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ABSTRACT
We strengthen the results from a recent work by the second author,

achieving bounds on the weight distribution of binary linear codes

that are successful under block-MAP (as well as bit-MAP) decoding

on the BEC. We conclude that a linear code that is successful on the

BEC can also decode over a range of binary memoryless symmetric

(BMS) channels. In particular, applying the result of Kudekar, Kumar,

Mondelli, Pfister, Şaşoğlu and Urbanke from STOC 2016, we prove

that a Reed–Muller code of positive rate 𝑅 decodes errors on the

BSC(𝑝) with high probability if 𝑝 < 1/2 −
√
2
−𝑅 (1 − 2

−𝑅).

CCS CONCEPTS
• Mathematics of computing → Coding theory; • Theory of
computation → Error-correcting codes.
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1 INTRODUCTION
In this work we study binary linear codes over binary memoryless

symmetric channels and their weight distribution.

A binary linear error correcting code is a linear subspace𝑉 ⊆ F𝑛
2
.

The subspace 𝑉 should have the property that given an erroneous

version of 𝑣 ∈ 𝑉 one can extract from it some information on 𝑣 (𝑣

is usually referred to as a codeword). This is possible because while

𝑣 ∈ F𝑛
2
is an 𝑛-bit vector, it belongs to a subspace smaller than the

entire space, or equivalently because 𝑣 contains redundancies. The
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amount of redundancy in𝑉 is captured by the ratio 𝑅(𝑉 ) = dim(𝑉 )
𝑛

which is a fundamental property of a code called the rate.
In order to make the above concrete one has to formally define

the manner in which errors are induced and what information on

𝑣 ∈ 𝑉 should be retrieved. One such simple model was proposed

by Hamming [11] in which corruptions are adversarial and we

seek to recover the entire original codeword. The behaviour in this

setting is completely determined by theminimum distance which is

the Hamming distance between the two closest codewords. Other

interesting models include list decoding, deletion channels, locally

decodable codes andmore. In this work we shall focus on Shannon’s

model in which corruptions are induced randomly and we seek

to recover the original codeword with high probability. Perhaps

the simplest types of corruption are the binary erasure channel

(BEC) and the binary symmetric channel (BSC). In the BEC(𝑝),
every bit is independently erased

1
with fixed probability 𝑝 ∈ [0, 1]

and in the BSC(𝑝) every bit is flipped with probability 𝑝 ∈ [0, 1/2].
These two channels belong to a larger family of binary memoryless
symmetric channels (BMS channels). Memoryless means that the

noise is independent for every coordinate and symmetric roughly

means that the corruption of 1 and 0 is symmetric. For instance,

had we flipped 0 with probability 𝑝0 and flipped 1 with probability

𝑝1 for 𝑝0 ≠ 𝑝1 then this would not have been a symmetric channel.

Another important example of a BMS channel is the binary additive

Gaussianwhite noise channel BAWGN(𝜎) wherewe add a Gaussian
noise 𝑧 ∼ N(0, 𝜎2) to every coordinate independently.

In his seminal work [25], Shannon provided an upper bound

on the amount of noise a code can tolerate over any BMS channel.

He proved that a code 𝑉 ⊆ F𝑛
2
can be decoded successfully over

a channel W only if its rate 𝑅(𝑉 ) does not exceed the channel
capacity 𝐶 (W). For instance,𝐶 (BEC(𝑝)) = 1−𝑝 and so codes with

rate larger than 1−𝑝 cannot recover from 𝑝 fraction of random era-

sures. Codes that achieve this bound are called capacity achieving

(with respect to a channelW). One may wonder if such codes even

exist and indeed, random codes as well as random linear codes are

capacity achieving. There are also explicit constructions of capacity

achieving codes, most notably polar codes introduced by Arıkan [5]

that achieve capacity for any BMS channel with efficient encoding

and decoding.

It is often the case that good error correcting codes come from al-

gebraic structures. Examples include the Reed–Muller codes and the

BCH codes which are among the oldest binary codes (we shall soon

discuss the Reed–Muller codes). Yet, none of these were known to

achieve capacity even for the BEC. This was resolved by Kudekar,

Kumar, Mondelli, Pfister, Şaşoğlu and Urbanke [14] who proved that

a binary linear code which is doubly transitive (see Definition 3.10)

1
By erasing a coordinate we mean to replace it with ’?’. Do not confuse it with deletion

in which the codeword length varies.
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achieves capacity for the BEC. In particular, the aforementioned

codes satisfy this symmetry property and hence are capacity achiev-

ing for the BEC. Unfortunately, their technique seems less amenable

to other channels such as the BSC or the BAWGN. Our result ex-

tends theirs to arbitrary BMS channels, albeit not to the capacity

limit, in the following way.

Theorem 1.1 (Informal). Let 𝑉 ⊆ F𝑛
2
be a doubly transitive code

with rate 𝑅 = 𝑅(𝑉 ), and minimum distance 𝑑 (𝑉 ) = Ω(𝑛𝛼 ). Then,
𝑉 decodes errors on BSC(𝑝 (𝑅, 𝛼)), BAWGN(𝜎 (𝑅, 𝛼)) where 𝑝 (𝑅, 𝛼),
𝜎 (𝑅, 𝛼) are some explicit functions depending on 𝛼, 𝑅.

This can be extended, in an appropriate way, to arbitrary BMS
channels.

For details see Section 3.2. This is achieved by going through the

weight distribution of a code which is the sequence enumerating

how many codewords 𝑣 ∈ 𝑉 there are with a given number of ones.

For linear codes, this determines how far apart the codewords are

and hence serves as a good statistic to measure how much noise the

code can tolerate. Indeed, sufficiently strong bounds on the weight

distribution of a linear code imply that it can decode errors on a

given BMS channel.

Recently, bounds on the weight distribution of codes that achieve

capacity for the BEC were given in [22]. By combining the two ap-

proaches of [14, 22] we derive slightly stronger bounds on the

weight distribution of such codes which in turn implies good per-

formance for general BMS channels.

In fact, we establish a general method that applies to any linear

code that is good enough at recovering from random erasures. We

give exact definitions later, but in the theorem below 𝑃B (W,𝑉 ) is
the probability of failure in recovering a codeword using the optimal

(so-called maximum a posteriori, or block-MAP) decoder for a code

𝑉 on a channelW. The Bhattacharyya parameter 𝑍 (W) ∈ [0, 1]
is a property of a channel, with a lower value of 𝑍 (W) intuitively
corresponding to a less noisy channel:

Theorem 1.2. Let𝑉 be a binary linear code with dimension dim(𝑉 )
= 𝑘 , minimum distance 𝑑 and block-MAP error probability over
BEC(𝜆) less than 1/𝑘 . Then, for any BMS channel W,

𝑃B (W,𝑉 ) < 2

(
𝑍 (W)
2
𝜆 − 1

)𝑑
.

Therefore, a linear code that recovers from random erasures also

decodes errors on BMS channels with small enough Bhattacharayya

parameter. As discussed in Remark 3.5, our assumptions on the

minimum distance and error probability over rgw BEC are mild.

While below we discuss a specific application to Reed–Muller codes,

we note that our result can be applied more generally, e.g., for BCH

codes, LDPC codes or polar codes for the BEC. On the other hand,

we stress that we are only concerned with MAP decoding, and in

general there is no reason to expect that it is efficient.

Our result applies to an important family of binary codes — the

Reed–Muller codes. Reed–Muller (RM) codes were introduced by

Muller [17] and rediscovered shortly after by Reed [19]. The RM

code RM(𝑚, 𝑟 ) is defined2 by all the evaluation vectors of multi-

linear polynomials over F2 with𝑚 variables and degree at most 𝑟 .

2
It is possible to generalize RM codes to arbitrary fields. This is sometimes referred to

as generalized RM codes [7].

Due to [14], we know that constant rate RM codes achieve capac-

ity for the BEC. What about the BSC? BAWGN? It is considered

plausible

that RM codes achieve capacity for those channels as well [4].

However, prior to this work it was unknownwhether a constant rate

RM code can correct even a tiny constant fraction of random errors.

In the regime of non-constant rate there are some strong results.

For rates approaching 0, Abbe, Shpilka and Wigderson [3] proved

that RM(𝑚, 𝑟 ) achieve capacity3 for the BSC if 𝑟 = 𝑜 (𝑚) which was

later improved to 𝑟 =𝑚/70 in [24]. The latter also provides some

results on the BSC for any 𝑟 < (1/2 − 𝑜 (
√
log𝑚/𝑚))𝑚. For rates

approaching 1 the best result is again due to [3] who proved that

the Reed–Muller code RM(𝑚, 𝑟 ) achieves capacity for the BSC if

𝑟 > 𝑚 −𝑂 (
√
𝑚/log𝑚). For constant rates, [2] shows that subcodes

of constant rate RM codes where an arbitrarily small constant

fraction of basis elements was deleted correct a constant fraction

of random errors.

