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Abstract

Polysemy is a major characteristic of natu-
ral languages. Like words, syntactic forms
can have several meanings. Understanding the
correct meaning of a syntactic form is of great
importance to many NLP applications. In this
paper we address an important type of syn-
tactic polysemy — the multiple possible senses
of tense syntactic forms. We make our dis-
cussion concrete by introducing the task of
Tense Sense Disambiguati¢iiSD): given a
concrete tense syntactic form present in a sen-
tence, select its appropriate sense among a
set of possible senses. Using English gram-
mar textbooks, we compiled a syntactic sense
dictionary comprising common tense syntac-
tic forms and semantic senses for each. We an-
notated thousands of BNC sentences using the
defined senses. We describe a supervised TSD
algorithm trained on these annotations, which
outperforms a strong baseline for the task.
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Both contain the concrete syntactic form ‘are play-
ing’, generated by the abstract syntactic form usu-
ally known as ‘present progressive’ (am/is/are + V-
ing). In (a), the meaning is ‘something happening
now’, while in (b) itis ‘a plan to do something in the
future’. Note that the polysemy is of the syntactic
form as a unit, not of individual words. In particu-
lar, the verb ‘play’ is used in the same sense in both
cases.

In this paper we address a prominent type of syn-
tactic form polysemy: the multiple possible senses
that tense syntactic forms can have. Disambiguat-
ing the polysemy of tense forms is of theoretical
and practical importance (Section 2). To make our
discussion concrete, we introduce the tasKefise
Sense DisambiguatiqiiSD): given a concrete tense
syntactic form in a sentence, select its correct sense
among a given set of possible senses (Section 3).

The disambiguation of polysemy is a fundamental
problem in NLP. For example, Word Sense Disam-
biguation (WSD) continues to attract a large number
of researchers (Agirre and Edmonds, 2006). TSD
has the same structure as WSD, with different dis-

The function of syntax is to combine words to ex- . .
. ) . . ambiguated entities.

press meanings, using syntactic devices such as _ _ ith th K

word order, auxiliary words, and morphology (Gold- ,IFgr experlrr_err:tmg Wit . the TSDdt_as_ , We (t:)om-d
berg, 1995). Virtually all natural language deviced"'® r;\]n Enghls sdynte;ct;]c Sense |ct|or:_arr)]/ ase

used for expressing meanings (e.g., words) exhibi? @t oroug stu 'y 0 three maj(l)r English gram-
polysemy. Like words, concrete syntactic forms (thgnar pr?ects rfSect'lc_Jnh 4). _Welse ected 3000_ Sen-
sentence words generated by specific syntactic gignces from the British National Corpus containing

vices) can have several meanings. Consider the 1‘0‘}%7 oh2 cortl)crgte syntacgc fqrmss, ?Ir\‘/d gnnoltateg each
lowing sentences: of these by its sense (Section 5).We developed a su-

pervised learning TSD algorithm that uses various
feature types and takes advantage of the task struc-
ture (Section 6). Our algorithm substantially outper-

(a) Theyare playing chess in the park.
(b) Theyare playing chess next Tuesday.



forms the ‘most frequent sense’ baseline (Section 73peech event.

TSD is fundamental to sentence understanding TSD fits well with modern linguistics theories.
and thus to NLP applications such as textual infefcor example, in the construction grammar frame-
ence, question answering and information retrievalvork (Goldberg, 1995), the ‘construction’ is the ba-
To the best of our knowledge, this is the first paper tsic unit, comprised of a form and a meaning. Words,
address this task. In Section 8 we discuss researghultiword expressions, and syntactic forms are all
directions relevant to TSD placing the new task irvalid constructions. Itis thus very natural to address
the context of the previous research of syntactic anthe sense disambiguation problem for all of these. In

biguity resolution. this paper we focus on tense constructions.
For many NLP applications, it is very important
2 TSD Motivation to disambiguate the tense forms of the sentence.

