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Abstract

A design is a finite set of points in a space on which every ”simple” functions averages
to its global mean. Illustrative examples of simple functions are low-degree polynomials on
the Euclidean sphere or on the Hamming cube.

We prove lower bounds on designs in spaces with a large group of symmetries. These
spaces include globally symmetric Riemannian spaces (of any rank) and commutative asso-
ciation schemes with 1-transitive group of symmetries.

Our bounds are, in general, implicit, relying on estimates on the spectral behavior of
certain symmetry-invariant linear operators. They reduce to the first linear programming
bound for designs in globally symmetric Riemannian spaces of rank-1 or in distance regular
graphs. The proofs are different though, coming from viewpoint of abstract harmonic anal-
ysis in symmetric spaces. As a dividend we obtain the following geometric fact: a design is
large because a union of ”spherical caps” around its points ”covers” the whole space.

1 Introduction

In the following M is either a compact connected C∞ Riemannian manifold with no boundary
([3, 10]) or a commutative association scheme ([1, 6]).

A design ([5, 6, 7, 8, 12, 13]) is a finite subset of M which is orthogonal to the space of
non-constant ”simple” functions on M .

To define the notions properly, we look at the Laplacian ∆ on M . If M is a Riemannian
space, this is the usual Laplacian operator. If M is a graph with degree d and adjacency matrix
A, we take ∆ = d · I − A to be the usual graph Laplacian. For an association scheme M , we
pick any relation R in the scheme and take ∆ to be the Laplacian of the associated graph.

In all cases, it is known that the linear operator so defined has nonnegative eigenvalues
0 = λ0 < λ1 < ... and all these eigenvalues have finite multiplicity.

Definition 1.1: A finite subset D ⊆ M is a design of strength t if for any eigenfunction φ of
the Laplacian which belongs to one of the eigenvalues 0 < λ < t holds∑

x∈D
φ(x) = 0
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In other words, for a function f in the vector space Vt spanned by the Laplacian eigenfunc-
tions associated with eigenvalues smaller than t holds∫

M
f =

1
|D
∑
x∈D

f(x)

This definition is due to [6] in the context of association schemes and to [8] in the context of non-
discrete compact homogeneous spaces. We observe that in some interesting cases, such as the
Euclidean sphere and the Hamming cube, the space Vt is the space of multivariate polynomials
of degree at most d = d(t).

We will show a lower bound on the cardinality of a design of strength t. To state this bound,
we need a notion of an eigenvalue of a subset Ω ⊆M .

For a Riemannian manifold M , Ω will be a normal domain, and its eigenvalue λ(Ω) is the
minimal eigenvalue of the Laplacian restricted to functions supported on the domain and van-
ishing on its boundary. In other words, λ(Ω) is the minimal eigenvalue of a function satisfying
the Dirichlet boundary conditions on Ω. This value is also referred to as the fundamental tone
of Ω.

For a graph M , Ω could be any subset and λ(Ω) is the minimal eigenvalue of the Laplacian
restricted to functions supported on Ω.

Now we can state our bound, in a somewhat vague form. We use V (·) to denote the
Riemannian measure if M is a manifold, or a counting measure if M is a graph.

Theorem 1.2: Let D be a design of strength t on M . Let Ω be a subset of M with eigenvalue
λ. Then, assuming M and Ω are sufficiently symmetric (to be explained later) , and λ < t,
we have

|D| ≥ t− λ
t
· V (M)
V (Ω)

In fact, a union of isomorphic copies of Ω taken around each point of D essentially covers M
(up to a t−λ

t -factor).

The precise conditions on M and Ω are given in Theorems 2.2 and 3.1 below.

We remark that the connection between eigenvalues of subsets of M and bounds on designs
in M was established in [9], where an implicit version of theorem 1.2 is proved for the case of
the Hamming cube. The usefulness of harmonic analysis in this context was pointed out in [16].
Theorem 1.2 can be viewed as an extension of Proposition 1.3 in [17].

