
Revisiting the I/O-Complexity of Fast Matrix
Multiplication with Recomputations

Roy Nissim
The Hebrew University of Jerusalem, Israel

roynissim@cs.huji.ac.il

Oded Schwartz
The Hebrew University of Jerusalem, Israel

odedsc@cs.huji.ac.il

Abstract—Communication costs, between processors and
across the memory hierarchy, often dominate the runtime of
algorithms. Can we trade these costs for recomputations? Most
algorithms do not utilize recomputation for this end, and most
communication cost lower bounds assume no recomputation,
hence do not address this fundamental question. Recently, Bilardi
and De Stefani (2017), and Bilardi, Scquizzato, and Silvestri
(2018) showed that recomputations cannot reduce communication
costs in Strassen’s fast matrix multiplication and in fast Fourier
transform. We extend the former bound and show that recompu-
tations cannot reduce communication costs for a few other fast
matrix multiplication algorithms.

Index Terms—I/O-complexity, Fast Matrix Multiplication, Re-
computation, Memory Hierarchy, Parallel Computation

I. INTRODUCTION

Communication costs between processors or across the
memory hierarchy often dominate algorithms run time. The
fraction of communication costs in the total run time is
expected to further increase since the annual improvement
rate of arithmetic-operation, exceeds that of communication.
Can one avoid communication by allowing recomputation?
Since intermediate computations may be used several times,
and by different processors, it may seem that by repeating
computations one can save communication, both between
processors and across memory hierarchy. Tight communication
costs lower bounds are known for a variety of algorithms, such
as classical matrix multiplication [1]–[5], direct linear algebra
algorithms [6], [7], fast matrix multiplication [1], [8]–[10], fast
Fourier transform [2], [5], [11]–[14] and the N-body problem
[15]. Yet most of these bounds assume that every computation
is performed once, namely there is no recomputation. Can
recomputation decrease communication costs?

Savage showed an example where recomputation can
asymptotically reduce communication costs for some
CDAGs, using the “S-span technique” [16]. Bilardi
and Peserico [17] showed that some CDAGs admit an
optimal schedule only when recomputation is allowed.
Bilardi and De Stefani [10] obtain a lower bound that
allows recomputations for Strassen’s matrix multiplication
algorithm [18]. Particularly they showed that recomputation
cannot reduce communication costs asymptotically for that
algorithm, both on sequential and on parallel machine models.
Bilardi, Scquizzato, and Silvestri [13] obtain similar results
regarding fast Fourier transformation.

A. Our contribution

Using the approach of Bilardi and De Stefani [10] we
show that recomputation can not reduce communication cost
asymptotically for all fast matrix multiplication and alternative
basis fast matrix multiplication algorithms, with base case of
2×2. These lower bounds apply to Winograd’s algorithm [19]
(with leading coefficient of the arithmetic complexity reduced
from 7 to 6) and Karstadt-Schwartz’s algorithm [20] (with
leading coefficient further reduced to 5). We provide both
memory dependent and memory independent lower bounds,
extending [1]. Hopcroft and Kerr [21] showed that 7 is the
minimum number of multiplication necessary to multiply
two matrices of size 2 × 2. Thus a fast matrix multiplication
algorithm with 2 base case consists of 7 multiplication in his
base case.

Theorem 1.1: Consider a fast matrix multiplication algo-
rithm using a 2× 2 base case, and let ω0 = log2 7. The I/O-
complexity of the algorithm is:

Ω((n/
√
M)

ω0 ·M)

in the sequential model, and

max{Ω((n/
√
M)

ω0 ·M/P), Ω(n2/P 2/ω0)}

in the distributed model, regardless of recomputations, where
n, M, and P denotes the size of the input matrix, the size of
the cache of each processor, and the number of processors,
respectively.

B. Paper organization

In Section II we provide some preliminaries and describe
our machine models. In Section III we prove lower bounds for
fast matrix multiplication. In Section IV we extend the bounds
to hold for alternative basis matrix multiplication algorithms.
In Section V we discuss some open problems and future work.

1Internal computations in the classic matrix multiplication algorithm are
used only once, therefore, there is no point in recomputation

2This is the bound for most values of P , some values of P yield slightly
lower bound

TABLE I
KNOWN LOWER BOUNDS

The table presents the known lower bounds on several problems, and the citations of their proofs. We distinguish proof that assume no recomputation with
proofs allowing recomputations.

Algorithm Lower Bounds Without recomputation With recomputation

Ω

((
n
√
M

)3

·
M

P

)
[2]

Classic matrix multiplication Not relevant1

Ω

(
n2

P 2/3

)
[3]

Ω

((
n
√
M

)log2 7

·
M

P

)
[8]–[10], [10]

Strassen’s matrix multiplication

Ω

(
n2

P 2/ log2 7

)
[1] [here]

Ω

((
n
√
M

)log2 7

·
M

P

)
[8]–[10], [here]

Other fast matrix multiplication with 2× 2 base case

Ω

(
n2

P 2/ log2 7

)
[1] [here]

Ω

((
n
√
M

)ω0

·
M

P

)
[8]–[10] -

Fast matrix multiplication with general base case

Ω

(
n2

P 2/ω0

)
[1] -

Rectangular fast matrix multiplication with Ω

(
qt

P ·M logmp q−1

)
[22] -

〈m,n, p; q〉 base case
where t is the exponent of the base case

Ω

(
n · logn

P · log (M)

)
[12] -

Fast Fourier transform

Ω

 n · logn

P · log
(n

P

)
 [5], [11] [13]2

The lower bounds for the sequential model are derived with P = 1. ω0 is the exponent of the arithmetic of the algorithm.