Among these applications are: (1) machine transla-
In this work we follow linguistics theories that posittjon as the actual time described by one tense form
that tense does not directly reflect conceptual time &$ the source language may be described by a dif-
one might think. Dinsmore (1991) and Cutrer (1994)crent tense form in the target language; (2) under-
explain that the same tense may end up indicatinganding the order of events in a text; (3) textual en-
very different objective time relations relative to thetailment, when the optional entailed sentences refer
sentence production time. to the time and/or order of events of the source sen-

Fauconnier (2007) exemplifies such phenomengence. Many more examples also exist.
In the following sentences, the present tense corre-

sponds to thduturetime: (1) The boat leaves next3 The TSD Task

week. (2) When he comes tomorrow, | will tell him In this section we formally define the TSD task, dis-

aboutthe party. (3) If | see him next week, I wil aSkcuss its nature vs. WSD, and describe various con-

him to call you. ) crete task variants.
In contrast, the following present tense sentences

talk about events that happened in gaest (1) | am Task definition. First, some essential terminol-
walking down the street one day when suddenly thiegy. The function of syntax is to combine lexi-
guy walks up to me. (2) He catches the ball. Heal items (words, multiword expressions) to express
runs. He makes a touchdown. (morning-after sporgeanings. This function is achieved through syntac-
report). tic devices The most common devices in English
Another set of examples is related to the pagtre word order, morphology, and the usage of auxil-
tense. In the following sentences it corresponds t@ry words. AnAbstract Syntactic Form (ASH$ a
apresentime: (1) Do you have a minute? | wantedparticular set of devices that can be used to express a
to ask you a question. (2) | wish | lived closer to myset of meanings. Aoncrete Syntactic Form (CSF)
family now. In contrast, in the following two sen- is & concrete set of words generated by an ASF for
tences, it corresponds to a future time: (1) If | had@Xpressing a certain meaning in an utterancé
the time next week, | would go to your party. (2) ICSF isambiguoustf its generating ASF has more
cannot go to the concert tonight. You will have tothan one meaning, which is the usual case. In this
tell me how it was. case we also say that the ASF is ambiguous.
Fauconnier explains these phenomena by a mode|Here are a few examples. The ‘present progres-
for the grammar of tense. According to this model$ive’ ASF has the form ‘am/is/are V-infy’ which
the grammar specifies partial constraints on time ar@NPloys all three main devices. It is ambiguous,
fact/prediction status that hold locally between men- 1y some linguistic theories, the central notion is trn-
tal spaces within a discourse configuration. We mastruction which combines an ASF (referred to as the form of
obtain actual information about time by Combiningthe construction) with a single meaning (Goldberg, 1995).

. - . . 2Note that strictly speaking, these are three different ASFs.
this with other available pragmatic information. AC_We refer to this ASF family by a single name because they have

cordingly, the same tense may end up indicatingie same set of meanings and because it is standard to treat them
very different objective time relations relative to theas a single ASF.



as shown in Section 1. The ‘present simple’ ASHEENnglish Grammar In Use series, comprising three
has the form ‘V(+s)?, and is ambiguous as well: in books (essential, intermediate and advanced) (Mur-
the sentence ‘My Brother arrives this evening’, theohy, 2007; Murphy, 1994; Hewings, 2005); (2)

CSF ‘arrives’ conveys the meaning of ‘a future eventhe English grammar texts resulting from the sem-
arranged for a definite time’, while in the sentencénal corpus-based Cobuild project (elementary, ad-
‘The sun rises in the East’ the meaning is that of &anced) (Willis and Wright, 2003; Willis, 2004); (3)

repeated event. the Longman Grammar of Spoken and Written En-

vs. . The task is to disambiguate™ )i C L tionary, in many cases itis hard

_thelsenlwag_tflfc serﬁe of \?Vtsegsihs_yr_ltacglc_ form.hTSt% draw the line between senses. In order to be able
IS clearly dierent from - | NIS 1S obvious when,, explore the computational limits of the task, we

the CSF comprises two words that are not a mumﬁave adopted a policy of fine sense granularity. For

word expression, and is usually also the case Whene!;&ample, senses 1 and 3 of the ‘present simple’ ASF

comprises a single word. Consider the ‘My Brothe{n Table 1 can be argued to be quite similar to each

arrives this evening’ example above. While the Ver%ther, having a very fine semantic distinction. A spe-