1.1 Discussion

To apply the theorem, we need nice subsets Ω ⊆ M , for which we can upper bound the
eigenvalue λ(Ω) by a function of the measure V (Ω).

For manifolds, the Courant nodal domain theorem shows, in particular, that if φ is an
eigenfunction of the Laplacian with eigenvalue λ, and if Ω is a nodal domain of φ, then λ(Ω) = λ.
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If M is a graph, this claim does not hold, but we only need a one-sided bound λ(Ω) ≤ λ and
this is directly verifiable.

Fixing a distinguished point o ∈ M , we may consider ’symmetric’ eigenfunctions of the
Laplacian, invariant under a subgroup of isometries fixing o, and we may take Ω to be the nodal
domain containing o. For rank-1 symmetric spaces or 1-transitive distance regular graphs, λ(Ω)
and V (Ω) can be related by the behavior of the first roots of the corresponding family of or-
thogonal polynomials. Plugging this into Theorem 1.2, we recover the first linear programming
bound on 1-transitive distance regular graphs [12] and on rank-1 symmetric spaces ([19] for the
sphere, and [15] for projective spaces).

Another example is the n-dimensional flat torus T = Rn/Zn. Let Ω be a periodization of
a Euclidean ball in T. The eigenvalue of Ω is the same as for a ball in Euclidean space, and
is known explicitly. Using Theorem 1.2, we recover the bound of [18] for the torus. In this
argument, the lattice Zn can be replaced by any lattice Λ ⊆ Rn.

For general symmetric spaces, things are more complicated. However, some general inequal-
ities providing an upper bound on λ(Ω) as a function of the geometry of Ω and M are known,
and, in principle, can be used in Theorem 1.2 ([2, 4]).

For general association schemes, things seem to be even more complicated. An essential
obstacle is that in the absence of the triangle inequality (provided by the metric structure in
distance regular graphs) the action of the Laplacian could drastically increase the support of a
function. This leads to difficulties in controlling λ(Ω) as a function of V (Ω).

Covering: Let B(r, x) denote a metric ball of radius r around x in M . Theorem 1.2 implies
that for any t, there is a radius r = r(t), such that M ≈ ∪x∈DB(r, x).1 The function r (·)
depends on the space, and satisfies λ(B(r(t), x)) < t. In particular,

• Union of spherical caps of radius r(t) around a spherical design of strength t essentially
covers Sn−1.

• Union of Hamming balls of radius r(t) around a t-wise independent set essentially covers
{0, 1}n.2

• Union of Johnson metric balls of radius r(t) around a combinatorial t-design essentially
covers the Hamming sphere.

• Let Λ ⊆ Rn be a lattice with shortest vector of length t. Let Λ∗ be the dual lattice.
Then any point in the torus T = Rn/Λ∗ is a design of strength t, since the condition in
Definition 1.1 is trivially satisfied. This means that a (periodization of) Euclidean ball
B of radius r(t) essentially covers T. Therefore, up to a negligible multiplicative factor,
V (T) = |Λ∗| ≤ |B|, that is |Λ| ≥ 1

|B| . Here | · | denotes Euclidean volume. This establishes
a lower bound on the covolume of a lattice with shortest vector of length t, and recovers
a bound of [14] on lattice sphere packing in Rn.

1Concentration of measure in the examples below, except (possibly) the Hamming sphere, shows a slight
perturbation of the covering provided by the theorem covers the entire space, up to its negligible fraction.

2This special case was proved in [17].
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This also implies that a lattice dual to a good sphere-packing lattice is a good lattice
quantizer [5, 20]. If Λ lies on the best known upper bound for sphere packing in Rn ([11]),
then, for large n, G (Λ∗) ≈ 0.062, close to the optimal value of 0.0586 (which would have
been attained by lattices lying on the bound of [14]).