II. PRELIMINARIES

A. Definitions

A fast matrix multiplication algorithm with 2×2 base case,
often consists of three steps: (I) Encoding the n × n input
variables of each of the two matrices into nlog2 7 variables,
consisting of linear sums of the input. (II) Performing scalar
multiplications between the encoded variables of the two ma-
trices. (III) Decoding the nlog2 7 outputs of the multiplication
into n× n output variables using linear sums.

Definition 2.1 (Computational directed acyclic graph):
A computational directed acyclic graph (CDAG) is a
directed graph where each of its vertices represents an input,
intermediate, or output argument, and each of is edges
represents direct dependency. Given a CDAG G, we denote
by Vinp(G) (respectively Vint(G), Vout(G)) the set of input
(respectively internal, output) vertices of G.

For the arithmetic operations z = x+y for instance, we have
edges from vx and from vy to vz , where vx, , vy, and vz are
nodes in graph G which represents the variables x, y, and z,

Fig. 1. The CDAG of Strassen’s base algorithm

respectively. We denote by Hn×n the CDAG that represents
the fast matrix multiplication algorithm with base case of
size 2× 2 using 7 multiplication. We denote by SUB Hr×r

the union of all sub-graphs that correspond to intermediate
multiplications of matrices of size r × r.

We call the part of the CDAG that corresponds to the
encoding of the input (respectively decoding of the output)
Encoder/Enc (respectively Decoder/Dec). See Figures 1,2
and Algorithm 2 for demonstration.

Lemma 2.2 (Recursive expansion): The group of sub-
CDAGs of size r×r (SUB Hr×r) has (n/r)log2 7 ·r2 output
vertices.

Proof: Proof. The algorithm uses the base matrix mul-
tiplication algorithm recursively, with smaller block sizes. At
each step of the recursion the size of the input is divided by 2,
and the number of sub-problems is multiplied by 7. Therefore,
there are (n/r)log2 7 sub problems of size r×r, i.e. sub-graphs
that correspond to intermediate multiplications of matrices of
size r × r. Each of the sub graphs have r2 output vertices,
thus |Vout(SUB Hr×r)| = (n/r)log2 7 · r2.

Definition 2.3 (Dominator set): Given a graph G = (V,E)
we say that Γ ⊆ V is a dominator set for V

′ ⊆ V if every
path from Vinp(G) to V

′
contains a vertex in Γ. We also say

that V
′

is dominated by Γ. A minimum dominator set is a
dominator set with minimum cardinality.

Definition 2.4 (Matching): Let G = (X,Y,E) be a bipartite
graph, and let X

′
be a subset of X . We say that there is a

matching for X
′

= x1, ...xk in G if there exists a set Y
′ ⊆ Y ,

where Y
′

= y1, ..., yk, such that ∀i (xi, yi) ∈ E. We also say
that there is a matching between X

′
and Y .

Theorem 2.5 (Hall’s theorem [23]): Let G = (X,Y,E) be
a bipartite graph, and let X

′
be a subset of X . There is a

matching for X
′

if and only if ∀W ⊆ X ′
, |W | ≤ |NG(W)|,

where NG(W) denotes the set of neighbors of W .

Fig. 2. The CDAG of Strassen’s encoder graph for matrix A

Definition 2.6 (Bilinear matrix multiplication [20]): Let
A, B be matrices of size n × m, m × k, respectively.
Let R be a ring and let φ, ψ, and ν be automorphisms of
Rn·m, Rm·k, and Rn·k, respectively. We denote the algorithm
which takes φ(A), ψ(B) as inputs and outputs ν(A ·B) using
t multiplication by 〈n,m, k; t〉φ,ψ,ν-algorithm.

Definition 2.7 (Alternative basis matrix multiplication [20]):
Given a recursive-bilinear 〈n,m, k; t〉φ,ψ,ν-algorithm, ALG,
alternative basis matrix multiplication works as follows (see
Algorithm 1 in Section A):

(I) Perform fast basis transformation on the input matrices
A, B (A→ φ(A), B → ψ(B)).

(II) Perform the recursive-bilinear algorithm, ALG, on the
input matrices in the alternative form (φ(A), ψ(B) → ν(A ·
B) = ν(C)).

(III) Perform fast basis transformation on the result from
previous stage to restore to the original base (ν(C)→ C).

Definition 2.8 (Grigoriev’s flow [10]): A function
f : Rp → Rq has a ω(u, v) Grigoriev flow if for all
subsets X1 and Y1 of its p input and q output variables,
with |X1| ≥ u and |Y1| ≥ v, there is a sub-function h of
f obtained by making some assignment to variables of f
not in X1 and discarding output variables not in Y1, such
that, h has at least |R|ω(u,v) points in the image of its domain.

B. Machine models

We address two machine models: Sequential and Parallel.
The sequential model is a machine model with two layer
memory, a slow memory of unlimited size, and a fast memory
of limited size M . The input and the output is stored in the
slow memory. Computations are performed on arguments
that are in the fast memory, and the result of the computation
is stored in the fast memory. Reading an argument from the
slow memory or writing an argument to the slow memory is
considered an I/O operation.
The parallel model is a machine model consists of P
identical processors, each equipped with a fast memory
of size M . The input and the output is distributed evenly
among all processors. A processor performs computations
on arguments in its local memory, and the result of the

computation is stored in his local memory. Exchanging an
argument between processors is considered an I/O operation.