‘arrive’ has two main senses: ‘reach a place’, and... .Y
P ific application may choose to collapse some senses

‘begin’, as in ‘Summer has arrived’, in that example
into one.

\é\;et:](;c‘ljﬁse?égﬁiﬁac?:fuauon of the tense SenseWe used the conventi_onal ASF names, which
should not be confused with their meanings (e.g., the
Concrete task variants. Unlike with words, the ‘present simple’ ASF can be used to refefuture,
presence of a particular CSF in a sentence is nbpt present, events, as in Table 1, sense 4).
trivially recognizable. Consequently, there are three The ASF set thus obtained is: real conditionals,
versions of the TSD task: (1) we are given the sertypothetical conditionals, wishes, reported speech,
tence, a marked subset of its words comprising present simple, present progressive, present perfect,
CSF, and the ASF that has generated these worgsgesent perfect progressive, past simple, past pro-
(2) we are given the sentence and a marked subsgessive, past perfect, past perfect progressive, ‘be
of its words comprising a CSF, without knowing thet going + to + infinitive’, future progressive, future
generating ASF; (3) we are given only the sentencgerfect, future perfect progressive, ‘would’ tense
and we need to find the contained CSFs and theiorms, and ‘be + to + infinitive’. Note that the first
ASFs. In all cases, we need to disambiguate theur ASFs are not direct tense forms; we include
sense of the ASFs. We feel that the natural granikem because they involve tensed sub-sentences
larity of the task is captured by version (2). How-whose disambiguation is necessary for disambigua-
ever, since the ASF can usually be identified usingon of the whole ASF. The total number of possible
relatively simple features, we also report results fogenses for these 18 ASFs is 103.
version (1). The main difficulty in all versions is Table 1 shows the complete senses set for the
identifying the appropriate sense, as is the case withresent simple’ and ‘be + to + infinitive’ ASFs, plus

WSD. an example sentence for each sense. Space limita-
) o tions prevent us from listing all form senses here;
4 The Syntactic Sense Dictionary we will make the listing available online.

A prerequisite to any concrete experimentation wit
the TSD task is a syntactic sense dictionary. Bas

on a thorough examination of three major EnglisRye selected 3000 sentences from the British Na-
grammar projects, we compiled a set of 18 COMggna| Corpus (BNC) (Burnard, 2000), containing

mon English tense ASFs and their possible senseg;o, csFs (1.56 per sentence). These sentences
The projects are (1) the Cambridge University Presgjih their CSFs were sense annotated. To select

3Again, these are two ASFs, one adding an ‘s’ and one using!€ 3000 Ser_‘tences_' we randomly samplgd sentences
the verb as is. from the various written and spoken sections of the

Corpus Creation and Annotation



Present Simple senses are represented; the number of senses repre-
1 | Things that are always true sented by at least 15 CSFs is 77 (out of 103, average
2 ggglfacroallgénrg;eegg]t;e;:tions and habits number of CSFs per sense s 45.65).

We implemented an interactive application that

My parents often eat meat. .
3 [ General facts displays a sentence and asks an annotator to (1) mark

Mr. Brown is a teacher. words that participate in the CSFs contained in the
4 | Afuture event arranged for a definite time sentence; (2) specify the ASF(s) of these CSFs; and

The next train arrives at 11:30. (3) select the appropriate ASF sense from the set
5 | Plans, expectations and hopes of possible senses. Annotators could also indicate

We hope to see you soon. ‘none of these senses’, which they did for 2.6% (122
6 | Ordering someone to do something out of 4702) of the CSFs.