2 Riemannian manifolds

2.1 Preliminaries

In the following M is a compact connected C∞ Riemannian manifold with no boundary. Let
V denote the Riemannian measure on M .

We will deal with some function spaces on M : the space L2(M) of all L2-integrable functions
on M with the inner product 〈f, g〉 =

∫
M fg dV , and the space Ck(M) of k-wise differentiable

functions.

We also consider the space L2(M) of all L2-integrable vector fields on M with the inner
product 〈X,Y 〉 =

∫
M 〈X,Y 〉 dV , and differentiable fields Ck(M).

There are several naturally defined linear differential operators on differentiable functions
and vector fields on M . We won’t need to give precise definitions of these operators, but rather
some of their properties. In the next subsection we collect the needed information about these
operators and their properties.

Some differential operators on Riemannian manifolds

1. The gradient. For f ∈ Ck(M), the gradient grad(f) is a Ck−1 vector field on M .

2. The divergence. For X ∈ Ck(M), the divergence div(X) is a Ck−1 function on M .

3. The Laplacian. For f ∈ Ck(M), the Laplacian ∆f is a Ck−2 function on M .

∆f = div(grad(f))

Properties: We have, for a C1 function f and a C1 vector field X

〈grad(f), X〉 = −〈f,div(X)〉

We now recall the definition of the weak derivative. A vector field Y ∈ L2(M) is a weak
derivative of a function f ∈ L2(M) if for any C1 vector field X holds

〈Y,X〉 = −〈f, div(X)〉

We denote Y = Grad(f).
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Let H(M) be the subspace of L2(M) consisting of functions with weak derivatives. On
H(M) we consider a bilinear form (the Dirichlet form), given by

D[f, g] = 〈Grad(f),Grad(g)〉

This form is related to the Laplacian by the Green formula. For f ∈ C2(M),

D[f, g] = −〈∆f, g〉

The Laplacian and its eigenfunctions and eigenvalues

The eigenfunctions of the Laplacian are functions φ ∈ C2(M) satisfying

∆φ = −λφ

The numbers λ on the right hand side of this equality are the eigenvalues of the Laplacian.

Theorem 2.1: [3] All the eigenvalues of the Laplacian are nonnegative. The first eigenvalue
is 0, it’s of multiplicity 1, and the eigenfunction associated with it is a constant function. A
subspace of eigenfunctions associated with each eigenvalue is finite-dimensional. Eigenspaces
associated with different eigenvalues are orthogonal in L2(M), and L2(M) is the direct sum of
all the eigenspaces. Furthermore, each eigenfunction is in C∞(M).

2.2 The main theorem for manifolds

Here we state a version of Theorem 1.2 for manifolds and begin to prove it.

In the following I will denote the group of isometries of M . We will always assume I is
transitive.

Theorem 2.2: Let D be a design of strength t on M . Let Ω be a normal domain in M with
eigenvalue λ. Then, assuming M has a nice group of isometries, and Ω is invariant under a
nice subgroup I0 of isometries, and λ < t, we have

|D| ≥ t− λ
t
· V (M)
V (Ω)

In fact, a union of isometric copies of Ω taken around each point of D essentially covers M
(up to a t−λ

t -factor).

Here niceness has one of the two following interpretations:

• I0 is a normal subgroup of I, and the factor group I/I0 is abelian.

• M is a globally symmetric Riemannian space with a compact group I of isometries. I0 is
the stabilizer of a point o ∈M .
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Proof:
Let |D| = d. Let D = {y1, . . . , yd}. Let o ∈M be a distinguished point. Let τi, i = 1, . . . , d, be
an isometry of M taking yi to o.

Let φ be the eigenfunction of Ω̄ associated with eigenvalue λ. By this, we mean that φ is
the first eigenfunction for the Dirichlet problem on Ω, satisfying ∆φ = −λφ on Ω and φ|∂Ω = 0.