III. FAST MATRIX MULTIPLICATION ALGORITHMS WITH
2X2 BASE CASE

In this section we show that the known lower bounds
for fast matrix multiplication with base case of size 2 × 2

(Ω((n/
√
M)

log2 7 · M/P), Ω(n2/P 2/log2 7)) hold when
recomputation is allowed. Our proof follows that of Bilardi
and De Stefani [10]. As in many I/O-complexity lower bounds,
they partition the computation into segments, and bound the
I/O operations of each segment as a function of the available
input and output operands. They do so using a new technique
which combines aspects of the Hong-Kung dominator set
method, with the concept of Grigoriev information flow of
functions. Their technique also precludes the use of repeated
computations for reducing the I/O-complexity (an assertion
which almost none of the previous techniques can guarantee).
In their proof they use a case analysis of the computations
of Strassen’s algorithm to bound from below the size of the
minimal dominator set of the segments computations (see
Lemma 7 in [10]). We replace the case analysis part of their
proof with a bipartite matching argument, which applies to
any fast matrix multiplication algorithms with base case of
size 2 × 2 (such as Winograd’s algorithm [19]). In Section
IV we extend the results to hold for alternative basis fast
matrix multiplication with base case of size 2x2 as well (such
as Karstadt-Schwartz’s algorithm [20]). We also apply the
technique of [1] to obtain a memory independent lower bound.

The proof involves several inter dependant lemmas.
Let us first describe our proof idea and its work-flow
in general. As in other lower bound proofs, we partition
the computation schedule into segments, bound the I/O-
complexity of each segment, and compute the total bound
by multiplying the above with the number of segments. The
bound on each segment is obtained using the Hong-Kung
dominator set method (in the same way Bilardi and De
Stefani are utilizing it). Particularly, we show a relation
between the number of outputs of intermediate problems
(output vertices of sub-CDAGs representing sub-problems
of size 2

√
M × 2

√
M) that a segment computes, and the

minimum number of I/O operations required in the segment
(Lemma 3.6). We show this relation by bounding from
beneath the size of a dominator set of subsets of those
output vertices (Lemma 3.7); and the observation that the
set of vertices corresponding to the segment should be a
dominator set to the outputs which are computed within the
segment. Bounding the size of the dominator set is done
by a counting argument on the number of paths connecting
input vertices with intermediate output vertices (Lemma 3.11).

This is the general framework of the proof, which is
similar to [10]. The two main modifications are the proof of
Lemma 3.1 (Lemma 7 in [10]), and the addition of memory

independent lower bound (for the parallel model). In the
proof of Lemma 3.11 (counting argument on the number
of paths connecting input vertices with intermediate output
vertices) we use a statement on the size of a matching in the
encoder graph (Lemma 3.1). This is were we replace the case
analysis of Bilardi and De Stefani with a bipartite matching
argument, which applies to a broader range of algorithms.

We start with the proof that replaces the case analysis of
Bilardi and De Stefani (Lemma 3.1). We then provide the
rest of the proof for completeness.

Lemma 3.1: Let G = (X,Y,E) denote an encoding
bipartite graph of a fast matrix multiplication algorithm
with base case of size 2 × 2 (see Figure 2 for example).
For every set Y

′ ⊆ Y there exists a set X
′ ⊆ X of size

|X ′ | ≥ 1 + d(|Y ′ | − 1)/2e, such that there is a matching
between X

′
and Y

′
. Where the set X denotes the 4 input

arguments, and the set Y denotes the 7 encoded arguments.

We require two supporting lemmas for the proof of Lemma
3.1:

Lemma 3.2: Let G = (X,Y,E) denote an encoder graph
of a fast matrix multiplication algorithm with 2 × 2 base
case. Then, every vertex in X has at least two neighbors, and
every two vertices in X have at least 4 neighbors.

Proof: Let T be the set of 8 scalar multiplications of the
form ai,k ·bk,j in the classical matrix multiplication algorithm.
Observe that every input argument of matrix A (vertex in
X) has 2 representations in the set T , with different input
arguments of matrix B, which means that it has at least 2
neighbors. Let the set X

′ ⊂ X be of size 2. W.l.o.g., assume
that elements of X

′
correspond to different columns of the

input matrix A (otherwise they correspond to different rows
and we can switch the roles of the input matrices A and B).
Observe that every two input arguments of matrix A (X

′
) has

4 representatives in the set T with different input arguments
of matrix B (by representative we mean that a vertex of X

′

multiplied by an input vertex of matrix B appearing in T).
Thus X

′
has at least 4 neighbors, as required.

Lemma 3.3: Let G = (X,Y,E) denote an encoder graph
for a fast matrix multiplication algorithm with 2 × 2 base
case. There are no two vertices in Y with identical neighbors
sets.

We use the following results by Hopcroft and Kerr [21].

Lemma 3.4: [21]. If an algorithm for 2 × 2 matrix
multiplication has k left (right) hand side multiplication from
the set S = [A1,1, (A1,2 + A2,1), (A1,1 + A1,2 + A2,1)], then

it requires at least 6 + k multiplications.