Take your hands out of your pockets!
7 | Something happening now, with verbs that are
not used in the present progressive in this sens

Annotation was done by two annotators (univer-
o sity students). To evaluate inter-annotator agree-

I do not deny the allegation. ment, a set of 210 sentences (7% of the corpus),
8 | Events happening now (informal; containing at least 10 examples of each ASF, was

common in books, scripts, radio etc.) tagged by both annotators. The CSF+ASF identifi-

She goes up to this man and looks into his eyes. cation inter-annotator agreement was 98.7%, and the
9 | Pastactions inter-annotator agreement for the senses was 84.2%.

I was sitting in the park reading a newspaper | e will make the annotated corpus and annotation
when all of a sudden this dog jumps at me. guidelines available online

10 | Newspaper headlines, for recent events

Quake hits central Iran. 6 Learning Algorithm
11 | When describing the content of a book

Thompson gives an exhaustive list in chapter sjx.In this section we describe our learning model for
‘be + to + infinitive’ the TSD task. First, note that the syntactic sense is
1 | Events that are likely to happen in the near futrenot easy to deduce from readily computable anno-
Polllc.e officers are to visit every home in the are atations such as the sentence’s POS tagging, depen-
2 | Official arrangements, formal instructions & of- dency structure, or parse tree (see Section 8). Hence,

ders | . lqorithm is definitel ded
You are not to leave without my permission. a learning algorithm is definitely needed.

3 | In an if-clause to say that something must As common in supervised learning, we encode the
happen before something else can happen CSFs into feature vectors and then apply a learning
If the human race is to survive, we must look at algorithm to induce a classifier. We first discuss the
environmental problems now. feature set and then the algorithm.

Table 1: The full set of senses of the ‘present simpleFeatures. We utilize three sets of features: basic
and ‘be + to + infinitive’ abstract syntactic forms (ASFs).features, lexical features, and a set of features based
with an example for each. on part-of-speech (POS) tags (Table 2). The ‘aux-
iliary words’ referred to in the table are the manu-
corpus, giving each section an equal weight. T8lly specified words for each ASF that have assisted
guarantee ample representation of ASFs, we maHSs in sampling the corpus (see Section 5). ‘Content
ually defined auxiliary words typical of each ASFWwords’ are the non-auxiliary words appearing in the
(e.g., ‘does’, ‘been’ etc), and sampled hundreds @SI’-“. Content words are usually verbs, since we fo-
sentences for each set of these auxiliary words. T@/s here on tense-related ASFs. The position and
make sure that our definition of auxiliary words doeélistance of a form are based on its leftmost word
not skew the sampling process, and to obtain ASHauxiliary or content).
that do not have clear auxiliary words, we have also The personal pronouns used in the position fea-
added 1000 random sentences. The number of C8#tes are: |, you, he, she, it, they, and we. For
instances obtained for each ASF ranges from 100 4ygyally, there is a single content word. However, there may
(future perfect) to over 850 (present simple). Allbe more than one, e.g. for phrasal verbs.



simplicity, we considered every word starting with
a capital letter that is not the first word in the sen
tence to be a name.

Each ‘Conditional’ CSF contains two tense CSFS

The one that is not the CSF currently encoded by the;

features is referred to as its ‘mate’.

For the time lexical features we used 16 word
(e.g., recently, often, now). For the reported speeg
lexical features we used 14 words (e.g., said, replie
wrote’). The words were obtained from the gram-
mar texts and our corpus development set.

The POS tagset used by the POS-based features IS,

that of the WSJ PennTreebank (see Section 7). Tk
possible verb tags in this tagset aw for the base
form, vBD for past tenseyBN for past participle,
VBG for a present participle or gerund (-ing)BpP

for present tense that is not 3rd person singular, ar
vBz for present simple 3rd person singular.

Conjunctions and prepositions are addresse
through the POS tagsc andIN. Using thePRrP
tag to detect pronouns or lexical lists for conjunct
tions and prepositions yielded no significant chang
in the results.