By a version of Theorem 2.1 for manifolds with boundary, φ is C∞ on Ω̄. By the Courant
nodal domain theorem, φ is nonnegative on Ω.

Let f be a function on M defined as follows: f(x) = φ(x) for x ∈ Ω and f(x) = 0 for x 6∈ Ω.
Then f ∈ H(M) ([3]). Let F ∈ H(M) be defined as follows:

F (x) =
d∑
i=1

f (τix)

We will claim, under appropriate conditions, two properties for F .

1.
D[F, F ] ≤ λ 〈F, F 〉

2. The function F is orthogonal to any eigenfunction φ of the Laplacian which belongs to
one of eigenvalues 0 < θ < t.

We observe that these two properties imply the statement of the theorem. In fact, we will
show a geometric-flavor statement

|D| · V (Ω) ≥ V

(⋃
i∈D

Ωi

)
≥ V (supp(F )) ≥ t− λ

t
· V (M) (1)

Here Ωi := τ−1
i (Ω). That is, if we take a copy of Ω around each point of D, we ”almost cover”

M .

We proceed to show (1). By Rayleigh’s theorem:

D[F, F ] ≥ t ·

(
〈F, F 〉 − 〈F, 1〉

2

V (M)

)

This, combined with D[F, F ] ≤ λ 〈F, F 〉 implies, via a simple rearrangement

V (M) · 〈F, F 〉
〈F, 1〉2

≤ t

t− λ

Note that, by Cauchy-Schwarz, and by the definition of F , we have

〈F, F 〉
〈F, 1〉2

≥ 1
V (supp(F ))
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That is,

V (M) ≤ t

t− λ
· V (supp(F )),

completing the proof of (1).

It remains to verify when the two claimed properties of F hold.

The first property seems to hold in a rather wide generality.

Lemma 2.3: In the above assumptions about M , and essentially no assumptions about its
group I of isometries,

D[F, F ] ≤ λ 〈F, F 〉

Proof: We have

D[F, F ] = D

[
d∑
i=1

fi,
d∑
i=1

fi

]
=

d∑
i,j=1

D [fi, fj ] ,

where fi(x) := f (τix). Now, for i = j we have, by the definition of f and by Green’s formula
for a manifold with boundary, in our case, Ω̄, recalling that φ = 0 on ∂Ω.

D [fi, fi] = D[f, f ] =
∫
M
〈Grad(f),Grad(f)〉 dV =∫

Ω
〈grad(φ), grad(φ)〉 dV = −

∫
Ω
φ∆φ dV = λ · 〈φ, φ〉 = λ · 〈f, f〉

The third equality is explained by the fact that Grad(f) is easily checked to equal grad(φ) on
Ω and 0 on its complement.

For i 6= j we have, setting Ωi = τ−1
i (Ω),

D [fi, fj ] =
∫

Ωi∩Ωj

〈grad (φi) , grad (φj)〉 dV =

−
∫

Ωi∩Ωj

φi∆φjdV +
∫
∂(Ωi∩Ωj)

φi · 〈φj , ν〉 dA = λ · 〈fi, fj〉+
∫
∂(Ωi∩Ωj)

φi · 〈φj , ν〉 dA

Now, assume that the boundaries ∂Ωi and ∂Ωj intersect transversally, that is, by submanifolds
of smaller dimension (by perturbing Ωi slightly, if needed). Then Θ = Ωi ∩ Ωj is a normal
domain whose boundary is given by, up to lower-dimensional terms,

∂Θ = (∂Ωi ∩ Ωj) ∪ (∂Ωj ∩ Ωi)

We have that the outer normal derivative of φj on ∂Ωj is non-positive, since φj is nonnegative
on Ωj and 0 on ∂Ωj . Similarly, φi ≥ 0 on Ωi and 0 on ∂Ωi. Taken together, this implies∫
∂(Ωi∩Ωj) φi · 〈φj , ν〉 dA ≤ 0, and consequently

D [fi, fj ] ≤ λ · 〈fi, fj〉 ,

completing the proof of the lemma.

