint span of 2 log n resulting real spaces to approximate L.

Theorem 5.12. Let L ⊆ Fn2 , trk(L) ≤ k; then

◦ For all τ > 0 and sufficiently large k and n,

(5.13) Anτ (L) ≥ Ω

(
log k

k

)
,

where the constant in the Ω-notation depends only on τ.

◦ The bullet above implies that for all α and all ε > 0 our
main Conjecture 3.18 holds for all linear spaces L, where
dimL = o(nε log n).

Proof. We start with the first bullet. Set

c =

⌊
min

{
τ

8
log k,

log k − 2

5

}⌋
,

which ensures that k ≥ 25c+2. Theorem 5.10 yields

A τ
4
·(log k)·(logn)·kτ/2(L) ≥ Ω

(
log k

k

)
,

which immediately yields (5.13) for large enough n.
We proceed to the second bullet. Let k = dimL = β(n)nε log n,

where β(n)→ 0 but β log n grows. Fix an arbitrary τ < 1− ε. By
(5.13)

Anτ (L) ≥ c log k

k
,



Kolmogorov Width of Discrete Linear Spaces 21

for some constant c. Set r(n) = cεn1−ε

β(n)(1+α)
. Observe that for suffi-

ciently large n,

Ar(L) ≥ Anτ (L) ≥ c log k

k
≥ cε log n

βnε log n
=

cε

βnε
= (1 + α)

r

n
.

This concludes the proof.

The following Corollary gives the implication of Theorem 5.12
for the triangular rank of combinatorial designs.

Corollary 5.14. Let m = 1
ε

and let Vm be the n × n incidence
matrix of a combinatorial design that has the parameters of the
geometric design Gm,q. We have

(5.15) trk(Vm) = Ω (nε log n) ,

where trk(Vm) denotes the triangular rank of the collection of rows
of Vm.

Proof. Let trk(Vm) = k. Set r = n1−ε. From Corollary 3.8 we
have Ar(Vm) . 2

nε
. However from Theorem 5.12 we have Ar(Vm) ≥

Ω
(

log k
k

)
. Therefore

2

nε
≥ Ω

(
log k

k

)
.

Thus k = Ω (nε log n) .

Note that triangular rank of Vm gives a lower bound for the rank
of Vm over any field.

6. High dimensional approximations from short
dual vectors

In this section we establish Conjecture 3.18 for a certain class a
linear spaces called cut-spaces and give a simpler proof of a slightly
weaker version of Theorem 5.12. In both of these results we use
low weight vectors in the dual space of an F2-linear space L to
construct the approximating real space for L. As in the previous
section, we often write v to denote both a vector v and its support
set supp(v).
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Definition 6.1. Let L be a family of subsets of [n] and α be a
positive constant. We say that the r-partition π =

⊔
j≤r πj of [n]

is α-attractive for L, if for every v ∈ L we have

(6.2)

∣∣∣∣∣∣
⊔

j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ |supp(v)|
(1 + α)

· n
r
.

Lemma 6.3. Let L be a set of n-dimensional binary vectors. Sup-
pose there exists an r-partition of [n] that is α-attractive for L;
then Ar(L) ≥ (1 + α) r

n
.

Proof. Let W be the real linear space spanned by binary vec-
tors p1, . . . ,pr whose supports are elements of the α-attractive
r-partition. To approximate v ∈ L consider the vector

p =
∑

j : v∩πj 6=∅

pj.

We have

wt(p) ≤ wt(v)

(1 + α)
· n
r
.

Thus (p/‖p‖,v/‖v‖)2 ≥ (1 + α) r
n
.

6.1. Approximating cut spaces. A cut space is a subspace
of Fn2 that has a k × n generator matrix where every column has
weight two. Equivalently, a cut space is defined by a k-node graph
G with n edges. Elements of the cut space are incidence vectors of
cuts in the graph. Elements of the dual space are incidence vectors
of even degree subgraphs of G. In what follows we restrict our
attention to connected graphs G. For such graphs the dimension of
the corresponding cut space is k−1. We now argue that cut spaces
satisfy Conjecture 3.18.