In Section 7 we explore the impact each of thé
feature sets has on the performance of the algorithn
Our results indicate that the basic features have tk
strongest impact, the POS-based features enhar
the performance in specific cases and the lexical fe
tures only marginally affect the final results.

Algorithm. Denote byx; the feature vector of a
CSF instance, by C; the set of possible labels for
x;, and bye; € C; the correct label. The training
setis{(z;,Cj,c;j)}_;. Let (xp+1,Cpnyr) be atest
CSF. As noted in Section 3, there are two version
of the task, one in whicli’; includes the totality of

Basic Features
| Form words.Auxiliary and content words of the CS}

Form type.The type, if it is known during test time.

Other forms. The auxiliary and content words (arn
" type, if known) of the other CSFs present in the s
ence.

Position. The position of the CSF in the sentence,
5 distance from the end of the sentence, whether it
hthe first (last) three words in the sentence, its dista|
d from the closest personal pronoun or name.

Wish. Is there a CSF of type ‘wish’ before the e

coded form, the number of CSFs between that ‘wi
| form and the encoded CSF (if there are several s

its
5in
nce

h
sh’
uch
led

P Wish’ forms, we take the closest one to the encoq
1E1‘orm).

Conditional.Does the word ‘if’ appear before the e

coded form, is the ‘if’ the first word in the sentenc

the number of CSFs between the ‘if’ and the encoc

wdorm, the auxiliary and content words (and type,
known) of the mate form, is there a comma betwe
he encoded form and its mate form, does the w
then’ appear between the encoded form and its nj
form.

Punctuation.The type of end of sentence marker, d
€tance of the encoded form from the closest prede
sor (successor) comma.

2 Lexical Features

nTime.Time words appearing in the sentence, if any.
neReported speechReported speech words appeari
da the sentence, if any.

Be.Does the encoded form contain the verb ‘be’.

Features Based on POS Tags

Form.The POS of the verb in the encoded form.
Other forms.The POS of the verb in the other CS
in the sentence.

POS tags.The POS tags of the two words to the lg
(right) of the encoded form.

Conjunction POSIs there a Conjunctiondc) be-
tween the encoded form and its closest predece
(successor) form, the distance from that conjunctig

L
e,
led
if
2en
ord
ate

S-
Ces-

s

2ft

[

ssor
bn.

sense labels, and one in which itincludes only the Ig
bels associated with a particular ASF. In both case
the task is to select which of the labelsGf 1 is its
correct labek;, ;1.

“Preposition POSIs there a Prepositiony) between
Sthe encoded form and its closest predecessor (sug
sor) form, the distance from that preposition.

Cces-

OTable 2: Basic features (top), lexical features (middle)

Owing to Fhe task structure, it is prgferable t and POS tags-based features (bottom) used by the TSD
use an algorithm that allows us to restrict the pos;_<«ifier

sible labels of each CSF. For both task versions, this

would help in computing better probabilities during

the training stage, since we know the ASF type ofype is known at test time, this would also help dur-
training CSFs. For the task version in which the ASkng the test stage.

5These are all in a past form due to the semantics of the FOr the version in which ASF type is known at test
reported speech form. time, we experimented in two scenarios. In the first,



we take the ASF type at test time from the manuaults. For the Perceptron, most parameter config-
annotation and provide it to the algorithm. In theurations lead to good results (much better than the
second, instead of the manual annotation, we impl&aseline), but these were a few percent worse than
mented a simple rule-based classifier for selectintpe best Winnow or Naive Bayes results.