The second property of F , which we will refer to as a design-like, requires more work. In
particular, it needs more assumptions on the group of isometries of M and on the domain Ω.
We will see some cases in which it holds in the next subsection.
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2.3 The function F is design-like for sufficiently symmetric M and Ω

In this section we conclude the proof of Theorem 2.2. The main role is played by the isometry
group I(M) of M . We will show that if I is sufficiently nice, F is design-like.

The next lemma deals with the first case of the theorem.

Lemma 2.4: (I has an abelian factor)
The function F is design-like, provided one of the following two cases holds:

1. The group I of isometries of M is abelian.

2. More generally, the group I contains a normal subgroup I0, such that the factor group
I/I0 is abelian and Ω is I0-invariant. In this case, we choose f to be I0-invariant as
well.

Proof: Let φ be an eigenfunction that belongs to one of the eigenvalues 0 < θ < t. We have

〈F, φ〉 =
d∑
i=1

〈fi, φ〉 =
d∑
i=1

∫
M
f (τix)φ(x)dV =

d∑
i=1

∫
M
f(y)φ

(
τ−1
i y

)
dV =

∫
M
f(y) ·

(
d∑
i=1

φ
(
τ−1
i y

))
dV

Now, consider the first case of the lemma. let β ∈ I1 be an isoperimetry of M taking y to o.
Then β = τ−1

i ◦ β ◦ τi : τ−1
i y 7−→ yi. This means

{
τ−1
i y, i = 1...d

}
is an isometric image of

the design D, and therefore a design of strength t as well. Consequently,
∑d

i=1 φ
(
τ−1
i y

)
= 0 for

all y ∈M , and we are done.

Next, consider the second case of the lemma. Observe that if Ω is I0-invariant, we can make
f to be I0-invariant as well, by averaging it over the compact set I0.3

We may assume φ is I0-invariant as well. Indeed, if not, let µ be the normalized Haar
measure on I0 and ψ(y) =

∫
α∈I0 φ(αy)dµ(α). Clearly, ψ is I0-invariant. In addition, ψ is an

eigenfunction of the Laplacian with the same eigenvalue as φ. This is true for any isometry
α ∈ I and function φα defined by φα(y) = φ(αy), and for ψ as an average of φα over α ∈ I0.

Since I0 is a normal subgroup,
∫
I0 φ(τ−1

i αy)dµ(α) =
∫
I0 φ

(
ατ−1

i y
)
dµ(α) = ψ

(
τ−1
i y

)
.

Therefore, since f is invariant, we have∫
M
f(y) ·

(
d∑
i=1

φ
(
τ−1
i y

))
dV =

∫
M

(∫
I0
f(αy) ·

(
d∑
i=1

φ
(
τ−1
i y

))
dµ(α)

)
dV =

∫
M
f(y) ·

(∫
I0

(
d∑
i=1

φ
(
τ−1
i α−1y

))
dµ(α)

)
dV =

∫
M
f(y) ·

(
d∑
i=1

ψ
(
τ−1
i y

))
dV

Now, since I/I0 is abelian, and ψ is I0-invariant, we have, for any two isometries α, β ∈ I, that
ψ(αβy) = ψ(βαy). Therefore, taking α = τ−1

i , and β : y 7−→ o, we can proceed as in the first
case.

3Note that f and its isometric shifts lie in a finite dimensional eigenspace of the Laplacian on Ω̄.
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Example 2.5: Torus, being an abelian group, and acting on itself, is an example of a manifold
satisfying the first case of the lemma.

The next lemma deals, in particular, with the case of rank-1 symmetric spaces, for which
the assumptions of the lemma are known to hold ([10]), if we take I0 to be the stabilizer of a
distinguished point o ∈M .