In contrast, applying Theorem 1.2 to the result from [14] we

obtain an unconditional result for constant rate RM codes, albeit

falling short of the capacity threshold:

Theorem 1.3. For any 0 < 𝑅 < 1, a family of RM codes with rates
approaching 𝑅 decodes errors on any BMS channel with 𝑍 (W) <

2
1−𝑅 − 1.
In particular, it decodes errors on channels BSC(𝑝) with 𝑝 < 1/2−√
2
−𝑅 (1 − 2

−𝑅) and BAWGN(𝜎) with 𝜎2 < − 1

2 ln(21−𝑅−1) .

There is also a broader consequence of our result. Throughout

the literature there are (somewhat varying) definitions of “asymp-

totically good” families of codes. In Hamming’s model, a family

of codes is usually considered good if it has both constant rate

𝑅 = Ω(1) and linear minimum distance 𝑑 = Ω(𝑛). Therefore, being
good is a property of the code. On the other hand, in Shannon’s

model, it is sometimes said [16] that a family of codes {𝑉𝑛} is good
for a given channel W if it has constant rate 𝑅 = Ω(1) and van-

ishing block-MAP error probability 𝑃B (W,𝑉𝑛) = 𝑜𝑛 (1). Our result
shows that for linear codes with moderate minimum distance the

notion of a good code is in fact independent of the channel. On

the one hand, by a degradation argument (see Lemma 3.9), a code

which is good for a BMS channel is also good for BEC(𝜆) for some

𝜆 < 1. On the other hand, by our results, a family of linear codes

which is good for the BEC is also good for all BMS channels up to a

certain Bhattacharyya parameter (and also above a certain capacity,

see Remark 3.6 and Corollary 3.7).

2 PRELIMINARIES
In this section we give definitions that are most relevant to our

results. Throughout we take log(·) to denote the binary logarithm

and 𝐻 (·) the binary entropy. We also let ℎ2 (𝑥) = −𝑥 log𝑥 − (1 −
𝑥) log(1 − 𝑥) for 0 ≤ 𝑥 ≤ 1 be the binary entropy function.

2.1 Error Correcting Codes
2.1.1 Basic Definitions. Let𝑉 ⊆ F𝑛

2
be a binary linear code of block

length 𝑛. Define the following:

3
One should be careful about what “capacity-achieving” means in the regimes of rates

approaching 0 or 1. See [3] for more details.
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• Rate: 𝑅(𝑉 ) = dim(𝑉 )
𝑛 .

• Weight: For 𝑣 ∈ F𝑛
2
we define wt(𝑣) = |{𝑖 | 𝑣𝑖 = 1}|.

• Minimum Distance: 𝑑 (𝑉 ) = min𝑣∈𝑉 \{0𝑛 } wt(𝑣).
• Weight Distribution: The sequence

( |{𝑣 ∈ 𝑉 | wt(𝑣) = 𝑘}|)𝑛
𝑘=0

is the weight distribution of 𝑉 .

• Dual: Let 𝑉⊥ = {𝑢 ∈ F𝑛
2
| ∀𝑣 ∈ 𝑉 ,𝑢𝑇 𝑣 = 0} be the dual code

of 𝑉 which is a linear subspace of dimension 𝑛 − dim(𝑉 ).
• Restriction: Given 𝑆 ⊆ [𝑛] define 𝑉𝑆 ⊆ F𝑆

2
as the restriction

of 𝑉 to the coordinates in 𝑆 .

In the asymptotic setting, we consider families of codes {𝑉𝑛}
where 𝑛 ∈ 𝑁 ⊆ N comes from an infinite set of block lengths.

We define the rate of the family as 𝑅 = lim𝑛→∞ 𝑅(𝑉𝑛) (if it exists).
When 𝑅 = 0 we say that the family {𝑉𝑛} has vanishing rate, and

non-vanishing rate otherwise.

2.1.2 Reed–Muller Codes.

Definition 2.1. The Reed–Muller code RM(𝑚, 𝑟 ) ⊆ F𝑛
2
is a linear

code with block length 𝑛 = 2
𝑚

consisting of all evaluations of

multilinear polynomials over F2 with 𝑚 variables and degree at

most 𝑟 . That is, for every such polynomial 𝑓 there is a codeword

(𝑓 (𝑎))𝑎∈F𝑚
2

.

It is known that RM(𝑚, 𝑟 ) has minimum distance 2
𝑚−𝑟

and rate

𝑅(RM(𝑚, 𝑟 )) = 2
−𝑚 ∑𝑟

𝑖=0

(𝑚
𝑖

)
. Moreover, usually 𝑟 = 𝑟 (𝑚) is a

function of𝑚, and in this case the family {RM(𝑚, 𝑟 (𝑚))}𝑚 has non-

vanishing rate smaller than 1 if and only if 𝑟 (𝑚) = 𝑚
2
± 𝑂 (

√
𝑚).

Therefore, a family of Reed–Muller codes with constant rate 𝑅 ∈
(0, 1) (i.e, 𝑅 ≠ 0, 1) has minimum distance 𝑛1/2±𝑜𝑛 (1) .

2.2 Shannon’s Model
2.2.1 Channels. Abstractly, a binary channel is defined by two con-
ditional probability distributions 𝑝𝑌 |𝑋 where 𝑋 ∈ {0, 1} is binary
and 𝑌 ∈ Y taken from some alphabet.

Definition 2.2 (Binary Erasure Channel). Define the BEC(𝜆) over
Y = {0, 1, ?} by 𝑝𝑌 |𝑋 (? | 0) = 𝑝𝑌 |𝑋 (? | 1) = 𝜆, 𝑝𝑌 |𝑋 (0 | 0) =

𝑝𝑌 |𝑋 (1 | 1) = 1 − 𝜆.

Definition 2.3 (Binary Symmetric Channel). Define the BSC(𝑝)
over Y = {0, 1} by 𝑝𝑌 |𝑋 (1 | 0) = 𝑝𝑌 |𝑋 (0 | 1) = 𝑝 , 𝑝𝑌 |𝑋 (0 | 0) =
𝑝𝑌 |𝑋 (1 | 1) = 1 − 𝑝 .

Definition 2.4 (Binary Additive White Gaussian Noise Channel).
In this case we interpret the input as 𝑋 ∈ {−1, +1} and take

BAWGN(𝜎) over Y = R as

𝑌 |𝑋 ∼ N(𝑋, 𝜎2) .

In this work we focus on the class of binary memoryless sym-

metric channels:

Definition 2.5 (BMS Channel). A BMS channel is a binary channel

for which there exists an involution 𝜋 on Y such that the distribu-

tion 𝑝𝑌 |𝑋=0 is equal to 𝑝𝜋 (𝑌 ) |𝑋=1.

We remark that BEC(𝜆), BSC(𝑝), BAWGN(𝜎) are all BMS chan-

nels.

When we say that a codeword 𝑣 ∈ F𝑛
2
is transmitted over a BMS

channel W, we always assume that the bits are transmitted over 𝑛

independent instances ofW (that is, in a memoryless fashion).

2.2.2 MAP Decoding. LetW be a BMS channel and𝑛 ∈ N. Assume

we transmit a uniformly random codeword 𝑋 ∈ 𝑉 and denote

𝑌 ∈ Y𝑛
the output of the channel. We define the maximum a

posteriori (MAP) block decoding by

𝑥MAP (𝑦) = argmax

𝑣∈𝑉
𝑝𝑋 |𝑌 (𝑣 | 𝑦) ,

breaking ties in an arbitrary way. For instance, for the BSC one can

easily verify that 𝑥MAP (𝑦) is simply the codeword 𝑣 ∈ 𝑉 closest to

𝑦 in the Hamming distance. Similarly, we can define the bit-MAP

decoding

𝑥𝑖
MAP (𝑦) = argmax

𝑥𝑖 ∈{0,1}
𝑝𝑋𝑖 |𝑌 (𝑥𝑖 | 𝑦) .

The error of block/bit-MAP decoding is the probability that these

two decoders are incorrect.

Definition 2.6 (Block Error). The block-MAP error probability is

defined by 𝑃B (W,𝑉 ) = P[𝑥MAP (𝑌 ) ≠ 𝑋 ].