ASF types. The classifier decides what is the type of

an ASF according to the POS tag of its verb and td Experimental Results

its auxiliary words (given in the annotation). For ex- . -
y @ ) Iéxperlmental setup. We divided the 3000 anno-

ample, if we see the auxiliary phrase ‘had been’ an .
the verb POS is noteG, then the ASF is ‘past per- tated sentenC(_es. (containing 4702 CSFs) to three
datasets: training data (2100 sentences, 3183

fect simple’. This classifier's accuracy on our devel-
opment (test) data is 94.1 (91.6)%. In this scenari forms), development data (300 sentences, 498

when given a test CSE,,. 1, its set of possible la- ?orms) and test data (600 sentences, 1021 forms).

belsC,, ., is defined by the classifier output. In thewe used the development data to design the features

features in which ASF type is used (see table 2), it ifsOr our learning model and to tune the parameters

e L of the sNow sequential model. In addition we used
taken from the classifier output in this case. . . o
. : this data to design the rules of the ASF type classifier
The sequential model algorithm presented b

Even-Zohar and Roth (2001) directly supports thi which is not statistical and does not have a training

label restriction requiremert We use thesnow phsseih POS feat induced POS t .
learning architecture for multi-class classification orthe catures, we inauce ags using

(Roth, 1998), which contains an implementation o%he MXPOST PQS tagger (Ratnaparkhl, 1996). The

that algorithm. Thesnow system allows us not tagger was trained on sections 2-21 of the W_SJ Pen-
to define restrictions if so desired. It also lets ug Treebank (Marcus etal., 1993) ann_otated \.Nlth ggld
choose the learning algorithm used when it build§tandaerI POS tags. We used a publicly available im-

its classifier network. The algorithm can be Percedqlementatlo.n of theds.equJ]entEMO\:jv.r.nodeF. he fi
tron (MacKay, 2002), Winnow (Littlestone, 1988) TWe eerrlmenti |2tFree con |t|onks. In the first
or Naive Bayes (MacKay, 2002) In Section 7 we (_ ypeUnknown), the ASF type is not known at test

analyze the effect that these decisions have on ofie: In the Ia_SF two, _'t IS known at test tlme_.
results. These two conditions differ in whether the type is

taken from the gold standard annotation of the test
Classifier Selection. Investigating the best config- sentences (TypeKnown), or from the output of the
uration of thesnow system with development data, simple rule-based classifier (TypeClassifier, see Sec-
we found that Naive Bayes gave the best or clostion 6). For both conditions, the results reported be-
to best result in all experimental conditions. Wdow are when both ASF type features and possible
therefore report our results when this algorithm isabels sets are provided during training by the man-
used. Naive Bayes is particularly useful when reladal annotation. This is true also for the training of
tively small amounts of training CSF instances ar¢he MFS baseline (see beldl)
available (Zhang, 2004), and achieves good results We report an algorithm’s quality using accuracy,
when compared to other classifiers for the WSD tasthat is, the number of test CSFs that were correctly
(Mooney, 1996), which might explain our resultsresolved by the algorithm divided by the total num-
Fine tuning of Winnow parameters also leads to higber of test CSFs.

performance (sometimes the best), but most other

parameter configurations lead to disappointing ré3aseline. We compared the performance of our al-

- gorithm to the ‘most frequent sense’ (MFS) base-
5Note that the name of the learning algorithm is derived

from the fact that it utilizes classifiers to sequentially restrict 8http:/I2r.cs.uiuc.eduicogcomp/asoftware.php?

the number of competing classes while maintaining with higlskey=SNOW

probability the presence of the true outcome. The classification °For the TypeClassifier condition, we also experimented us-

task it performs is not sequential in nature. ing an ML technique that sometimes reduces noise, where train-
"Or a combination of these algorithms, which we did noting is done using the classifier types. We obtained very similar

explore in this paper. results to those reported.