Lemma 2.6: (Unique invariant eigenfunctions)
Let o ∈M be a distinguished point. Suppose there exists a compact subgroup I0 that fixes o, and

such that, for any eigenvalue λ of the Laplacian, there is a unique I0-invariant eigenfunction
φλ satisfying φλ(o)) = 1.

Then, if Ω is I0-invariant, F is design-like.

Proof: In the notation above, and following the same line of reasoning, we have

〈F, φ〉 =
∫
M
f(y) ·

(∫
α∈I0

(
d∑
i=1

φ
(
τ−1
i α−1y

))
dµ(α)

)
dV

Let θ be the eigenvalue associated with φ. Let ψi(y) =
∫
α∈I0 φ

(
τ−1
i α−1y

)
dµ(α). Then, as

above, ψi is an eigenfunction of the Laplacian with the same eigenvalue θ.

We also claim ψi is I0-invariant. Indeed, for any α1 ∈ I0, we have, due to left-invariance of
µ,

ψi(α1y) =
∫
α∈I0

φ
(
τ−1
i α−1α1y

)
dµ(α) =

∫
β∈I0

φ
(
τ−1
i β−1y

)
dµ(β) = ψi(y)

So, by uniqueness, ψi is a scalar multiple of φµ, ψi = ci · φµ. This means,

〈F, φ〉 = (c1 + · · ·+ cd) ·
∫
M
f(y)φµ(y)dV

We will now show
∑d

i=1 ci = 0, completing the proof.

In fact, consider the value of
∑d

i=1 ψi at the stable point o. We have,(
d∑
i=1

ψi

)
(o) =

d∑
i=1

∫
α∈I0

φ
(
τ−1
i α−1o

)
dµ(α) =

d∑
i=1

φ
(
τ−1
i o

)
=
∑
x∈D

φ(x) = 0

Therefore,

0 =

(
d∑
i=1

ψi

)
(o) = (c1 + · · ·+ cd) · φµ(o) = c1 + · · ·+ cd.

Given some facts from harmonic analysis on symmetric spaces, the following more general
claim holds with essentially the same proof. This claim concludes the proof of Theorem 2.2.
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Lemma 2.7: Let M be a globally symmetric Riemannian space with a compact group I of
isometries. Let I0 be the stabilizer of a point o ∈M . Then, if the domain Ω is I0 invariant, F
is design-like.

Proof: (Lemma 2.7) The proof of the lemma proceeds very similarly to the proof of Lemma 2.6.
We will show that, for any y ∈M ,

d∑
i=1

ψi(y) :=
d∑
i=1

∫
α∈I0

φ
(
τ−1
i α−1y

)
dµ(α) = 0, (2)

for any eigenfunction φ of the Laplacian with eigenvalue 0 < θ < t.

For this, we will need two facts about the algebra D(M) of invariant differential operators
on symmetric spaces. First, this algebra is commutative, and the joint eigenfunctions of D(M)
span L2(M) ([10], Ch. 10. ex.3). In addition, an I0-invariant joint eigenfunction σ is determined
by its value in o (which is non-zero, if σ 6= 0), and by its eigenvalues on D(M) [10].

Since the function φ belongs to a finite-dimensional eigenspace Vθ of the Laplacian, and since
eigenfunctions associated to distinct eigenvalues are orthogonal, we can write φ =

∑k
j=1 tjσj

as a linear combination of joint eigenfunctions of D(M) with σj ∈ Vθ. Therefore, it suffices to
prove (2) for one joint eigenfunction φ.

Similarly to the above, if for D ∈ D(M) holds Dφ = λφφ, also Dψi = λφψi. Therefore, by
uniqueness of joint eigenfunctions with the same set of eigenvalues, ψi are constant multiples
of the I0-invariant joint eigenfunction σ, which belongs to the same eigenvalues as φ.

Now, we can conclude the proof similarly to that of Lemma 2.6.

3 Graphs

Let M = (V,E) be a finite graph with N vertices. We assume M is k-regular and, moreover,
has a 1-transitive group I of symmetries.