Corollary 3.5: [21]. Lemma 3.4 also applies for the
following definitions of S :

(1) (A1,1 +A2,1), (A1,2 +A2,1 +A2,2), (A1,1 +A1,2 +A2,2)

(2) (A1,1 +A1,2), (A1,2 +A2,1 +A2,2), (A1,1 +A1,2 +A2,2)

(3) (A1,1 +A1,2 +A2,1 +A2,2), (A1,2 +A2,1), (A1,1 +A2,2)

(4) A2,1, (A1,1 +A2,2), (A1,1 +A2,1 +A2,2)

(5) (A2,1 +A2,2), (A1,1 +A1,2 +A2,2), (A1,1 +A1,2 +A2,1)

(6) A1,2, (A1,1 +A2,2), (A1,1 +A1,2 +A2,2)

(7) (A1,2 +A2,2), (A1,1 +A2,1 +A2,2), (A1,1 +A1,2 +A2,1)

(8) A2,2, (A1,2 +A2,1), (A1,2 +A2,1 +A2,2)

Proof of Lemma 3.3: Since Lemma 3.4 and Corollary
3.5 cover all possible linear sums of matrix elements, there
must not be two vertices in Y with identical neighbors sets
(otherwise the number of multiplications in the base case will
exceed 7).

We can now complete the proof of Lemma 3.1.

Proof of Lemma 3.1: By Hall’s Theorem, there exists a
matching for X

′
in G if and only if ∀w ⊆ X ′

, |N(w)| ≥ |w|.
Observe that Y

′ ≥ 1 + d(|Y ′ | − 1)/2e. Thus if |N(Y
′
)| ≥

1 + d(|Y ′ | − 1)/2e there exists a set X
′ ⊆ X where |X ′ | =

1 + d(|Y ′ | − 1)/2e ≤ |Y ′ | = |N(X)|. By showing this for all
possible sizes of Y

′
we get that ∀w ⊆ X ′

, |W | ≤ |N(w)| (It
follows from previous sizes of Y

′
). Therefore it is sufficient

to show that ∀Y ′ ⊆ Y, |N(Y
′
)| ≥ 1 + d(|Y ′ | − 1)/2e. We

show this for every size of Y
′
:

If |Y ′ | = 1 it is trivial, there must be a vertex in X with an
edge to Y

′
.

If |Y ′ | = 2 or |Y ′ | = 3 there must be at least two neighbors
since there are no two vertices in Y with the same neighbors
set (Lemma 3.3).

If |Y ′ | = 4 or |Y ′ | = 5 we need to show the existence of at
least 3 neighbors. Every set X

′′ ⊆ X of size 2 has a neighbor
in Y

′
since it has at least 4 neighbors (Lemma 3.2). Therefore

|N(Y
′
)| ≥ 3 (otherwise there will be a set X

′′ ⊂ X of size
2 with no neighbor in Y , since |Y ′ | ≥ 4, |Y \ Y ′ | ≤ 3, it
means that N(X

′′
) ≤ 3, contradicting Lemma 3.2).

If |Y ′ | = 6 or |Y ′ | = 7 then every vertex in X has a neighbor
in Y

′
(since he has at least 2 neighbors, Lemma 3.2, and

|Y \ Y ′ | ≤ 1). Therefore |N(Y
′
)| = 4, as required.

For completeness we next provide the rest of the proof which
builds on that of [10], with the necessary modifications.

Lemma 3.6: Given a positive integer r, a segment Si that
computes r2 output vertices of Vout(SUB Hr×r), uses at
least r2/2 − ninit I/O operations, where ninit denotes the
number of values that reside in the cache when segment Si
begins.

We prove Lemma 3.6 later on, but first we show how to
use it to prove our main theorem.

Proof: (Theorem 1.1). We prove the three bounds
(sequential, parallel memory dependent and parallel memory
independent) separately.

Sequential model. Let S be a computation schedule. Con-
sider only computations that are performed for the first time.
Partition S into segments Si, where each Si (outside perhaps
the last one) contains exactly 4M output computations of
intermediate multiplications of matrices of size 2

√
M×2

√
M

(vertices of Vout(SUB H2
√
M×2

√
M)). Denote these vertices

by V iout(SUB H2
√
M×2

√
M). Let IOsi denote the number

of I/O operation during segment Si. By Lemma 3.6, with
r = 2

√
M and ninit ≤ M (ninit cannot exceed cache size),

IOSi ≥M . By Lemma 2.2 there are (n/2
√
M)ω0 segments,

thus:
IO(n,M) = Ω((n/

√
M)

ω0 ·M)

Parallel model. The proof of the parallel model memory
dependent lower bound follows a similar strategy. There exists
a processor pi that performs at least 1/P of the computations,
namely nω0/P computations. By following the proof for the
sequential model, there are at least (n/2

√
M)ω0/P segments

containing 4M output computations of intermediate multipli-
cations of matrices of size 2

√
M × 2

√
M , that performs at

least M I/O operations, thus:

IO(n,M,P) = Ω((n/
√
M)

ω0 ·M/P)

Memory independent. The proof of the parallel model
memory independent is slightly different. The proof combines
the above analysis with the approach of [1]. Assume that at
the beginning (respectively at the end) of the algorithm each
processor holds the same portion of the input (respectively
output) i.e., 2n2/P (respectively n2/P) elements. We partition
S into P segments Si, one for computations of each processor,
and denote the number of I/O operation in segment Si by IOi.
Let r = n/P 1/ω0 . By Lemma 2.2 |Vout(SUB Hr×r)| =
P · (n/P 1/ω0)2. Therefore some processor calculates at
least (n/P 1/ω0)

2
output vertices of Vout(SUB Hr×r). From

Lemma 3.6, when assign r = n/P 1/ω0 and ninit = 2n2/P ,
we get that:

IO(n, P) = n2/P 2/ω0 − 2n2/P = Ω(n2/P 2/ω0)

It remains to prove Lemma 3.6. For this end we require a
supporting lemma which we prove later on.