Theorem 6.4. Let L ⊆ Fn2 be a cut space, dimL ≤ o
(

n
logn

)
.

Then for some r = Θ
(

n
logn

)
and α > 0 we have

Ar(L) ≥ (1 + α)
r

n
.
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Proof. We rely on the fact that any graph with k nodes and n
edges contains a cycle of length at most 2 log n provided n ≥ 3k.2

We consider the graph G corresponding to L. We construct a family
π of disjoint subsets of edges of G (coordinates of L). We start by
executing the following simple algorithm:

1. Start with an empty family of sets π.

2. WHILE n ≥ 3k DO

3. BEGIN

4. Identify a cycle C in G, |C| ≤ 2 log n;

5. Include C into π as a new set;

6. Drop edges in C from G;

7. END

Our next goal is to make sure that most sets in π have approxi-
mately the same size. Firstly, we repeatedly join together any two
sets in π, if the sum of their sizes is below 2 log n. Secondly, we drop
the smallest set from π. Now every set in π has size in the range
[log n, 2 log n]. We fix a small δ > 0 and consider two alternatives:

◦ The average size of a set in π is larger than (1 + δ) log n. We
extend π to become a partition of the set [n] by including
all remaining coordinates as singleton sets. Let r = |π|. We
have

r ≤ n

(1 + δ) log n
+ 3k + log n .

n

(1 + δ) log n
.

We claim that π is α-attractive for L, for a positive α. Ob-
serve that every element v ∈ L intersects each non-singleton
element of π in an even number of coordinates, since every

2While this fact is standard, we include a proof sketch for a seeming lack
of a good reference. Consider a k-node graph G with n edges, where n ≥ 3k.
Repeatedly remove all nodes of degree at most 2 and their incident edges from
G to obtain a graph G′. Note that G′ is non-empty and satisfies the same
relation between the number of nodes and the number of edges. Observe that
each node of G′ has degree three or higher. Pick an arbitrary node in G′ and
build a binary tree out of it to obtain a cycle of length at most 2 log n.
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cycle in a graph intersects a cut in an even number of edges.
Therefore we have∣∣∣∣∣∣

⊔
j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ wt(v)

2
· 2 log n = wt(v) · log n.

It remains to note that

wt(v) · n
r
& (1 + δ) · wt(v) · log n.

◦ The average size of a set in π is below (1 + δ) log n. The
fraction of sets of size above 1.5 log n is at most 2δ. We pair up
sets of size less than 1.5 log n arbitrarily (possibly dropping
one set). We replace pairs by their unions. This leads us
to a new family of sets, where the size of each set is in the
range [1.5 log n, 3 log n] and the average size is above 1.5(1 +
δ′) log n. Here we apply the argument from the previous bullet
using δ′ in place of δ.

This concludes the proof.

6.2. Approximating general F2-linear spaces. We now ap-
ply the method used in the previous section to approximate cut
spaces to generic linear spaces; the only difference being in the
bound for the weight of dual codewords.

Theorem 6.5. Let L ⊆ Fn2 be a linear space, dimL = k, k ≤
n

1
2
−β, 0 < β < 1/2. Then for some r = Θ

(
n
k

log k
)

and α > 0,

(6.6) Ar(L) ≥ (1 + α)
r

n
.

Proof. Fix ε > 0 such that k1+ε = o
(
n
k

log k
)
. We rely on the

fact that by the Hamming bound MacWilliams & Sloane (1977)
for any linear subspace of Fm2 of dimension k, there is a nonzero
dual vector of weight at most ck/ log k provided k1+ε ≤ m, for a
universal constant c. We construct a family π of disjoint subsets of
[n]. We start by executing the following simple algorithm:
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1. Start with an empty family of sets π.