___| TypeUnknown | TypeClassifier| TypeKnown |  (|eff), when it is decided at test time by a rule-based
Ouralgorithm | 49.7% 58.8% 62%

MES baseline 13.5% 22.9% 26.7% classifier (middle) and when it is known at test time
_ (right). Our algorithm outperforms the MFS base-
Table 3: Performance of our algorithm and of the MFSjna in Il three conditions. As expected, both our al-

baseline where at test time ASF type is known (1ight)y o i and the MFS baseline perform better when
unknown (left) or given by a simple rule-based cIassifielg

(middle). Our algorithm is superior in all three condi-ASF t}’Pe information is avaiIabI(_alat test timg (Type-
tions. Classifier and TypeKnown conditions), and improve

as this data becomes more accurate (the TypeKnown

Constrained Model Unconstrained Classifier] condition)w
All Base+Lexical All Base+Lexical &
features| features | features| features Analyzing the per-type performance of our algo-
0, 0, 0, 0, . . .
:ey;ﬁres 57.9% S7.1% 53% 50.1% rithm reveals that it outperforms the MFS baseline
Notype | 57.2% 55.4% 48% 42.6% for each and every ASF type. For example, in the
features TypeKnown condition, the accuracy gain of our al-

Table 4: Impact of POS features. When the constrainéd"ithm over the baseliné varies from 4% for the

model is used (left section), POS features have no effe@resent perfect’ to 30.6% and 29.1% for the “past

on the results when ASF type information is encodedoerfect’ and ‘present simple’ ASFs.

When an unconstrained classifier is used, POS featuresBelow we analyze the roles of the different com-

affect the results both when ASF type _features are Us?ﬂ)nents of our learning algorithm in performing the

and when they are not (see discussion inthe text). - tgp ask. Since this is the first exploration of the
task, it is important to understand what properties

line. This baseline is common in semantic disamare essential for achieving good performance. The
biguation tasks and is known to be quite strong. I&nalysis is done by experimenting with development
the condition where the ASF type is not known aflata, and focuses on the TypeKnown and TypeUn-
test time, MFS gives each form in the test set thknown conditions. Patterns for the TypeClassifier
sense that was the overall most frequent in the traigondition are very similar to the patterns for the

ing set. That is, in this case the baseline gives aflypeKnown condition.

test set CSFs the same sense. When the ASF ty‘Pﬁe Possible Senses Constraint. We use the

is k i MFS gi h F th .
I known at test time, MFS gives eac test .C.S t I%arnlng model of Even-Zohar and Roth (2001),
most frequent seng® that ASF typén the training . . .

which allows us to constrain the possible senses

set. That is, in this case all CSFs having the samgz Ut vector can get to the senses of its ASF
ASF type get the same sense, and forms of differefil’ '"P 9

tvoes are quaranteed to aet different senses type. We ran our model without this constraint dur-
P g g ' . ing both training and test time (recall that for the

Recall that the condition where ASF type is . . .
. ) . . above results, this constraint was always active dur-
known at test time is further divided to two condi-

tions. In the TypeKnown condition, MFS selects th ing training). In this case, the only difference be-
een the TypeKnown and the TypeUnknown con-
most frequent sense of the manually created AS

type, while in the TypeClassifier condition it select ditions is whether ASF type features are encoded at

the most frequent sense of the type decided by thgst tme. In the_ TypeKnown condition, the accu-
e . IS .racy of the algorithm drops from 57.9% (when us-
rule-based classifier. In this condition, if the classi-

. . . . ing training and test time constraints and ASF type

:ﬁ;{gf:iss 3vgl1||stake, MFS will necessarily make f’Fleatures) to 53% (when using only ASF type fea-

! . : tures but no constraints). In the TypeUnknown con-

Note that a random baseline which selects a Sens&on accuracy drops from 57.24% (when using
for every test CSF from a uniform distribution over ’

h iol N 103 in our would trraining time constraints) to 48.03% (when neither
veiyp;?ossrlye senses ( our case) wou SCO8nstraints nor ASF type features are used). Note

Recall that the performance of the rule-based ASF type
Results. Table 3 shows our results. Results argassifier on test data is not 100% but 91.6% (Section 6).

shown where ASF type is not known at test time faccuracy(algorithm) — accuracy(MFS).