Definition 2.7 (Bit Error). For 𝑖 ∈ [𝑛] define the error of bit 𝑖 via
𝑃
b,i (W,𝑉 ) = P[𝑥𝑖MAP (𝑌 ) ≠ 𝑋𝑖 ]. The bit-MAP error probability is

defined by 𝑃
b
(W,𝑉 ) = 1

𝑛 · ∑𝑛
𝑖=1 𝑃b,i (W,𝑉 ).

Definition 2.8 (Decoding errors). For a family of linear codes

{𝑉𝑛}, we say that 𝑉𝑛 decodes errors on a BMS channel W under

block-MAP decoding if lim𝑛→∞ 𝑃B (W,𝑉𝑛) = 0, and under bit-

MAP decoding if lim𝑛→∞ 𝑃
b
(W,𝑉𝑛) = 0.

2.2.3 Decomposition of BMS Channels. We present a known char-

acterization of BMS channels which is useful for our presentation.

We stick to a concise treatment very similar to Appendix A in [1]

with a more complete one, e.g., in Chapter 4 of [20].

Let 𝑋 be uniform in {0, 1} and consider a BMS channel W :

{0, 1} → [0, 1/2]×{0, 1} thatmaps a bit𝑋 to a pair (𝑃,𝑋 ′) satisfying
two conditions: First, 𝑃 is independent of𝑋 and second, conditioned

on 𝑃 , 𝑋 ′
is distributed according to BSC(𝑃). In other words, for

every transmitted bit the decoder sees its noisy copy together with

information that the bit was flipped with probability 𝑃 .

It is known that any BMS channel is equivalent to a mixture of

BSC channels as described above. Accordingly, a BMS channel is

fully characterized by the distribution of 𝑃 . For example, BSC(𝑝)
has deterministic 𝑃 = 𝑝 and BEC(𝜆) has 𝑃 = 1/2 with probability 𝜆

and 𝑃 = 0 otherwise. With that characterization in mind, we define

the following quantities:

Definition 2.9 (Channel properties). Let W be a BMS channel.

We let its:

• Capacity to be 𝐶 (W) = 1 − Eℎ2 (𝑃).
• Bhattacharyya parameter to be 𝑍 (W) = 2E

√
𝑃 (1 − 𝑃).

• (Single bit) error probability to be 𝑃𝑒 (W) = E 𝑃 .

Note that 𝑃𝑒 (W) is the probability of error of the MAP decoder

given a transmission of one uniform bit over W (this is because

such decoder decodes a pair (𝑃,𝑋 ) to 𝑋 , which was flipped with

probability 𝑃 ≤ 1/2). We also remark that our definition of capacity

for BMS channels is equivalent to the standard definition from

information theory.



STOC ’21, June 21–25, 2021, Virtual, Italy Jan Hązła, Alex Samorodnitsky, and Ori Sberlo

2.2.4 EXIT Functions. Extrinsic Information Transfer (EXIT) func-

tions were originally introduced by ten Brink [26]. Based on his

work, it was later observed that these EXIT functions are intimately

related to the question of achieving capacity. Indeed, they played

a key role in the proof that doubly transitive codes (see Defini-

tion 3.10) achieve capacity over the BEC under bit-MAP decoding

[14].

Definition 2.10 (EXIT Function). Let 𝑉 ⊆ F𝑛
2
be a binary linear

code. Define the EXIT function of 𝑉 by

ℎ(𝜆) = 1

𝑛
·

𝑛∑
𝑖=1

𝐻 (𝑋𝑖 | (𝑌1, . . . , 𝑌𝑖−1, 𝑌𝑖+1, . . . , 𝑌𝑛)),

where 𝑋 = (𝑋1, . . . , 𝑋𝑛) is a uniformly random codeword in 𝑉 and

𝑌 = (𝑌1, . . . , 𝑌𝑛) is the result of transmitting 𝑋 over BEC(𝜆).
We now list several key properties of the EXIT function.

Lemma 2.11. Let 𝑉 ⊆ F𝑛
2
be a binary code. Then,

• Monotonicity: ℎ is increasing from 0 to 1.
• Area Theorem:

∫
1

0
ℎ(𝜖)d𝜖 = 𝑅(𝑉 ).

• Duality: Denote by ℎ⊥ (𝜖) the EXIT function of 𝑉⊥ then

ℎ⊥ (𝜖) = 1 − ℎ(1 − 𝜖).

• 𝑛 ·
∫ 𝜆

0
ℎ(𝜖) = 𝐻 (𝑋 |𝑌 ) where 𝑋 is a random uniform codeword

in 𝑉 and 𝑌 is the result of transmitting 𝑋 over the BEC(𝜆)
channel.

• For every 𝜆 ∈ (0, 1)

𝑛 ·
∫ 𝜆

0

ℎ(𝜖) = 𝜆 · 𝑛 − E
𝑆∼𝜆

[dim(𝑉⊥
𝑆 )]

= dim(𝑉 ) − E
𝑆∼𝜆

[dim(𝑉𝑆𝑐 )],

where 𝑆 ∼ 𝜆means that 𝑖 ∈ 𝑆 with probability 𝜆 independently
for every 𝑖 ∈ [𝑛].

For proofs and further information please see chapter 3.14 in

[20].

2.3 Boolean Analysis
We introduce basic notions from boolean analysis that we use in

our proofs. Let 𝑓 : {0, 1}𝑛 → R be a function from the boolean

hypercube to the reals. We will use the Walsh–Fourier decom-

position 𝑓 (𝑥) =
∑
𝑆 𝑓 (𝑆)𝜒𝑆 (𝑥), where 𝜒𝑆 (𝑥) =

∏
𝑖∈𝑆 (−1)𝑥𝑖 and

𝑓 (𝑆) = E𝑥 𝑓 (𝑥)𝜒𝑆 (𝑥).

Definition 2.12. ∥ 𝑓 ∥2 =
√
E𝑥 𝑓 (𝑥)2.

Lemma 2.13 (Parseval’s Identity). For any 𝑓 , 𝑔 : {0, 1}𝑛 → R we
have E𝑥 𝑓 (𝑥)𝑔(𝑥) = ∑

𝑆 𝑓 (𝑆)𝑔(𝑆). In particular, ∥ 𝑓 ∥2 =
∑
𝑆
ˆ𝑓 (𝑆)2.

2.3.1 Noise Operator. For 𝑥 ∈ {0, 1}𝑛 and −1 ≤ 𝜌 ≤ 1, let 𝑦 ∼
𝑁𝜌 (𝑥) be a random element of {0, 1}𝑛 with each coordinate 𝑦𝑖
being i.i.d equal to 𝑥𝑖 with probability (1 + 𝜌)/2 and flipped with

probability (1 − 𝜌)/2.
Definition 2.14 (Noise Operator). Let 𝑓 : {0, 1}𝑛 → R and 𝜌 ∈
[−1, 1]. Define the function 𝑇𝜌 𝑓 : {0, 1}𝑛 → R by

𝑇𝜌 𝑓 (𝑥) = E
𝑦∼𝑁𝜌 (𝑥)

𝑓 (𝑦) .

Lemma 2.15. 𝑇𝜌 𝑓 (𝑆) = 𝜌 |𝑆 | · ˆ𝑓 (𝑆).

2.3.2 An Inequality on Noisy Functions. The following inequality
is the main technical tool on which our results are based [23]. In

order to state it, we need the notion of the conditional expectation

of a function.

Definition 2.16. Let 𝑓 : {0, 1}𝑛 → R and 𝑆 ⊆ [𝑛] be a subset of co-
ordinates. We define another function E(𝑓 |𝑆) (𝑥) = E𝑦:𝑦𝑆=𝑥𝑆 𝑓 (𝑦).

We shall only state the theorem for the ℓ2 norm as that is all

we are going to use (For the general statement see Theorem 1.1 in

[23]).

Theorem 2.17. Let 𝑓 : {0, 1}𝑛 → R≥0 be a non-negative function,
and 𝜌 ∈ (0, 1). Then,

log | |𝑇𝜌 𝑓 | |2 ≤ E
𝑆∼𝜆 (𝜌)

logE(𝑓 | 𝑆),

where 𝜆(𝜌) = log(1 + 𝜌2) and 𝑆 ∼ 𝜆 is a random subset 𝑆 of [𝑛] in
which each element is included independently with probability 𝜆.

Theorem 2.17 can be compared to the classical hypercontractive

inequality ∥𝑇𝜌 𝑓 ∥2 ≤ ∥ 𝑓 ∥
1+𝜌2 , see also [22] for a more extensive

discussion.