2. WHILE n ≥ k1+ε DO

3. BEGIN

4. Identify a light dual vector v, wt(v) ≤ ck
log k

;

5. Include supp(v) into π as a new set;

6. Drop the coordinates in supp(v) from [n]. Reduce n.

7. END

Observe that every vector v that we select on step 4 above is, in
fact, a dual vector for the space L, even though we pick it with
respect to the “current universe”. Our next goal is to make sure
that most sets in π have approximately the same size. Firstly, we
repeatedly join together any two sets in π, if the sum of their sizes
is below 2ck/ log k. Secondly, we drop the smallest set from π. Now
every set in π has size in the range [ck/ log k, 2ck/ log k]. We fix a
small δ > 0 and consider two alternatives:

◦ The average size of a set in π is larger than (1 + δ)ck/ log k.
We extend π to become a partition of the set [n] by including
all remaining coordinates as singleton sets. Let r = |π|. We
have

r ≤ n log k

(1 + δ)ck
+ k1+ε +

ck

log k
.

n log k

(1 + δ)ck
.

We claim that π is α-attractive for L, for a positive α. Ob-
serve that every element v ∈ L intersects each non-singleton
element of π in an even number of coordinates. Therefore we
have ∣∣∣∣∣∣

⊔
j : v∩πj 6=∅

πj

∣∣∣∣∣∣ ≤ wt(v)

2
· 2ck

log k
= wt(v) · ck

log k
.

It remains to note that

wt(v) · n
r
& wt(v) · (1 + δ) · ck

log k
.
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◦ The average size of a set in π is below (1 + δ)ck/ log k. The
fraction of sets of size above 1.5ck/ log k is at most 2δ. We
pair up sets of size less than 1.5ck/ log k arbitrarily (possibly
dropping one set). We replace pairs by their unions. This
leads us to a new family of sets, where the size of each set is
in the range [1.5ck/ log k, 3ck/ log k] and the average size is
above 1.5(1 + δ′)ck/ log k. Here we apply the argument from
the previous bullet using δ′ in place of δ.

This concludes the proof.

Similarly to Theorem 5.12, Theorem 6.5 above can be used to
argue that Conjecture 3.18 holds for all linear spaces of dimension
up to o(nε log n), i.e., if we set k = β(n) ·nε log n, where β(n)→ 0,

and r = Θ
(
n
k

log n
)

= Θ
(
n1−ε

β

)
; then (6.6) yields

(6.7) Ar(L) ≥ (1 + α)
r

n
.

Theorem 5.12 however presents a stronger result. Firstly, in the
proof of Theorem 5.12 we use real spaces of dimension as low as
nτ to arrive at the bound (6.7) for some r = ω(n1−ε). This leaves
plenty of room for potential further improvements. Secondly, The-
orem 5.12 applies to all sets of vectors of bounded triangular rank,
while Theorem 6.5 only deals with F2-linear spaces.

7. Proof of Theorem 4.7

Our goal here is to prove the following theorem from Section 4.

Theorem. There exist positive constants δ and k0 such that for
all k ≥ k0, for all sets L ⊆ Fn2 with trk(L) ≤ k :

(7.1) A3(L) ≥ 1 + δ

k
.

We begin by generalizing some notation that was introduced in Sec-
tion 4. Let L ⊆ Fn2 . Assume {wi} are defined with respect to L as
in (4.2). For S ⊆ [n] we set

µ(S) =
∑
i∈S

w−1
i and µ′(S) =

∑
i∈S

w
−1/2
i .
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Let µ = µ([n]). For v ∈ Fn2 we often write µ(v) instead of µ(supp(v))
and µ′(v) instead of µ′(supp(v)).

Definition 7.2. Let S ⊆ [n]. Let v be a non-zero element of L.
Let β ≤ 1

2
be a positive real. We say that v is β-balanced on S if

(7.3) β · µ′(v) ≤ µ′(supp(v) ∩ S) ≤ (1− β) · µ′(v).

If v is not β-balanced we say that v is β-unbalanced.
Let S ⊆ [n], µ(S) = αµ be fixed. We define a two-dimensional

real space XS = Span(x1,x2), where

(7.4) x1(i) =

√
1

µwi
, for all i ∈ [n]

and

(7.5) x2(i) =

 −
√

1−α
α

√
1
µwi

, i ∈ S;√
α

1−α

√
1
µwi

, otherwise.

In what follows we establish two preliminary lemmas and then
proceed to the proof of Theorem 4.7.