Lemma 3.7: Let Z be a subset of Vout(SUB Hr×r) of
size r2. Then every dominator set Γ of Z in Hn×n satisfies
|Γ| ≥ |Z|/2.

Proof of Lemma 3.6: Let Γi denote the vertices of Hn×n

that correspond to values that are in the possession of the
processor during segment Si. Notice that IOSi ≥ |Γi| −ninit
(since argument that are in the possession of the processor
during the segment can either reside in the cache when the
segment begins, or read during the segment using an I/O
operation). Every path from vertex in V iout(SUB Hr×r) to
vertex in Vinp(Hn×n) must contain a vertex in Γi, otherwise
there will be a value which is needed to the computation
but was not in the possession of the processor during the
segment. Therefore, by definition, Γi is a dominator set of
V iout(SUB Hr×r). From Lemma 3.7 |Γi| ≥ r2/2, therefore:

IOSi ≥ r2/2− ninit

We now show few more lemmas which required for the proof
of Lemma 3.7.

Lemma 3.8 ([2]): fn×n : R2n2 → Rn2

has a ωn×n(u, v)
Grigoriev’s flow, where:

ωn×n(u, v) ≥ (v − (2n2 − u)2/4n2)

2
for 0 ≤ u ≤ 2n2, 0 ≤ v ≤ n2

Lemma 3.9 ([2]): Let G(V,E) be a CDAG computing
f : Rp → Rq with Grigoriev’s flow ωf (u, v). Let I
(respectively O) denote the set of input (respectively output)
vertices of G. Any dominator set Γ for any subset I

′ ⊂ I with
respect to any subset O

′ ⊂ O satisfies |Γ| ≥ ωf (|I ′ |, |O′ |).

Proof: Proof. Given I
′ ⊂ I and O

′ ⊂ O, suppose the
values of the input variables corresponding to vertices in I \I ′

to be fixed. Let Γ be a dominator set for I
′

with respect
to O

′
. (i) according to the definition of flow of f, there

exists an assignment of the input variables corresponding to
vertices in I

′
such that the output variables in O

′
can assume

|R|ωf (|I
′
|,|O

′
|) distinct values. (ii) As there is no path from I

′

to O
′

which has not a vertex in Γ, the values of the outputs in
O

′
are determined by the inputs in I \I ′

, which are fixed, and
the values corresponding to the vertices in Γ; hence the outputs
in O

′
can assume at most |R||Γ| distinct values. The claimed

results follows by a simple combination of observation (i) and
(ii).

Lemma 3.10 ([10]): Let Gq,n×n be a CDAG composed
by q vertex disjoint CDAGs Gn×n. Denote I (respectively
O) the set of input (respectively output) vertices of Gq,n×n.
Let O

′ ∈ O be a subset of output vertices. For any subset Γ
of the vertices of Gq,n×n with |Γ| ≤ 2|O′ |, the set I

′ ⊂ I
of input vertices which are not dominated by Γ satisfies
|I ′ | ≥ 2n

√
|O′ | − 2|Γ|.

Proof: Let O
′

j (respectively Γj) denote the subset of O
′

(respectively Γ) which corresponds to vertices in the j-th sub
CDAG Gn×nj for j ∈ 1, 2, · · · , q. As, by hypothesis, the sub-
CDAGs Gn×nq are vertex disjoint, O

′

1, O
′

2, · · · , O
′

q (respec-
tively Γ1,Γ2, · · · ,Γq) constitute a partition of O

′
(respectively

Γ). Let I
′′

j ⊂ X denote the set of input vertices of Gn×nq for
which Γj is a dominator set with respect to Oj . From Lemma
3.8 and Lemma 3.9 the following condition must hold:

|Γj | ≥ ωn×n ≥ 1/2 · [|O
′

j | − (2n2 − |I
′′

j |)2/4n2]

Let I
′

j = Ij \ I
′′

j denote the set of input vertices of Gn×nj

for which |Γj | is a dominator set with respect to Oj . Since
|I| = 2n2, from Lemma 3.8 we have

|I
′
|2 =

q∑
j=1

|I
′

j |
2
≥ 4n2

q∑
j=1

(|O
′

j | − 2|Γj |)

= 4n2(|O
′
| − 2|Γ|)

Notice that all vertices in I
′

= ∪ij=1I
′

j are not post-dominated
by Γ (because the sub-CDAGs Gn×nj are vertex disjoint) and

|I
′
|
2

=

q∑
j=1

|I
′

j |
2
≥ 4n2 ·

q∑
j=1

(|O
′

j | − 2|Γj |)

Lemma 3.11: Let Γ be a subset of Vint(SUB Hr×r),
and let Z be a subset of Vout(SUB Hr×r) such that
|Z| ≥ 2|Γ|. There exists a set X ⊂ Vinp(H

n×n) of size
|X| ≥ 2r

√
|Z| − 2|Γ|, such that vertices in X can be

connected to vertices in a set Y ⊂ Vinp(SUB Hr×r) of size
|Y | = |X| via vertex disjoint paths. Furthermore any vertex
in Y can be connected to vertex in Z by a directed path
which does not include any vertex in Γ.