3 OUR RESULTS
Our main contribution is in realizing that one can combine [14]

with [23] as well as other techniques from coding theory to obtain

a rather general understanding about the performance of a given

binary linear code on various BMS channels.

3.1 Coding on BMS Channels
Our main technical result relates the weight distribution of a linear

code to its decoding properties on the BEC:

Theorem 3.1. Let 𝑉 be a linear code, 0 ≤ 𝜆 ≤ 1 and (𝑎0, . . . , 𝑎𝑛)
be the weight distribution of 𝑉 . Then,

log

𝑛∑
𝑖=0

𝑎𝑖 · (2𝜆 − 1)𝑖 ≤ 𝐻 (𝑋 |𝑌 ) , (1)

Here 𝑋 and 𝑌 are random variables such that 𝑋 is a random uniform
codeword in 𝑉 and 𝑌 is the result of transmitting 𝑋 over the channel
BEC(𝜆).

Theorem 3.1 is a reformulation of Proposition 1.3 in [22] using

a well-known identity. Using the original formulation, it was es-

tablished in [22] that the right-hand side in Theorem 3.1 becomes

𝑜 (𝑛) for duals of linear codes that achieve capacity on the BEC.

The difference in this work is to rewrite the bound in terms of con-

ditional entropy 𝐻 (𝑋 |𝑌 ). While the difference is slight, it allows

for easier bounds in terms of both block-MAP and bit-MAP error

probabilities and gives new applications to coding. The proof of

Theorem 3.1 appears in Appendix A.

Corollary 3.2. Let 𝑉 be a binary linear code with dimension 𝑘 and
weight distribution (𝑎0, . . . , 𝑎𝑛) then

𝑛∑
𝑖=0

𝑎𝑖 (2𝜆 − 1)𝑖 ≤ 2
𝑘 ·𝑃B (BEC(𝜆),𝑉 ) ,

𝑛∑
𝑖=0

𝑎𝑖 (2𝜆 − 1)𝑖 ≤ 2
𝑛 ·𝑃

b
(BEC(𝜆),𝑉 ) .
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In particular, if 𝑘 ·𝑃B (BEC(𝜆),𝑉 ) < 1 or 𝑛 ·𝑃
b
(BEC(𝜆),𝑉 ) < 1, then

𝑎𝑖 < 2(2𝜆 − 1)−𝑖 for every 𝑖 .

Proof. Since on the BEC we have 𝐻 (𝑋 |𝑌 = 𝑦) = 0 if and only

if the block-MAP decoder succeeds on the received pattern 𝑦 and

𝐻 (𝑋 |𝑌 = 𝑦) ≤ 𝑘 = dim𝑉 in any event, the right-hand side of (1)

can be bounded by

𝐻 (𝑋 |𝑌 ) ≤ 𝑘 · 𝑃B (BEC(𝜆),𝑉 ) . (2)

On the other hand, by the chain rule there also holds a bound in

terms of the bit-error probability

𝐻 (𝑋 |𝑌 ) ≤
𝑛∑
𝑖=1

𝐻 (𝑋𝑖 |𝑌 ) (3)

=

𝑛∑
𝑖=1

𝑃
b,i (BEC(𝜆),𝑉 ) = 𝑛 · 𝑃

b
(BEC(𝜆),𝑉 ) . □

The proof of Theorem 1.2 is based on the following well-known

bound (see, e.g., Lemma 4.67 in [20] and also [10] for the tighter

version):

Theorem 3.3 (Bhattacharyya Bound). Let 𝑉 be a linear code and
(𝑎0, 𝑎1 . . .) be its weight distribution. Then for any BMS channel W,

𝑃B (W,𝑉 ) ≤
𝑛∑
𝑖=1

𝑎𝑖 · 𝑍 (W)𝑖 .

In order to make our argument self-contained, we provide a

proof for Theorem 3.3 in Appendix B.

Proof of Theorem 1.2. We use the Bhattacharyya bound, the

minimum distance and Corollary 3.2 to conclude that

𝑃B (W,𝑉 ) ≤
𝑛∑
𝑖=1

𝑎𝑖𝑍 (W)𝑖 =
𝑛∑
𝑖=𝑑

𝑎𝑖𝑍 (W)𝑖

≤
(
𝑍 (W)
2
𝜆 − 1

)𝑑 𝑛∑
𝑖=𝑑

𝑎𝑖 (2𝜆 − 1)𝑖 < 2

(
𝑍 (W)
2
𝜆 − 1

)𝑑
. □

Recall that we say that a family of codes {𝑉𝑛} decodes errors on
channel W if lim𝑛→∞ 𝑃B (W,𝑉𝑛) = 0. We will apply Theorem 1.2

to the canonical cases of BSC(𝑝) and BAWGN(𝜎), obtaining:

Corollary 3.4. Let {𝑉𝑛} be a family of linear codes with dimensions
dim(𝑉𝑛) = 𝑘𝑛 → ∞ that satisfies 𝑃B (BEC(𝜆),𝑉𝑛) < 1/𝑘𝑛 for large
𝑛. Then:

(1) {𝑉𝑛} decodes errors on any BMS channel W with 𝑍 (W) <
2
𝜆 − 1.

(2) {𝑉𝑛} decodes errors on BSC(𝑝) as long as
𝑝 < 1

2
−

√
2
𝜆−1 (1 − 2

𝜆−1).
(3) {𝑉𝑛} decodes errors on BAWGN(𝜎) as long as

𝜎2 < − 1

2 ln(2𝜆−1) .

Proof. The first point is immediate from Theorem 1.2, with the

additional observation that 𝑘𝑛 → ∞ together with

𝑃B (BEC(𝜆),𝑉𝑛) < 1/𝑘𝑛
imply that the minimum distance 𝑑𝑛 grows to infinity with 𝑛 and

therefore indeed 𝑃𝐵 < 2(𝑍 (W)/𝜃 )𝑑𝑛 vanishes. The other points

now follow substituting known formulas 𝑍 (BSC(𝑝)) = 2

√
𝑝 (1 − 𝑝)

and 𝑍 (BAWGN(𝜎)) = exp(−1/2𝜎2) (see, e.g., Examples 4.128–

4.130 in [20]). □

A graphical illustration of the functions from Corollary 3.4 is

provided in Figure 1. Theorem 1.3 follows by Corollary 3.4 and the

fact that constant rate RM codes achieve capacity on the BEC [14].

Remark 3.5. We note that the requirement 𝑃B (BEC(𝜆),𝑉𝑛) < 1/𝑘𝑛
is not much stronger than 𝑃B (BEC(𝜆),𝑉𝑛) = 𝑜 (1). In particu-

lar, by Theorem 5.2 in [27], if the minimum distance of a linear

code satisfies 𝑑𝑛 = 𝜔 (log𝑛), then 𝑃B (BEC(𝜆),𝑉𝑛) = 𝑜 (1) implies

𝑃B (BEC(𝜆′),𝑉𝑛) = 𝑜 (𝑛−𝑐 ) for every 𝜆′ < 𝜆 and 𝑐 > 0.

Remark 3.6. Since among BMS channels with fixed capacity𝐶 (W)
the Bhattacharyya coefficient is maximized by the BSC (see Prob-

lem 4.60 in [20]), a family of linear codes that decodes errors on

BEC(𝜆) also decodes errors on all BMS channels with capacity

𝐶 (W) > 𝐶 (BSC(𝑝)) = 1 − ℎ(𝑝) where 𝑝 = 𝑝 (𝜆) is given in

Corollary 3.4. Similarly, a BMS channel W can be degraded to

BSC(𝑃𝑒 (W)), where 𝑃𝑒 (W) is the (one-bit) error probability of

W. Therefore, a family of linear codes that decodes errors on

BEC(𝜆) also decodes errors on all BMS channels with 𝑃𝑒 (W) <

𝑃𝑒 (BSC(𝑝)) = 𝑝 with 𝑝 = 𝑝 (𝜆) as above.

Figure 1: An illustration of the results in Corollary 3.4. As-
sume we are given a family of linear codes that decodes er-
rors on the channel BEC(𝜆) with capacity 𝐶 (BEC(𝜆)) = 1 − 𝜆.
Then, by Corollary 3.4 it is also good for the BSC and the
BAWGN exceeding certain capacities. These capacities are
plotted here as functions of 𝐶 (BEC(𝜆)).
For reference, we also plot the identity function. The dif-
ference between identity and the BSC and the BAWGN
curves represents the “loss of capacity” resulting when
Corollary 3.4 is applied.
As another reference point, the graph labeled “BEC” shows
this loss of capacity if our argument is applied to the BEC
channel.
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Finally, we have that a family of linear codes that decodes errors

well enough on any BMS channelW also decodes errors on a range

of other BMS channels:

Corollary 3.7. Let {𝑉𝑛} be a family of linear codes with dimensions
𝑘𝑛 → ∞ satisfying 𝑃B (W,𝑉𝑛) < 1/𝑘𝑛 for large 𝑛 on some BMS
channel W. Then, {𝑉𝑛} decodes errors on any BMS channel W ′

satisfying

𝑍 (W ′) < 4
𝑃𝑒 (W) − 1 .