Lemma 7.6. There exist positive constants τ < 1
2
, β, δ such that

for all L ⊆ Fn2 with trk(L) ≤ k and all sets S ⊆ [n] satisfying∣∣∣∣12 − µ(S)

µ

∣∣∣∣ ≤ 1

2
− τ

and all non-zero vectors v ∈ L that are β-unbalanced on S

(7.7) ‖PrXS(v)‖2 ≥ 1 + δ

k
.

Proof. Recall from (4.3) that ‖x1‖ = 1. Note that

‖x2‖ =
1− α
α

∑
i∈S

1

µwi
+

α

1− α
∑
i 6∈S

1

µwi
= 1.
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Also note that

(x1,x2) = −
√

1−α
α

∑
i∈S

1
µwi

+
√

α
1−α

∑
i 6∈S

1
µwi

=−
√

(1− α)α +
√
α(1− α)

= 0.

Thus

‖PrXS(v)‖2 = (v,x1)2 + (v,x2)2.

Theorem 4.5 yields (v,x1)2 ≥ 1
k
. Thus to establish (7.7) it suffices

to have (v,x2)2 ≥ δ
k
. We set w = wt(v) and

T = (v,x1) =

√
1

µw
· µ′(v).

Let

T1 =

√
1

µw
· µ′(supp(v) ∩ S)

and let

T2 =

√
1

µw
· µ′(supp(v) \ S).

It is not hard to see that

(7.8) (v,x2) = −
√

1− α
α

T1 +

√
α

1− α
T2.

Since the vector v is β-unbalanced on S we either have T1 ≤ βT
and T2 ≥ (1− β)T which implies

(7.9) |(v,x2)| ≥

(
(1− β)

√
α

1− α
− β

√
1− α
α

)
T

or T1 ≥ (1− β)T and T2 ≤ βT which implies

(7.10) |(v,x2)| ≥

(
(1− β)

√
1− α
α
− β

√
α

1− α

)
T.
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It remains to note that the coefficients in front of T in the right
hand sides of (7.9) and (7.10) can be uniformly bounded from be-
low by a constant δ > 0 provided β is somewhat small and α is
sufficiently close to 1

2
. Combining this observation with T ≥ 1√

k
concludes the proof.

We now proceed to the next lemma. For B ⊆ [n] let B̄ = [n] \B.

Lemma 7.11. Let L ⊆ Fn2 . Let B ⊆ [n] be such that for all i ∈ B
and j ∈ B̄, wi ≤ wj. Let v be a non-zero element of L and let
w = wt(v). Suppose v is β-balanced on B and

(7.12) µ′(v) ≤ (1 + ε)
√
w;

then for all i ∈ B̄,

(7.13) wi ≥
(

1− ε

(1 + ε)β

)2

w.

Proof. Let
σ = min

i∈B̄

wi
w
.

Clearly, for all i ∈ B we have wi ≤ σw. Let t = |supp(v) ∩ B|.
Inequality (7.12) yields

t√
σw

+
w − t√
w
≤ (1 + ε)

√
w.

This implies

(7.14) t ≤ εw(
1√
σ
− 1
) .

Inequality above tells us that t has to be small if σ is small. Recall
that v is β-balanced on B. Thus

µ′(supp(v) ∩ B̄) ≤ (1− β)µ′(v).

Combining the above inequality with (7.12) and with

w − t√
w
≤ µ′(supp(v) ∩ B̄)
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we conclude that

(7.15) w − t ≤ (1 + ε)(1− β)w,

thus t is somewhat large, implying that σ cannot be too small.
Formally, combining (7.14) with (7.15) we obtain

w(β + εβ − ε) ≤ εw(
1√
σ
− 1
) .

The latter inequality yields

σ ≥
(

1− ε

(1 + ε)β

)2

and concludes the proof.

We now proceed to the main proof of this section.

Proof of Theorem 4.7: Fix an arbitrary set L ⊆ Fn2 , trk(L) ≤ k.
Let γ and ε be two small positive universal constants that we fix
later. Without a loss of generality we assume that µ = µ([n]) ≥
(1− γ)k, since otherwise we have

A3(L) ≥ A1(L) ≥ 1

µ
≥ 1 + δ

k
,

for a positive δ, where the second inequality follows from the proof
of Theorem 4.5.