Proof: The proof is by induction on n, the dimension of
the input matrices. For the base of the induction we show that
the statement holds for n = r. The sets X and Y are identical.
Therefore, the statement follows immediately from Lemma
3.10 with q = 1 and n = r. For the inductive step we show
that if the statement holds for Hn×n then the statement holds
for H2n×2n as well. Let Hn×n

i denote the seven sub-graphs
of Hn×n, corresponding to the seven products (notice that
they are vertex disjoint from Lemma 3.3). Let Zi (respectively
Γi) denote the subset of Z (respectively Γ) in Hn×n

i , notice

that these are partition. Let di ≡ max {0, |Zi| − 2|Γi|}, and
d ≡

∑m0

i=1 di ≥ |Z| − 2|Γ| (w.l.o.g., assume d1 = maxi di).
Applying the inductive hypothesis on each Hn×n

i , there is
sets Yi ⊂ Vinp(H

n×n
i) such that |Yi| ≥ 2r

√
|Z| − 2|Γ|,

and vertices of Yi can be connected to vertices in Zi via
paths which do not include vertices in Γi. These paths can
be connected to sets Ki ⊆ Vinp(Hn×n

i) such that |Ki| = |Yi|,
using vertex disjoint paths. We denote by K the union of all
ki. It remains to show that it is possible to extend at least
2r
√
|Z| − 2|Γ| of these paths to vertices in Vinp(H

2n×2n),
preserving vertex disjoint. According to the form of the graph,
vertices in Vinp(H2n×2n) are connected to vertices in Ki by
2n2 encoder graphs (as defined in Section II). We denote by
Encj the jth encoder graph. Notice that they do not share any
input or output vertices. For each Encj consider the vector
yj ∈ {0, 1}m0 , which satisfied the condition yj [i] = 1 if
the i − th output vertex is in Ki and yj [i] = 0 otherwise.
Therefore |yj | is the number of output vertices in Encj which
are in K. From Lemma 3.1 for each Encj there exists a
subset Xj ∈ Vinp(Encj) where each vertex in Xj can be
connected to a distinct vertex in Vout(Encj) by a single edge
(and therefore disjoint), and Xj satisfy the condition:

|Xj | ≥ yj [1] + d(|yj | − 1)/2e

The number of vertex disjoint paths connecting vertices in
Vinp(H

2n×2n) to vertices in K is therefore at least
∑2n2

j=1 |Xj |.
Notice that:

|Xj | ≥ yj [1] + 1/2

m0∑
i=2

yj [i], and
2n2∑
j=1

yj [i] ≥ 2r
√
di

Since all Encj are vertex disjoint, we can sum their contribu-
tions and therefore conclude that the number of vertex disjoint
paths connecting vertices in Vinp(H

2n×2n) to vertices in K
is at least:

2n2∑
j=1

|Xj | ≥ 2r(
√
d1 + 1/2

m0∑
i=2

√
di)

≥ 2r

√√√√(
√
d1 + 1/2

m0∑
i=2

√
di)2

≥ 2r

√√√√d1 +
√
d1

m0∑
i=2

√
di ≥ 2r

√
d

Therefore there are at least 2r
√

(|Z| − 2|Γ|) vertex disjoint
paths connecting vertices in Vinp(H2n×2n) to vertices in K.

Now we can prove Lemma 3.7 and conclude our proof of
Theorem 1.1.

Proof of Lemma 3.7: . Assume by contradiction that |Γ| <
|Z|/2 and let Γ

′ ⊆ Γ ∩ Vinp(SUB Hr×r). By Lemma 3.11
there exist sets X ⊆ Vinp(H

n×n), Y ⊆ Vinp(SUB Hr×r)
such that there are at least 2r

√
|Z| − 2|Γ′ | vertex disjoint

Fig. 3. A graphic representation of Lemma 3.11

paths connecting X to Y , and those paths can be extended
to Z without passing through Γ

′
. Denote such set of paths

by T . This implies that each of the vertices in Γ \ Γ
′

can be
traversed by at most one of path of T . Therefore, the number
of paths from X to Z that do not traverse Γ vertices is at
least:

2r
√
|Z| − 2|Γ′ | − (|Γ| − |Γ

′
|) ≥

2(|Z| − 2|Γ
′
|)− (|Z| − 2|Γ

′
|) ≥ 1

Therefore there is at least one path from X to Z that does
not traverse any Γ vertices, contradicting Γ being a dominator
set of Z.

IV. ALTERNATIVE BASIS MATRIX MULTIPLICATION

Karstadt and Schwartz [20] obtained a method for
decreasing the leading coefficient of the arithmetic and
I/O-complexity of fast matrix multiplication algorithms. For
matrix multiplication algorithm with base case of 2 × 2 for
instance, they reduced the leading coefficient of the arithmetic
computations of Winograd’s algorithm from 6 to 5 and that of
the I/O-complexity from 10.5 to 9. They did so by introducing
fast basis transformation before and after the multiplication
part of the algorithm. We show that our bounds in Theorem
1.1 hold for such algorithms as well. The alternative basis
matrix multiplication is composed of three parts: Computing
φ(A), ψ(B) using a fast basis transformation algorithm,
computing ν(C) = φ(A) · ψ(B) using a recursive-bilinear
algorithm, and computing C = ν−1(ν(C)) using a fast reverse
basis transformation algorithm. The I/O-complexity of the
basis alternation is negligible compared to the multiplication
part. Therefore we can deduce the following corollary.