To prove Corollary 3.7, we need the notion of channel degrada-

tion:

Definition 3.8. Let W : {0, 1} → Y and W ′
: {0, 1} → Y ′

be

two BMS channels. We say thatW can be degraded toW ′
if there

exists a channelV : Y → Y ′
such thatW ′

is the composition of

W andV .

We now use the following folklore fact:

Lemma 3.9. If W is a BMS channel, then BEC(2 · 𝑃𝑒 (W)) can be
degraded toW.

The proof of Lemma 3.9 can be found, e.g., as Lemma 4.80 in [20].

In short, it follows from the decomposition of BMS channels into

BSC that we described in Section 2, an easily checked fact that

BEC(2𝑝) can be degraded to BSC(𝑝), and the fact that a convex

combination of BEC channels is itself a BEC channel.

Proof of Corollary 3.7. Let {𝑉𝑛} be the family of linear codes

from the statement andW a BMS channel. By Lemma 3.9, BEC(2 ·
𝑃𝑒 (W)) can be degraded toW. Clearly, that gives

𝑃B (BEC(2 · 𝑃𝑒 (W)),𝑉𝑛) ≤ 𝑃B (W,𝑉𝑛) < 1/𝑘𝑛

(since a decoder for 𝑉𝑛 on BEC(2 · 𝑃𝑒 (W)) can use the channel V
from the definition of degradation to simulateW and invoke the

MAP decoder forW). The proof is concluded by an invocation of

Corollary 3.4. □

3.2 Doubly Transitive Codes
In [14] it was proved that any doubly transitive binary linear code

(see definition below) achieves capacity for the BEC by proving that

its corresponding EXIT function has a sharp threshold (i.e., rises

quickly from nearly 0 to nearly 1). Recall that ℎ(𝜆) is a monotone

function increasing from 0 to 1 (see Lemma 2.11). Thus, if ℎ(𝜆) has a
sharp threshold then this transition has to occur around 𝜆 = 1−𝑅(𝐶)
by area considerations. In fact, ℎ(𝜆) has a sharp threshold if and

only if𝑉 achieves capacity for the BEC. In order to prove that ℎ(𝜆)
has a sharp threshold they use tools from boolean analysis which

we shall soon cover.

Definition 3.10. The permutation group of a binary linear code

𝑉 ⊆ F𝑛
2
is the group of all permutations that the code is invariant

under. Namely,

𝐺 = {𝜋 ∈ 𝑆𝑛 | ∀𝑣 ∈ 𝑉 , 𝜋 (𝑣) ∈ 𝑉 }.

We say that 𝑉 is doubly transitive if 𝐺 is, i.e for all 𝑖, 𝑗, 𝑘 distinct

there exists 𝜋 ∈ 𝐺 such that 𝜋 (𝑖) = 𝑖 , 𝜋 ( 𝑗) = 𝑘 .

Throughout this section, 𝑉 ⊆ F𝑛
2
is a doubly transitive code and

ℎ(𝑝) denotes its EXIT function. The main technical tool in proving

that ℎ(𝑝) has a sharp threshold is the following general theorem

on monotone sets which are sufficiently symmetric.

Definition 3.11. Let Ω ⊆ {0, 1}𝑛 then:

• We say Ω is monotone if 𝑥 ∈ Ω and 𝑥 ≤ 𝑦 (i.e, ∀𝑖, 𝑥𝑖 ≤ 𝑦𝑖 )

implies 𝑦 ∈ Ω.

• We denote 𝜇𝑝 (Ω) =
∑
𝑥 ∈Ω 𝑝 | {𝑖:𝑥𝑖=1} | (1 − 𝑝) | {𝑖:𝑥𝑖=0} | .

Theorem 3.12 ([9] (Informal)). Let Ω ⊆ {0, 1}𝑛 be a monotone set
which is sufficiently symmetric then,

d𝜇𝑝 (Ω)
d𝑝

≥ (𝑐 (𝑝) − 𝑜𝑛 (1)) · ln(𝑛) · 𝜇𝑝 (Ω) (1 − 𝜇𝑝 (Ω)),

where 𝑐 (𝑝) = 1−2𝑝
𝑝 (1−𝑝) ln

(
1−𝑝
𝑝

) 4.
Remark 3.13. In [9] the above was proved with a different constant.

The bound above with 𝑐 (𝑝) was obtained in [21].

In the terminology of boolean analysis, the EXIT function of

doubly transitive code ℎ(𝑝) is the 𝜇𝑝 -measure of some monotone

set Ω ⊆ {0, 1}𝑛 , and the sufficiently symmetric requirement in the

above theorem is fulfilled since 𝑉 is doubly transitive. Thus, by

applying Theorem 3.12 we obtain

ℎ′(𝑝) ≥ 𝑐 (𝑝) · ln(𝑛) · ℎ(𝑝) (1 − ℎ(𝑝)) . (4)

The following implications of Theorem 3.12 appeared in [14].

Lemma 3.14. Let ℎ(𝜆) be the EXIT function of a doubly transitive
linear code 𝑉 ⊆ F𝑛

2
, and 𝑝𝑐 = ℎ−1 (1/2) then

ℎ(𝑝𝑐 − 𝜖) ≤ 𝑛−𝑘 (𝑝𝑐 ) ·𝜖 , (5)

where 𝑘 (𝑝) =
{
𝑐 (𝑝) − 𝑜𝑛 (1) 𝑝 < 1/2
𝑐 (1/2) − 𝑜𝑛 (1) 𝑝 ≥ 1/2

.

Proof. The constant 𝑐 (𝑝) in Equation (4) is decreasing on the

interval (0, 1/2) and attains its global minimum on [0, 1] at 𝑝 = 1/2.
Thus, by Equation (4) we get

∀𝑝 ≤ ℎ−1 (1/2), ℎ′(𝑝) ≥ 𝑘 (𝑝) ln(𝑛) · ℎ(𝑝) (1 − ℎ(𝑝)) .
It is known that for any monotone function ℎ : [0, 1] → [0, 1]
increasing from 0 to 1 the above inequality implies thatℎ(ℎ−1 (1/2)−
𝜖) ≤ exp (−𝑘 (𝑝) ln(𝑛)𝜖) (for more details see Lemma 34 in [14]).

□

As a consequence of Lemma 3.14 and of the first bullet in Lemma

2.11 one gets the following (Proposition 11 in [14]).

Lemma 3.15. Let ℎ𝑛 (𝜆) be the EXIT function of a family of doubly
transitive linear codes {𝑉𝑛} of rate 𝑅 then lim𝑛→∞ ℎ−1𝑛 (1/2) = 1−𝑅.

For more details see section III in [14].

Now we present another approach for bounding ℎ(𝑝).

Lemma 3.16. Let ℎ(𝜆) be the EXIT function of a doubly transitive
linear code 𝑉 ⊆ F𝑛

2
. Then for every 𝑝 ∈ [0, 1] and 𝑡 ≥ 1 we have

ℎ(𝜆𝑡 ) ≤ ℎ(𝜆)𝑡 .
4
At 𝑝 = 1/2 the function 𝑐 (𝑝) has a removable discontinuity and so we define

𝑐 (1/2) = lim𝑝→1/2 𝑐 (𝑝) = 2.
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Proof. For a doubly transitive code we have ℎ(𝑝) = 𝜇𝑝 (Ω)
for some monotone set Ω ⊆ {0, 1}𝑛 . By Lemma 2.7 in [8], for a

monotone set Ω and 𝑡 ≥ 1 it holds that 𝜇𝑝𝑡 (Ω) ≤ 𝜇𝑝 (Ω)𝑡 . □

Theorem 3.17. Let {𝑉𝑛} be a family of doubly transitive binary
linear codes of rate 𝑅 ∈ (0, 1), and W be a BMS channel. Denote
by 𝛼 = lim inf𝑛→∞

log𝑑 (𝑉𝑛)
log𝑛

. Then, 𝑉 can decode errors on W if

𝑍 (W) < 2
𝜆 (𝑅,𝛼) − 1 where

𝜆(𝑅, 𝛼) =

(1 − 𝑅) − 1−𝛼

𝑘 (1−𝑅) if𝜓 (𝑅, 𝛼) ≥ 0(
(1−𝑅)/𝑒

−𝑊−1 (−(1−𝑅)/𝑒)

) 1−𝛼
𝑘 (1−𝑅) ·(1−𝑅) otherwise.