Let τ < 1
2

and β be positive constants from the statement
of Lemma 7.6. As in the proof of Lemma 4.4 we consider an n-
node hypergraph H, where the edges are the supports of non-zero
elements of L. We perform a sequence of steps maintaining a set
B ⊆ [n] of black nodes in H, and a sequence V ⊆ L of vectors that
we have already picked. Initially, B = ∅ and V = ∅. On each step
we apply some rule to pick a vector v ∈ L such that supp(v) 6⊆ B.
We add v to V and add all white elements of supp(v) to B. Our
process has three stages, on which we apply different rules to pick
the next vector v to add.

During the first stage on each step we choose a white node
with the smallest wi and set v to be a weight-wi vector such that
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i ∈ supp(v). Each such step increases µ(B) by at most 1. The first
stage terminates once µ(B) ≥ τµ. We now refer to the set B as S0.
Observe that for all i ∈ S0 and j ∈ S̄0, wi ≤ wj. We consider two
possibilities:

1. There exists a set S ⊆ [n],
∣∣∣12 − µ(S)

µ

∣∣∣ ≤ 1
2
− τ such that: if

v ∈ L is a non-zero vector that satisfies

(7.16) µ′(v) ≤ (1 + ε)
√

wt(v)

and is β-balanced on S0, then v is β-unbalanced on S.

We argue that in this case (7.1) holds. To see this consider
the spaces

XS0 = Span(x1,x2) and XS = Span(x1,x3)

from Lemma 7.6. Let v be an arbitrary non-zero vector from
L. If v violates (7.16); then

‖PrXS0 (v)‖2 ≥ (v,x1)2 =

(
µ′(v)√
µ · wt(v)

)2

≥ (1 + ε)2

k
.

Else, if v is β-unbalanced on S0, ‖PrXS0 (v)‖2 ≥ 1+δ
k

by
Lemma 7.6. Finally, by our assumption, if v satisfies (7.16)
as is β-balanced on S0, it is β-unbalanced on S. Thus we
have ‖PrXS(v)‖2 ≥ 1+δ

k
. Therefore every non-zero vector in

L has a squared projection of size at least 1+δ
k

on the three-
dimensional linear space Span(x1,x2,x3), for a suitably cho-
sen positive δ.

2. For every set S ⊆ [n], such that
∣∣∣12 − µ(S)

µ

∣∣∣ ≤ 1
2
− τ there

exists a non-zero vector v ∈ L that satisfies (7.16) and is
simultaneously β-balanced on both S0 and S. Our goal now
is to arrive at a contradiction. We proceed to the second
stage of building sets B and V. This stage terminates once

µ(B) > (1− τ)µ, i.e., once we have
∣∣∣12 − µ(B)

µ

∣∣∣ > 1
2
− τ.
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On each step we choose v to be a vector that satisfies (7.16)
and is β-balanced on both S0 and B. Let w be the weight of
such a v. By Lemma 7.11 for all i ∈ S̄0 we have

(7.17) wi ≥ σw where σ =

(
1− ε

(1 + ε)β

)2

.

Let E = supp(v)∩ B̄. As v is β-balanced on B, (7.16) yields

µ′(E) =
∑
i∈E

1
√
wi
≤ (1− β)µ′(v) ≤ (1− β)(1 + ε)

√
w.

Therefore ∑
i∈E

1
√
wi

1√
σw
≤ (1− β)(1 + ε)√

σ
.

Thus by (7.17)

µ(E) =
∑
i∈E

1

wi
≤ (1− β)(1 + ε)√

σ
.

Therefore on each step of the second stage we increase µ(B)
by at most (1 + ε)(1− β)/

√
σ.

Finally, when µ(B) reaches (1 − τ)µ we proceed to the last
stage. On this stage on each step we again choose a white
node with the smallest wi and set v to be a weight-wi vector
such that i ∈ supp(v). Each such step increases µ(B) by at
most 1.