Theorem 4.1: Let ALG be a recoursive-bilinear matrix
multiplication algorithm of type 〈2, 2, 2; 7〉

φ,ψ,ν
. The I/O-

complexity of an alternative basis matrix multiplication using
ALG (As defined in Section II) is: Ω((n/

√
M)

log2 7·M) when
running in the sequential model, and

max{Ω((n/
√
M)log2 7 ·M/P), Ω(n2/P 2/log2 7)}

when running in the parallel model, even when
recomputation is allowed, where n, M, and P denotes
the size of the input matrix, the size of the cache of each
processor, and the number of processors, respectively.

Proof: Theorem 1.1 apply on recursive matrix multipli-
cation algorithms that their base case is a multiplication of
two matrices of size 2× 2 using 7 multiplications. Practically
any recursive algorithm that is base case starts with encoding
two matrices of size 2 × 2 and ends with decoding a matrix
of size 2 × 2, from 7 arguments, is acceptable. Therefore
Theorem 1.1 applies on algorithm ALG as well. Since the
I/O complexity of the alternative basis matrix multiplication
algorithm is dominated by the I/O complexity of his recursive-
bilinear matrix multiplication algorithm (ALG), the same hold
for such type of algorithms as well.

Corollary 4.2: Recomputation can not decrease communi-
cation cost (asymptotically) of alternative basis matrix multi-
plication algorithm with base case of size 2× 2.

V. DISCUSSION AND OPEN PROBLEMS

Most of the existing lower bounds assume no recomputa-
tion. Thus, they do not exclude the possibility of more efficient
algorithms, in terms of communication costs, which do take
advantage of recomputations. The lower bounds of Bilardi and
De Stefani (2017), Bilardi, Scquizzato, and Silvestri (2018),
as well as ours, show that recomputation is sometimes useless
for asymptotically reducing the I/O-complexity. But this is not
always the case. Recomputation can be useful for reducing
the I/O-complexity for some CDAGs [16]. Moreover, some
CDAGs admit an optimal schedule only when recomputation
is allowed [17]. We conjecture that recomputation cannot
reduce communication cost (asymptotically) for any fast ma-
trix multiplication algorithm, and for direct linear algebra
algorithms.

In non volatile memory technologies, a write operation may
be much more expensive than a read operation. Therefore
algorithms that minimize write operations are likely to be
more efficient [24]–[28]. Blelloch et al. [26] showed that for
the minimum edit distance problem (and related problems),
recomputation can reduce the number of writes (at the cost
of additional reads). Whether one can trade recomputation
for writing in other problems remains an open question.

VI. ACKNOWLEDGEMENT

Research was supported by grants 1878/14, and 1901/14
from the Israel Science Foundation (founded by the Israel
Academy of Sciences and Humanities). This work was
supported by the PetaCloud industry-academia consortium.
This research was supported by a grant from the United
States-Israel Binational Science Foundation (BSF), Jerusalem,
Israel. This work was supported by The Federmann Cyber

Security Center in conjunction with the Israel national cyber
directorate.

APPENDIX

Let ALG be a recursive-bilinear, 〈n,m, k; t〉φ,ψ,ν-
algorithm. Alternative basis matrix multiplication [20] works
as follows:

Algorithm 1 Alternative Basis Matrix Multiplication
Input: A ∈ Rn×m, B ∈ Rm×k, ALG ∈ 〈n,m, k; t〉φ,ψ,ν
Output: C = A ·B, C ∈ Rn×k

1: function ABMM(A,B)
2: Ã = φ(A), B̃ = ψ(B)
3: C̃ = ALG(Ã, B̃)
4: C = ν−1(C̃)
5: return C

Where φ(A), ψ(B), and ν−1(C) are computed using fast
basis transformation techniques.

A recursive fast matrix multiplication algorithm using
Strassen’s matrix multiplication [18] works as follow:

Algorithm 2 Recursive Strassen’s Matrix Multiplication
Input: A,B ∈ Rn×n {We assume n = 2k for some k}
Output: C = A ·B (C ∈ Rn×n)

1: function RSMM(A,B, n)
2: if n = 1 then
3: C = A ·B
4:
5: else
6: Decompose A, B into four sub matrices as follow:
7:

8: A =

(
A1,1 A1,2

A2,1 A2,2

)
, B =

(
B1,1 B1,2

B2,1 B2,2

)
9:

10: M1 = RSMM(A1,1 +A2,2, B1,1 +B2,2, n/2)
11: M2 = RSMM(A2,1 +A2,2, B1,1 , n/2)
12: M3 = RSMM(A1,1 , B1,2 −B2,2, n/2)
13: M4 = RSMM(A2,2 , B2,1 −B1,1, n/2)
14: M5 = RSMM(A1,1 +A1,2, B2,2 , n/2)
15: M6 = RSMM(A2,1 −A2,2, B1,1 +B1,2, n/2)
16: M7 = RSMM(A1,2 −A2,2, B2,1 +B2,2, n/2)
17:
18: C1,1 = M1 +M4 −M5 +M7

19: C1,2 = M3 +M5

20: C2,1 = M2 +M4

21: C2,2 = M1 −M2 +M3 +M6

22:
23: Compose C as follow:
24:

25: C =

(
C1,1 C1,2

C2,1 C2,2

)
26:
27: return C

REFERENCES

[1] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz, “Strong
scaling of matrix multiplication algorithms and memory-independent
communication lower bounds,” in Proceedings of the 24th ACM sympo-
sium on Parallelism in algorithms and architectures, 2012, pp. 77–79.