We define the Laplacian of M to be the linear operator acting on real-valued functions on
M in the following manner:

∆f(x) = kf(x)−
∑
y∼x

f(y)

We also define the Dirichlet form D[f, f ] by setting

D[f, f ] = 〈f,∆f〉 =
1
2

∑
x∼y

(f(x)− f(y))2

Let 0 ≤ λ1 ≤ λ2 ≤ . . . λN be the eigenvalues of the Laplacian, and let φ1, φ2, . . . φN be corre-
sponding eigenfunctions.

We define a design D of strength t in M exactly as above. We take d = |D|, and set
D = {y1, . . . , yd}.
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Let Ω be a subset of V . We define the first eigenvalue λ(Ω) to be

λ(Ω) = min
{
D[f, f ]
〈f, f〉

: f : Ω→ R; f 6= 0
}

We remark that in the discrete case we do not require f to vanish on the vertex boundary of Ω
(it ”automatically” vanishes on the outer vertex boundary).

Similarly to the above, we have the following theorem

Theorem 3.1: Let D be a design of strength t on M . Let Ω be a subset of M with eigenvalue λ.
Then, assuming M has a nice group of symmetries, and Ω is invariant under a nice subgroup
I0 of isometries (and occasionally is even extra nice), and λ < t, we have

|D| ≥ t− λ
t
· V (M)
V (Ω)

In fact, a union of isometric copies of Ω taken around each point of D essentially covers M
(up to a t−λ

t -factor).

Here niceness has one of the following interpretations.

• I0 is a normal subgroup of I, and the factor group I/I0 is abelian.

• M is a distance transitive graph with a group of isometries I. I0 is the stabilizer of a
point o ∈M .

• M is a a distance regular graph with a group of isometries I. I0 is the stabilizer of a
point o ∈ M . In this case we also assume Ω to be spherical, that is a union of metric
spheres centered at o. 4

• M is a commutative association scheme with a group of symmetries I. I0 is the stabilizer
of a point o ∈ M . In this case we also assume Ω to be spherical, that is a union of
adjacency classes of o. 5

The proof of the first two cases proceeds almost exactly as above. Let us indicate some
minor distinctions and how to deal with them.

First, consider the proof of Lemma 2.3. Here is the argument in the graph case.

Let φ be the eigenfunction of Ω corresponding to the eigenvalue λ. Then φ ≥ 0 on Ω and
∆φ = λφ on Ω. Let f be the extension of φ onto G, with f vanishing outside Ω. Note that this
means f ≥ 0, ∆f ≤ λf . Now, F =

∑d
i=1 fi be defined as above. Then

D[F, F ] =
∑
i,j

D [fi, fj ] =
∑
i,j

〈∆fi, fj〉 ≤ λ ·
∑
i,j

〈fi, fj〉 = λ 〈F, F 〉

Second, we remark that conditions of Lemma 2.6 are satisfied if the group I of isometries
is 2-transitive. Choose any point o ∈ M , and let I0 be the stabilizer of o. Let the eigenvalue

4Note that this contains the previous case of distance transitive graphs.
5Note that this contains the previous case of distance regular graphs.
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λ and a corresponding invariant eigenfunction L be given. Then, we claim L is determined by
l0 := L (x0). Indeed, the value l1 of L at the neighbors y1, . . . , yk of o is determined by the
equation kl0 − kl1 = λl0, the value l2 of L at the points at distance 2 from o is determined by
l0, l1 and so on.

The case of distance regular graphs and general association schemes requires more work.
We discuss it in the next subsection.

3.1 Association schemes

In this subsection we deal directly with general association schemes. Distance regular graphs
are a special case, singled out in the statement of the theorem for its intrinsic interest.

We start with interpreting the notion of the algebra of invariant differential operators on
M and of spherical and zonal spherical functions on M if M is an association scheme. It is
conveniently done using notions from the theory of association schemes.