It is not hard to see that the steps above generate a tower a
height at least

(7.18)
bτµc+

⌊
((1−2τ)µ−1)

√
σ

(1+ε)(1−β)

⌋
+ bτµ− 1c ≥(

2τ(1− γ) + (1−2τ)(1−γ)
√
σ

(1+ε)(1−β)

)
k − c,

for a constant c, where σ is given by (7.17). Note that fixing γ
and ε to be sufficiently small positive constants and assuming
that k is large enough we can ensure that the right hand side
of (7.18) exceeds k.

This concludes the proof.
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8. Relation to natural proofs

In Razborov & Rudich (1997) Razborov and Rudich introduced the
natural proofs barrier for proving lower bounds for computational
complexity of Boolean functions. Stated informally their results
say that if a certain property of Boolean functions is shown to
imply hardness then; either typical (random) functions do not have
this property, or the property should be hard to recognize, or some
well accepted hardness conjectures are invalid. While the theory
developed in Razborov & Rudich (1997) deals with properties of
Boolean functions one can make an analogy in the linear setting
by defining a natural property of a matrix to be a property that
holds for most matrices and can be verified efficiently Alekhnovich
(2003). In this case however the respective “hardness conjectures”
are not as standard.

In light of the above it is interesting to ask if establishing our
main Conjecture 3.18 for some ε would necessarily certify rigidity
of random binary matrices where each element is set to 1 indepen-
dently with probability n−ε. The answer to this seems to depend
on the value of α for that one proves the Conjecture. If α is suffi-
ciently small; then rigidity of random matrices would likely not be
implied. The following Theorem shows that unlike the rows of a
combinatorial design V1/ε, the rows of a random binary matrix of
density n−ε with high probability admit a non-trivial approxima-
tion on average even in the regime of a fairly large dimension of
the approximating real space.

Theorem 8.1. Let 0 < ε < 1/4 be a small positive constant. Let
V be a random n×n matrix of zero and ones where every entry is
set to 1 independently with probability p = n−ε. Let B be the real
matrix, where the rows of B are the normalized elements of V. Let
λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of BBt. There exists α > 0
such that for all r ≤ o(n),

(8.2)
1

n

∑
i≤r

λi ≥ (1 + α)
r

n
.

Proof. The claim of the theorem is a simple corollary of the
Marchenko-Pastur law Bai & Silverstein (2010) determining the
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limiting behavior of the spectral distribution of large inner product
matrices. We state a special case of this law that will suffice for
our purposes (see Theorem 3.10 in Bai & Silverstein (2010)).

Let {Mn} be a sequence of n×n random matrices, such that the
entries of Mn are i.i.d. random variables with expectation µn and
variance 1. Let λ1, . . . , λn be the eigenvalues of 1

n
MnM

t
n. Then,

for any 0 ≤ a ≤ 4 holds, with probability 1, that

(8.3)
# {i : λi ≥ a}

n
−→n→∞

1

2π

∫ 4

a

√
4− x
x

dx

Fix a = 2. Let c = 1
2π

∫ 4

2

√
4−x
x
dx = π−2

2π
≈ 0.18. Taking

Mn =
1√

p(1− p)
· V,

we observe that, with probability tending to one with n, at least
cn− o(n) eigenvalues of 1

p(1−p)nV V
t are greater or equal 2.

To complete the proof, we will argue that the spectral distribution
of 1

p(1−p)nV V
t is close to that of BBt. In fact, a special case of the

perturbation inequality A.41 in Bai & Silverstein (2010) states that
for any two symmetric n× n matrices X and Y , with eigenvalues
λ1, . . . , λn and µ1, . . . , µn, and for any real number a holds that
(8.4)∣∣∣∣# {i : λi ≥ a}

n
− # {i : µi ≥ a}

n

∣∣∣∣ ≤ ( 1

n
· Tr

(
(X − Y )2))1/3

We will apply this inequality to slightly perturbed versions of the
matrices 1

p(1−p)nV V
t and BBt. The goal of this modification would

be to cancel the undesired effect of the maximal eigenvalues of the
two matrices. With this in mind, we set U = V − pJ , where J is
the all-1 matrix. Let W = (wij) = UU t. We take X = 1

p(1−p)nW .
Next, we consider the norms of the rows of V . Since V is a 0-1
matrix, the norm of its ith row is

√
ri, where ri is the row sum. We

take Y =
(

wij√
rirj

)
.