,

where 𝜓 (𝑅, 𝛼) = (1 − 𝑅) + 1−𝑅
𝑊−1 (−(1−𝑅)/𝑒) −

1−𝛼
𝑘 (1−𝑅) and𝑊−1 (𝑧) is

the inverse of the function 𝑦 = 𝑥𝑒𝑥 at the interval 𝑥 ∈ (−1/𝑒, 0) for
𝑦 ≤ −1 (a.k.a the negative branch of the Lambert function).

Remark 3.18. It is not clear why the two cases of 𝜆(𝑅, 𝛼) coincide
at𝜓 (𝑅, 𝛼) = 0, but one can verify this easily using simple identities

of the Lambert function.

For instance, plugging 𝛼 = 0.5 and 𝑅 = 0.8 into Theorem 3.17

we get 𝜆(𝑅, 𝛼) ≈ 0.0331. This implies that any family {𝑉𝑛} of

doubly transitive codes with rate 𝑅 = 0.8 and minimum distance

𝑑 (𝑉𝑛) = Ω(
√
𝑛) can decode errors from BEC(0.023) under block-

MAP decoding.

Proof. Let us denote (𝑎0, 𝑎1, . . . , 𝑎𝑛) the weight distribution of

𝑉𝑛 , 𝑑 = 𝑑 (𝑉𝑛), and 𝜆 = 𝜆(𝑅, 𝛼). Note that for any 𝛿 ∈ (0, 1) we have
𝑛∑
𝑖=𝑑

𝑎𝑖 ·
(
2
𝜆 − 1

1 + 𝛿

)𝑖
≤ (1 + 𝛿)−𝑑 ·

𝑛∑
𝑖=𝑑

𝑎𝑖 · (2𝜆 − 1)𝑖 ,

and using Theorem 3.1 we have

𝑛∑
𝑖=𝑑

𝑎𝑖 ·
(
2
𝜆 − 1

1 + 𝛿

)𝑖
≤ (1 + 𝛿)−𝑑 · 2𝐻 (𝑋 |𝑌 ) , (6)

where 𝑋 and 𝑌 are random variables such that 𝑋 is a random

uniform codeword in 𝑉 and 𝑌 is the result of transmitting 𝑋 over

the channel BEC(𝜆). By Lemma 2.11 we get

𝑛∑
𝑖=𝑑

𝑎𝑖 ·
(
2
𝜆 − 1

1 + 𝛿

)𝑖
≤ (1 + 𝛿)−𝑑 · 2𝑛 ·ℎ (𝜆) .

Recall that by assumption 𝑍 (W) < 2𝜆 − 1 and hence for small

enough constant 𝛿 ∈ (0, 1) we get 2
𝜆−1
1+𝛿 ≥ 𝑍 (W). Then by Theo-

rem 3.3 we get

𝑃B (W,𝑉𝑛) ≤
𝑛∑
𝑖=𝑑

𝑎𝑖 · 𝑍 (W)𝑖 ≤ (1 + 𝛿)−𝑑 · 2𝑛 ·ℎ (𝜆) .

We conclude that it suffices to show that 𝑛 · ℎ(𝜆) = 𝑜 (𝑑 (𝑉𝑛)).
Moreover, in our notation 𝑑 (𝑉𝑛) = Ω(𝑛𝛼±𝑜𝑛 (1) ), and so a bound of

𝑛 · ℎ(𝜆) = 𝑂 (𝑛𝛽 ) with constant 𝛽 < 𝛼 suffices. This means that we

want 𝜆 so that ℎ(𝜆) < 𝑛−𝛽 with 𝛽 > 1 − 𝛼 . It remains to verify that

our choice of 𝜆 = 𝜆(𝑅, 𝛼) satisfies this.
We have two ways in which we can bound ℎ(𝜆): The additive

bound of Lemma 3.14, and the multiplicative bound of Lemma 3.16.

It is easy to see that the additive bound is stronger for values close

to the critical value 𝑝𝑐 = ℎ−1 (1/2), and on the other hand the

multiplicative bound is better for values that are further away from

𝑝𝑐 . Moreover, the additive bound is limited to 𝜖 < 𝑝𝑐 . Applying first

the additive bound with parameter 𝜖 and then the multiplicative

bound with parameter 𝑡 ≥ 1 we get

ℎ((𝑝𝑐 − 𝜖)𝑡 ) ≤ ℎ(𝑝𝑐 − 𝜖)𝑡 ≤ 𝑛−𝑡𝜖𝑘 (𝑝𝑐 ) .

We are going to choose 𝜆 of the form 𝜆 = (𝑝𝑐 − 𝜖)𝑡 for some valid

choice of 𝜖, 𝑡 so that 𝑡 · 𝜖 · 𝑘 (𝑝𝑐 ) > 1 − 𝛼 . Under this constraint,

we want 𝜆 to be as large as possible. We are now going to cheat

slightly. Instead of solving the optimization problem for 𝜆 under the

constraint 𝑡 ·𝜖 ·𝑘 (𝑝𝑐 ) > 1−𝛼 we will solve it for 𝑡 ·𝜖 ·𝑘 (𝑝𝑐 ) = 1−𝛼 .

This suffices to prove the theorem, e.g by repeat the argument

for 𝜆′ such that 𝑍 (W) < 𝜆′ < 𝜆(𝑅, 𝛼) and applying Lemma 3.16.

The optimal value of 𝜆 under this constraint will be shown to be

𝜆(𝑅, 𝛼) − 𝑜𝑛 (1).
The above yields the following optimization problem.

max

𝑡 ≥1,𝜖≤𝑝𝑐
{(𝑝𝑐 − 𝜖)𝑡 }, 𝑡𝑘 (𝑝𝑐 )𝜖 = (1 − 𝛼) . (7)

The solution to this optimization problem is given by

𝑝𝑜𝑝𝑡 =


𝑝𝑐 − 1−𝛼

𝑘 (𝑝𝑐 )
1−𝛼
𝑘 (𝑝𝑐 ) ≤ 𝑝𝑐 + 𝑝𝑐

𝑊−1 (−𝑝𝑐/𝑒)(
𝑝𝑐/𝑒

−𝑊−1 (−𝑝𝑐/𝑒)

) 1−𝛼
𝑘 (𝑝𝑐 ) ·𝑝𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

See Appendix D for proof. Recall that by Lemma 3.15 we have

𝑝𝑐 = 1−𝑅−𝑜𝑛 (1) and hence 𝑝𝑜𝑝𝑡 = 𝜆(𝑅, 𝛼) −𝑜𝑛 (1) as claimed. □

Remark 3.19. It is was shown in [14] that any family of binary linear

doubly transitive codes {𝑉𝑛} such that lim inf𝑛→∞
log𝑑 (𝑉 )
log𝑛

= 1

achieves capacity for the BEC under block-MAP decoding (Theorem

21 in [14]). Combining this with Theorem 1.2 implies Theorem 3.17

for the special case 𝛼 = 1.

3.2.1 Discussion on Reed–Muller Codes. It is interesting to see that
Theorem 3.17 is inferior to Theorem 1.3 in the case of Reed–Muller

codes. In fact, recall that Reed–Muller codes of constant rate have

minimum distance of roughly 𝑛1/2, are doubly transitive, and yet

plugging 𝛼 = 1/2 in Theorem 3.17 does not yield the parameters

of Theorem 1.3. Rather, the parameters of Theorem 1.3 correspond

to the case 𝛼 = 1 in Theorem 3.17. This means that RM codes

perform better on BMS channels than might be expected from their

minimal distance as expected from Theorem 3.17. Let us try to

explain this phenomenon. We give two explanations. First, in [15]

Kudekar, Kumar, Mondelli, Pfister, and Urbanke proved that for any

constants 𝑧, 𝛽 ∈ (0, 1) it holds that
𝑛1−𝛽∑
𝑖=1

𝑎𝑖 · 𝑧𝑖 = 𝑜𝑛 (1),

where (𝑎0, 𝑎1, . . . , 𝑎𝑛) is the weight distribution of the Reed–Muller

code (Lemma 4 in [15]). Hence, we can omit the first 𝑛1−𝑜𝑛 (1) terms

in Equation (6) and continue the argument as in Theorem 3.17 but

with 𝛼 = 1. This means, in a well-defined sense, that the Reed–

Muller codes effectively have distance 𝑛1−𝑜 (1) . An alternative expla-

nation, which in fact follows the original approach in [14], is to use

stronger results on sharp thresholds since RM codes are more than

just doubly transitive. Specifically, the bound of Lemma 3.15 can be

improved to 𝑛−Ω (log log𝑛)
in the case of the Reed–Muller codes [6].