[2] H. Jia-Wei and H. T. Kung, “I/O complexity: The red-blue pebble game,”
in Proceedings of the Thirteenth Annual ACM Symposium on Theory of
Computing, ser. STOC ’81. New York, NY, USA: ACM, 1981, pp.
326–333.

[3] D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds
for distributed-memory matrix multiplication,” Journal of Parallel and
Distributed Computing, vol. 64, no. 9, pp. 1017–1026, 2004.

[4] A. Aggarwal, A. Chandra, and M. Snir, “Communication complexity of
prams,” Theoretical Computer Science, vol. 71, no. 1, pp. 3–28, 1990.

[5] M. Scquizzato and F. Silvestri, “Communication lower bounds for
distributed-memory computations,” in Proceedings of the 31st Sympo-
sium on Theoretical Aspects of Computer Science (STACS), 2014, pp.
627–638.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing
communication in numerical linear algebra,” SIAM Journal on Matrix
Analysis and Applications, vol. 32, no. 3, pp. 866–901, 2011.

[7] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and
O. Schwartz, “Communication lower bounds and optimal algorithms
for numerical linear algebra,” Acta Numerica, vol. 23, pp. 1–155, 2014.

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Graph expansion
and communication costs of fast matrix multiplication,” Journal of the
ACM (JACM), vol. 59, no. 6, p. 32, 2012.

[9] J. Scott, O. Holtz, and O. Schwartz, “Matrix multiplication i/o-
complexity by path routing,” in Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA ’15. New
York, NY, USA: ACM, 2015, pp. 35–45.

[10] G. Bilardi and L. De Stefani, “The I/O complexity of strassen’s matrix
multiplication with recomputation,” Algorithms and Data Structures, vol.
10389, pp. 181–192, 2017.

[11] G. Bilardi, M. Scquizzato, and F. Silvestri, “A lower bound technique for
communication on bsp with application to the FFT,” in Proceedings of
the European Conference on Parallel Processing, vol. 7484. Springer,
2012, pp. 676–687.

[12] G. Ballard, J. Demmel, A. Gearhart, B. Lipshitz, Y. Oltchik,
O. Schwartz, and S. Toledo, “Network topologies and inevitable con-
tention,” in Proceedings of the First Workshop on Optimization of
Communication in HPC, ser. COM-HPC ’16. IEEE Press, 2016, pp.
39–52.

[13] G. Bilardi, M. Scquizzato, and F. Silvestri, “A lower bound technique
for communication in bsp,” ACM Transactions on Parallel Computing,
vol. 4, no. 14, 2018.

[14] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting
and related problems,” Communications of the ACM, vol. 31, no. 9, pp.
1116–1127, 1988.

[15] M. Driscoll, E. Georgamas, P. Koanantakool, and K. Yelick, “A
communication-optimal n-body algorithm for direct interactions,” in
Proceedings of the 27th International Symposium on Parallel and
Distributed Processing (IPDPS). IEEE, 2013, pp. 1075–1084.

[16] J. E. Savage, “Extending the hong-kung model to memory hierarchies,”
in In Computing and Combinatorics. Lecture Notes in Computer Science,
vol. 959. Springer, Berlin, Heidelberg, 1995, pp. 270–281.

[17] G. Bilardi and E. Peserico, “A characterization of temporal locality and
its portability across memory hierarchies,” Automata, Languages and
Programming, pp. 128–139, 2001.

[18] V. Strassen, “Gaussian elimination is not optimal,” Theoretical Computer
Science, vol. 13, no. 4, pp. 354–356, 1969.

[19] S. Winograd, “On multiplication of 2x2 matrices,” Linear algebra and
its applications, vol. 4, no. 4, pp. 381–388, 1971.

[20] E. Karstadt and O. Schwartz, “Matrix multiplication, a little faster,” in
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’17. New York, NY, USA: ACM, 2017,
pp. 101–110.

[21] J. E. Hopcroft and L. R. Kerr, “On minimizing the number of multipli-
cations necessary for matrix multiplication,” SIAM Journal on Applied
Mathematics, vol. 20, no. 1, pp. 30–36, 1971.

[22] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Graph expansion analysis for communication costs of fast rectangular
matrix multiplication,” in Design and Analysis of Algorithms, vol. 7659.
Springer, Berlin, Heidelberg, 2012, pp. 13–36.

[23] P. Hall, “On representatives of subsets,” Journal of the London Mathe-
matical Society, vol. s1-10, no. 1, pp. 1–80, 1935.

[24] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool,
O. Schwartz, and H. V. Simhadri, “Write-avoiding algorithms,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2016, pp. 648–658.

[25] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu,
C. McGuffey, and J. Shun, “Parallel algorithms for asymmetric read-
write costs,” in Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures. ACM, 2016, pp. 145–156.

[26] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun, “Effi-
cient algorithms with asymmetric read and write costs,” in Proceedings
of the 24th Annual European Symposium on Algorithms (ESA 2016),
vol. 57, 2016, pp. 14:1–14:18.

[27] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu,
C. McGuffey, and J. Shun, “Implicit decomposition for write-efficient
connectivity algorithms,” 2018 IEEE International Parallel and Dis-
tributed Processing Symposuim (IPDPS), 2018.

[28] G. E. Blelloch, Y. Gu, Y. Sun, and J. Shun, “Parallel write-efficient
algorithms and data structures for computational geometry,” CoRR, vol.
abs/1805.05592, 2018.