Note that the matrices X and Y are rank-1 perturbations of ma-
trices 1

p(1−p)nV V
t and BBt respectively. By the Courant minimax
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principle, if two matrices differ by a matrix of rank 1, their eigen-
values interlace. Hence, using the perturbed matrices changes the
LHS of ((8.4)) by at most an additive factor of O (1/n), which we
may ignore. (For a more general statement, see Theorem A.44 in
Bai & Silverstein (2010).)
In the following analysis we may and will assume all ri to lie in the
interval np ± t

√
np log n, for a sufficiently large absolute constant

t, since this holds with probability tending to one with n, by the
Chernoff bound.
With this assumption, we can bound the distance between the
entries of X and Y as follows.

(xij − yij)2 =

(
wij

p(1− p)n
− wij√

rirj

)2

≤ O

(
1

n2

)
· w2

ij

In the last inequality we have used the fact that np2 �
√
n log n,

which we may do since p = n−ε and, by assumption, ε < 1/4.
To complete the argument about proximity of the spectral distri-
butions of X and Y , we need to estimate from above the `2 norm
of W .
For this we note that U is a random matrix whose entries are
centered i.i.d. Bernoulli random variables. Hence, by Theorem
5.8 of Bai & Silverstein (2010), the maximal eigenvalue of X =
(UU t) /(p(1 − p)n) tends to 4 with probability one as n goes to
infinity. Consequently, we may (and will) assume that

∑n
i,j=1 x

2
ij =

O(n).
Since W = p(1− p)n ·X, we deduce

n∑
i,j=1

w2
ij ≤ n2p2 ·

n∑
i,j=1

x2
ij ≤ O

(
n3p2

)
.

Finally, we can estimate the RHS of ((8.4)) from above as follows:(
1

n
· Tr

(
(X − Y )2))1/3

≤ O

(
1

n

)
·

(
n∑

i,j=1

w2
ij

)1/3

≤ O
(
p2/3

)
= o(1)

We deduce that at least cn − o(n) eigenvalues of the matrices Y
and (hence) BBt are greater or equal 2, for an absolute constant
c ≈ 0.18. The claim of the theorem follows.
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9. Conclusions

In this paper we suggested a new path to establishing rigidity of
design matrices over the field F2. Our approach is centered around
the conjecture that says that after the natural ”normalizing” em-
bedding of the Boolean cube into Rn, low dimensional F2-linear
spaces exhibit some tiny amount of resemblance to real linear
spaces. In particular it is easier to approximate them by Euclid-
ian linear spaces than to approximate all of the Boolean cube. We
showed that the conjecture is indeed true (by a huge margin) when
the approximating real spaces are of low dimension. However our
approximability results for high-dimensional real spaces are not
strong enough.

Currently it feels that the weakness of our results stems from
the fact that we use relatively little combinatorial structure of F2-
linearity. In particular our strongest result (Theorem 5.12) applies
to all sets of bounded triangular rank. Note that while it is plau-
sible that one can make further progress based just on triangular
rank; one cannot establish Conjecture 3.18 in such generality.

Remark 9.1. Replacing the condition dim(L) ≤ n2ε+δ in the Con-
jecture 3.18 by the condition trk(L) ≤ n2ε+δ makes the Conjecture
invalid.

Proof. Let m = 1
ε

be an integer. Let V ′m be a matrix that is
obtained from Vm by independently flipping every zero entry to
one with probability n−2ε. It is not hard to see that with over-
whelming probability V ′m does not contain an all-zeros minor of
size Ω(n2ε log n). Thus trk(V ′m) = O(n2ε log n). However Proposi-
tion 3.15 implies that for any r = ω(n1−ε), we have Ar(V

′
m) ≈ r

n
.

Thus rows of V ′m give a counterexample to this stronger version of
the Conjecture.
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