Using this improved bound and following the same approach as in

Theorem 3.17 also leads to Theorem 1.3.
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3.3 Weight Distribution of Codes
Coming back to weight distributions, and using the argument

from [22], Theorem 3.1 can be applied to the dual code 𝑉⊥
, re-

sulting in a different bound on the weight distribution:

Proposition 3.20. Let 𝑉 be linear code of dimension 𝑘 , 0 ≤ 𝑞 ≤ 1

and (𝑏0, . . . , 𝑏𝑛) be the weight distribution of the dual code 𝑉⊥. For
0 ≤ 𝑖 ≤ 𝑛, let 𝑖∗ = min{𝑖, 𝑛 − 𝑖}. Then,

𝑏𝑖 ≤ 2
𝐻 (𝑋 |𝑌 ) ·

{ |𝑉 ⊥ |
(1−𝜃 )𝑖∗ (1+𝜃 )𝑛−𝑖∗ 0 ≤ 𝑖∗ ≤ 1−𝜃

2
· 𝑛

|𝑉 ⊥ |
2
𝑛 · 2ℎ2 (𝑖/𝑛) ·𝑛

otherwise

where 𝑋 is a random uniform codeword in 𝑉 , 𝑌 is the result of trans-
mitting 𝑋 over BEC(𝜆) and 𝜃 = 2

𝜆 − 1.

The proof of Proposition 3.20 uses simple Fourier analysis and

is very similar to the proof of Proposition 1.6 in [22]. We include a

sketch to make the argument self-contained in Appendix C.

Remark 3.21. Since 2
ℎ2 (𝑖/𝑛)𝑛 ≤ 𝑂 (

√
𝑛)

(𝑛
𝑖

)
, whenever 𝐻 (𝑋 |𝑌 ) =

𝑜 (𝑛) for a code 𝑉 , the weight distribution of the dual code 𝑉⊥
in a

band of weights of width 𝜃 around
𝑛
2
is essentially upper-bounded

by that of a random code of the same rate. This occurs even if 𝑉

does not achieve capacity: It is enough that 𝑉 decodes errors on

BEC(𝜆) for some constant 𝜆 < 1. (Cf. [13], where similar behavior

was inferred for codes with large dual distance.)

In particular, consider a family of doubly transitive binary linear

codes of constant rate 𝑅. Since by [14] such a family achieves ca-

pacity under bit-MAP decoding, due to (3) it will have the bound

from Proposition 3.20 holding with 𝐻 (𝑋 |𝑌 ) = 𝑜 (𝑛). Such bound

holds for both primal and dual codes, since the dual of a doubly

transitive code is also doubly transitive.

Similarly, again building on [22], we improve the bounds on the

weight distribution of doubly transitive codes with distance Ω(𝑛𝛼 ).

Proposition 3.22. Let {𝑉𝑛} be a family of doubly transitive binary
linear codes of rate 𝑅 and set 𝛼 = lim inf𝑛→∞

log𝑑 (𝑉 )
log𝑛

. Also, let
(𝑎0, 𝑎1, . . .) denote the weight distribution of 𝑉𝑛 . Then

𝑎𝑖 ≤ (2𝜆 (𝑅,𝛼)−𝑜𝑛 (1) − 1)𝑖 ,

where 𝜆(𝑅, 𝛼) is as in Theorem 3.17.

One should compare the above with Proposition 1.6 in [22]. The

main difference is that proposition in [22] applies only to codes

that achieve capacity for the BEC under block-MAP decoding, and

it is not known whether a doubly transitive code with minimum

distance Ω(𝑛𝛼 ) for 𝛼 < 1 achieves capacity for the BEC under block-

MAP decoding. Yet, Proposition 3.22 holds for any doubly transitive

code with minimum distance 𝑛Ω (1)
. Moreover, Proposition 1.6 in

[22] had an error term that dominated the estimate for weights

𝑖 = 𝑜 (𝑛).
For the weight distribution of Reed–Muller codes we obtain the

following bound.

Proposition 3.23. Let (𝑎0, 𝑎1, . . . , ) denote the weight distribution
of Reed–Muller codes with rate 𝑅 ∈ (0, 1). Then

𝑎𝑖 ≤ 𝑂

(
(21−𝑅−𝑜𝑛 (1) − 1)𝑖

)
.

Again, the above estimate improves over [22] by losing the error

term that dominated the estimate for weights 𝑖 = 𝑜 (𝑛). However,
in the range of 𝑖 = 𝑜 (𝑛) for Reed–Muller codes there are stronger

bounds for weights 𝑖 = 𝑛1−𝛿 (e.g, see [3, 12, 15, 24]) for every fixed

constant 𝛿 ∈ (0, 1). Hence, the improvement lies in the narrow

region of weights 𝑛1−𝑜𝑛 (1) for some 𝑜𝑛 (1).
The proofs of Proposition 3.23 and Proposition 3.22 are omitted

as those can be easily derived by the arguments of Theorem 3.17.
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A NORMS OF NOISY FUNCTIONS
In this section we prove Theorem 3.1. We start with the following

lemma which is simply the formula for the rank of the dual matroid,

but we state it as a separate claim because of its importance to us.

Lemma A.1 (Proposition 2.1.9 in [18]). Let 𝑉 be a linear code of
dimension 𝑘 . Then, dim𝑉⊥

𝑆
= |𝑆 | −

(
𝑘 − dim𝑉𝑆𝑐

)
.

We now prove Theorem 3.1 by following the argument in [22].

Proof of Theorem 3.1. Let 𝑉 be a linear code of dimension 𝑘

and 0 ≤ 𝜆 ≤ 1. We shall prove that

log

𝑛∑
𝑖=0

𝑎𝑖 (2𝜆 − 1)𝑖 ≤ 𝜆𝑛 − E
𝑆∼𝜆

dim𝑉⊥
𝑆 (8)

= 𝑘 − E
𝑆∼1−𝜆

dim𝑉𝑆 = 𝐻 (𝑋 |𝑌 ) ,

where 𝑋 is a random uniform codeword in 𝑉 and 𝑌 is the result

of transmitting 𝑋 over the channel BEC(𝜆). Define 𝑓 = 2
𝑘
1𝐶⊥

and 𝜌 =
√
2
𝜆 − 1 and recall that the Walsh–Fourier transform of 𝑓

satisfies 𝑓 = 1𝐶 . Since𝑇𝜌 𝑓 (𝑦) = 𝜌 |𝑦 | 𝑓 (𝑦), using Parseval’s identity
this means log ∥𝑇𝜌 𝑓 ∥2

2
= log

∑𝑛
𝑖=0 𝑎𝑖 (2𝜆 − 1)𝑖 . On the other hand,

by properties of linear codes it can be checked that

E(𝑓 |𝑆) (𝑥) =
{
·2 |𝑆 |−dim𝑉 ⊥

𝑆 ∃𝑦 ∈ 𝑉⊥
s.t. 𝑥𝑆 = 𝑦𝑆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

and that Pr𝑥 [∃𝑦 ∈ 𝐶⊥
s.t. 𝑥𝑆 = 𝑦𝑆 ] = 2

dim𝑉 ⊥
𝑆
−|𝑆 |

. Accordingly,

log ∥E(𝑓 |𝑆)∥2
2
= |𝑆 | − dim𝑉⊥

𝑆
. The inequality in (8) follows by

substituting on both sides of Theorem 2.17. We still need to justify

the two equalities in (8). The first one follows immediately from

Lemma A.1. For the second equality, observe that 𝑆 ∼ 1 − 𝜆 has the

same distribution as the set of non-erased coordinates over BEC(𝜆).
Then, note that given 𝑌 = 𝑦 with non-erased coordinates in 𝑆 , there

are 2
𝑘−dim𝑉𝑆

equally likely possibilities for decoding, and therefore

𝐻 (𝑋 |𝑌 = 𝑦) = 𝑘 − dim𝑉𝑆 . □

B THE BHATTACHARYYA BOUND
In this section we prove the well-known Bhattacharyya bound.