Let M be an association scheme with m + 1 classes [1, 6]. Let I = A0, A1..., Am be the
adjacency matrices of the scheme, and 1 = n0, k = n1, ..., nm the valencies (degrees) of the
graphs defined by Ai. Let E0, ..., Em be the projection matrices of the scheme, with Vi the
image of Ei and let mi = rank (Ei) = dim (Vi) be the multiplicities of the scheme.

A one-to-one transformation τ : M →M is a symmetry of the scheme if x ∼i y ⇔ τx ∼i τy
for all x, y ∈ M and all i = 0, ...,m. The symmetries of the scheme form a group I and we
assume I is 1-transitive on M .

We take the algebra D(M) of invariant differential operators on M to be generated by ∆i,
i = 1, ...,m with (∆if) (x) = nif(x) −

∑
y∼ix

f(y). In particular, ∆1 is the discrete Laplacian
∆ defined above. This is a commutative algebra of symmetric matrices.

Fix a distinguished point o ∈M and call a function f spherical is if it is constant on metric
spheres around o. The spherical functions are spanned by Aiδo, where δo is the delta-function
at o. Another basis for the spherical functions are the zonal spherical functions

φi =
|M |
mi
· Eiδo

By definition, φi is a joint eigenfunction of all the operators in D(M). These functions are in
fact spherical, span all spherical functions, and are determined by their eigenvalues on D(M).
All this is due to the fact that A0, ..., Am and E0, ..., Em form two bases of the Bose-Mesner
algebra of the association scheme. (Thus the projection matrices both span and are spanned
by the adjacency matrices.) Note that they are normalized to be 1 at o.

Consider the orthogonal projection from the space of all real-valued functions on M to the
subspace of spherical functions. For a function f : M → R, this projection is given by

Sf =
m∑
i=0

〈Aiδo, f〉
ni

·Aiδo

A key property is that any joint eigenfunction projects into a scalar multiple of a zonal spherical
function.
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Lemma 3.2: Let φ ∈ Vi. Then
Sφ = φ(o) · φi

Proof: Let Ak =
∑m

j=0 pkjEj , k = 0, ...,m. Then

Sφ =
m∑
k=0

〈Akδo, φ〉
nk

·Akδo =
m∑
k=0

〈Akφ, δo〉
nk

·Akδo = φ(o) ·
m∑
k=0

pki
nk
·Akδo = φ(o) · Sφi = φ(o) · φi

Corollary 3.3: The projection S commutes with any operator A ∈ D(M). In other words, S
commutes with all the operators in the Bose-Mesner algebra.

Proof: It suffices to show AiS = SAi. Let f : M → R and expand f =
∑m

j=0 ajfj with
fj ∈ Vj . Then

AiSf =
m∑
j=0

ajfj(o)Aiφj =
m∑
j=0

ajfj(o)pijφj

and

SAif = S

 m∑
j=0

ajAifj

 = S

 m∑
j=0

ajpijfj

 =
m∑
j=0

ajfj(o)pijφj

The proof of the remaining case of Theorem 3.1 can now proceed very similarly to the proof
of Lemma 2.7. In the following we refer, both in notation and in argument, to that proof.

First, by Corollary 3.3, we may assume the function f to be spherical, since Ω is. We
also may assume the eigenfunction φ which belongs to eigenvalue θ of the Laplacian to be a
zonal function φ ∈ Vk. Then, as above, using Lemma 3.2 and the fact that S is an orthogonal
projection

〈F, φ〉 =

〈
f(y),

d∑
i=1

φ
(
τ−1
i y

)〉
=

〈
Sf(y),

d∑
i=1

φ
(
τ−1
i y

)〉
=

〈
f(y),S

(
d∑
i=1

φ
(
τ−1
i y

))〉
=

〈f, φk〉 ·
d∑
i=1

φ
(
τ−1
i o

)
= 〈f, φk〉 ·

∑
x∈D

φ (x) = 0
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