Proof of Theorem 3.3. We are analyzing the error probability

of the block-MAP decoder for code𝑉 on the BMS channelW. Since

the code is linear and the channel symmetric, this is equal to the

probability that the MAP decoder fails conditioned on the trans-

mitted all-zeros codeword 0
𝑛
. Let 𝑌 be the output of the channel

assuming the all-zeros codeword was transmitted.

We analyze the likelihood ratio between 0
𝑛
and another fixed

codeword 𝑥 ∈ 𝐶 . Without loss of generality assume that 𝑥 = 1
𝑖
0
𝑛−𝑖

for some 0 < 𝑖 ≤ 𝑛. Assuming the decoder observes 𝑦 ∈ Y𝑛
, the

respective likelihood ratio is then
5

W(𝑥 |𝑦)
W(0𝑛 |𝑦) =

W(𝑦 |𝑥)
W(𝑦 |0𝑛) =

𝑖∏
𝑗=1

W(𝑦 𝑗 |1)
W(𝑦 𝑗 |0)

.

Let 1 ≤ 𝑗 ≤ 𝑖 and define a random variable 𝐿𝑗 equal to the likeli-

hood ratio W(𝑌𝑗 |1)/W(𝑌𝑗 |0) conditioned on all-zeros codeword.

Recall the characterization ofW as a mixture of BSC channels from

Section 2, and let 𝑌𝑗 = (𝑃 𝑗 , 𝑋 ′
𝑗
). Observe that, conditioned on 𝑃 𝑗 ,

the likelihood ratio 𝐿𝑗 is equal to (1 − 𝑃 𝑗 )/𝑃 𝑗 with probability 𝑃 𝑗
and 𝑃 𝑗/(1 − 𝑃 𝑗 ) with probability 1 − 𝑃 𝑗 . Accordingly,

E
[√

𝐿𝑗 | 𝑃 𝑗
]
= 2

√
𝑃 𝑗 (1 − 𝑃 𝑗 ) , E

√
𝐿𝑗 = 𝑍 (W) .

Let 𝑃𝐵 (𝑥) denote the probability that the MAP decoder concludes

that 𝑥 ∈ 𝐶 was more likely to be transmitted than 0
𝑛
. By the

considerations above and independence of 𝐿𝑗 ,

𝑃𝐵 (𝑥) ≤ Pr


𝑖∏
𝑗=1

𝐿𝑗 ≥ 1

 = Pr


𝑖∏
𝑗=1

√
𝐿𝑗 ≥ 1


≤ E

[√
𝐿𝑗

]𝑖
= 𝑍 (W) |𝑥 | .

Finally, applying the union bound,

𝑃B (W,𝑉 ) ≤
∑

𝑥 ∈𝐶,𝑥≠0𝑛
𝑃𝐵 (𝑥) ≤

𝑛∑
𝑖=1

𝑎𝑖𝑍 (W)𝑖 . □

C AN UPPER BOUND ON THEWEIGHT
DISTRIBUTION

Proof of Proposition 3.20. For this proof, let 𝑓 = 1𝑉 . In that

case one checks that 𝑓 = 2
𝑘−𝑛 · 1𝑉 ⊥ . Furthermore, let 𝑔(𝑥) = 𝜃 |𝑥 |

and verify that 𝑔(𝑦) = 1

2
𝑛 (1 − 𝜃 ) |𝑦 | (1 + 𝜃 )𝑛−|𝑦 | .

Let (𝑎0, . . . , 𝑎𝑛) be the weight distribution of 𝑉 . We calculate,

1

2
𝑛

𝑛∑
𝑖=0

𝑎𝑖𝜃
𝑖 = E𝑥 𝑓 (𝑥)𝑔(𝑥) =

∑
𝑦

𝑓 (𝑦)𝑔(𝑦)

=
1

2
𝑛−𝑘

1

2
𝑛

𝑛∑
𝑖=0

𝑏𝑖 (1 − 𝜃 )𝑖 (1 + 𝜃 )𝑛−𝑖

and consequently

𝑛∑
𝑖=0

𝑎𝑖𝜃
𝑖 =

1

|𝑉⊥ |

𝑛∑
𝑖=0

𝑏𝑖 (1 − 𝜃 )𝑖 (1 + 𝜃 )𝑛−𝑖 . (9)

Substituting (9) into Theorem 3.1, we have for every 0 ≤ 𝑖 ≤ 𝑛

𝑏𝑖 ≤ 2
𝐻 (𝑋 |𝑌 ) |𝑉⊥ |

(1 − 𝜃 )𝑖 (1 + 𝜃 )𝑛−𝑖
.

This already establishes the result for 0 ≤ 𝑖 < 1−𝜃
2
𝑛. In fact, since

the left-hand side of (1) is monotone in 𝜃 , we also have

𝑏𝑖 ≤ 2
𝐻 (𝑋 |𝑌 ) |𝑉⊥ |

(1 − 𝛼)𝑖 (1 + 𝛼)𝑛−𝑖

5
We are abusing notation here, but the meaning of W(𝑦 |𝑥)/W(𝑦 |0𝑛) should be

clear, at least for discrete channels and channels with distributions that have densities.
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for any 0 ≤ 𝛼 ≤ 𝜃 . If 1−𝜃
2
𝑛 ≤ 𝑖 ≤ 𝑛

2
, then we take 𝛼 = 1 − 2𝑖

𝑛 ≤ 𝜃

and check that

1

(1 − 𝛼)𝑖 (1 + 𝛼)𝑛−𝑖
=

2
ℎ2 (𝑖/𝑛)𝑛

2
𝑛

,

therefore we have proved our statement for 0 ≤ 𝑖 ≤ 𝑛
2
. To deal

with the case
𝑛
2
< 𝑖 ≤ 𝑛, we invoke the calculation at the end of

the proof of Proposition 1.6 in [22] to see that

𝑛∑
𝑖=0

𝑏𝑛−𝑖 (1 − 𝜃 )𝑖 (1 + 𝜃 )𝑛−𝑖 ≤
𝑛∑
𝑖=0

𝑏𝑖 (1 − 𝜃 )𝑖 (1 + 𝜃 )𝑛−𝑖

and apply the argument above to 𝑏𝑛−𝑖 with 𝑖 ≤ 𝑛
2
. □

D AN OPTIMIZATION PROBLEM
We are interested in the following simple optimization problem for

fixed 𝑝, 𝛽 ∈ (0, 1),
max

1≤𝑡 ≤ 𝛽

𝑝

(𝑝 − 𝛽/𝑡)𝑡

Let 𝑓 (𝑡) = (𝑝 − 𝛽/𝑡)𝑡 = 𝑒 ln(𝑝−𝛽/𝑡 )𝑡 . Then we are looking for the

global maximum of 𝑓 (𝑡) in [1,∞). Differentiating 𝑓 (𝑡) we get

𝑓 ′(𝑡) = 𝑒𝑡 ln(𝑝−𝛽/𝑡 ) ·
(
ln(𝑝 − 𝛽/𝑡) + 𝛽/𝑡

𝑝 − 𝛽/𝑡

)
(10)

The first term is positive so we focus on the term inside the

parenthesis. Setting 𝑠 = 𝑝 − 𝛽/𝑡 and equating the left term to

zero we get the equation ln(𝑠)𝑠 + 𝑝 − 𝑠 = 0. The solution to this

equation is 𝑠𝑜𝑝𝑡 = 𝑒𝑊−1 (−𝑝/𝑒)+1 = − 𝑝

𝑊−1 (−𝑝/𝑒) where𝑊−1 (𝑧) is the
Lambert function. Note that the requirement 𝑠 ≥ 0, or equivalently

𝑡 ≤ 𝛽
𝑝 , is implicit if we take the real solution if this equation. Thus,

𝑓 (𝑡) obtains its unique maximum, i.e 𝑡𝑜𝑝𝑡 =
𝛽

𝑝−𝑠𝑜𝑝𝑡 . Note that

𝑡 ln(𝑠) = −𝛽/𝑠 and so in fact 𝑓 (𝑡) = 𝑒−𝛽/𝑠 hence

𝑓 (𝑡𝑜𝑝𝑡 ) = 𝑒−𝛽 ·𝑒
−𝑊−1 (−𝑝/𝑒 )−1

=

(
𝑝/𝑒

−𝑊−1 (𝑝/𝑒)

)𝛽/𝑝
It remains to check when 𝑡𝑜𝑝𝑡 ≥ 1 which happens precisely when

𝛽 ≥ 𝑝 + 𝑝

𝑊−1 (−𝑝/𝑒) . If 𝑡𝑜𝑝𝑡 < 1 then the solution to our optimization

problem is simply attained at 𝑡 = 1.
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