that the difference between the constrained mod6l5% decrease when using the unconstrained classi-
and the unconstrained model is quite large. fier. Thatis, our model does not require these lexical
The MFS baseline achieves on development dataatures, which is somewhat counter-intuitive. Lex-
42.9% and 13.2% in the TypeKnown and TypeUnical statistics may turn out to be helpful when using
known conditions respectivel§. Thus, the algo- a much larger training set.
rithm outperforms the baseline both when the con- . . .
strained model is used and when an unconstrain(—:'c?ond't'o,na.II a1nd Wish Features. The conqun-_
multi-class classifier is used. als and ‘wish’ features have a more substantial im-

Note also that when constraints on the possibl%ac'[on the res.ults, as they have a role in defm_mg the
overall syntactic structure of the sentence. Discard-

Iabgls are available at training time, tesF tlme_con_i-ng these features leads to 4% and 1.4% degradation
straints and ASF type features (whose inclusion is . .
. in model accuracy when using the constrained and
the difference between the TypeKnown and Type- i -
Unknown) have a minor effect on the results (57.9%mconstra|ned models respectively.
for TypeKnown compared to 57.24% for TypeUn-g Relevant Previous Work
known). However, when training time constraints
on the possible labels are not available at trainins far as we know, this is the first paper to address
time, ASF type features alone do have a significaitbe TSD task. In this section we describe related
effect on the result (53% for TypeKnown comparedesearch directions and compare them with TSD.
to 48.03% for TypeUnknown). A relevant task to TSD is WSD (Section 1 and
Section 3). Many algorithmic approaches and tech-
POS Features. We next explore the impact of the niques have been applied to supervised WSD (for
POS features on the results. These features encodgiews see (Agirre and Edmonds, 2006; Mihalcea
the inflection of the verbs in the CSF, as well as thgng pedersen, 2005: Navigli, 2009)). Among these
POS tags of the two words to the left and right of thgyre various classifiers, ensemble methods combin-
CSF. ing several supervised classifiers, bootstrapping and
Verb forms provide some partial information COor-semi-supervised learning methods, using the Web
responding to the ASF type features encoded at thg 3 corpus and knowledge-based methods relying
TypeKnown scenario. Table 4 shows that when bothainly on machine readable dictionaries. Specif-
label constraints and ASF type features are usegglly related to this paper are works that exploit
POS features have almost no impact on the final r&yntax (Martinez et al., 2002; Tanaka et al., 2007)
sults. When the constrained model is used but AS&qd ensemble methods (eg (Brody et a|_1 2006))

type features are not encoded, POS features have@nysp. The references above also describe some
effect on the results. We conclude that when US|ngnsupervised word sense induction algorithmsl

the constrained model, POS features are importantoyr TSD algorithm uses thenow algorithm,

mainly for ASF type information. When the uncon-which is a sparse network of classifiers (Section 6).
Strained CIaSSiﬁer iS Used, POS featureS have an q'fhus’ |t most resembles the ensemble approach to
fect on performance whether ASF type features afg/sp. That approach has achieved very good results

encoded or not. In the last case the impact of PO several WSD shared tasks (Pedersen, 2000; Flo-
features is larger. In other words, when using an Urkan and Yarowsky, 2002).

constrained classifier, POS features give more thangjnce temporal reasoning is a direct applica-

ASF type information to to the model. tion of TSD, research on this direction is relevant.
Such research goes back to (Passonneau, 1988),

Lexical Features. To explore the impact of the hich introduced th ¢ | .
lexical features, we removed the following features/ich Introduce PUNDIT temporal reasoning

time words, reported speech words and ‘be’ indi:c‘yStem' For e_ach tensed clauwNplT first qle:
ides whether it refers to an actual time (as in ‘We

cation features. We saw no impact on model pel‘;-

formance when using the constrained model, andfllaew TWA to B,osto‘n) or not (as in Tgurlsts flew
WA to Boston’, or ‘John always flew his own plane

2Note that these numbers are for development data only. t0 Boston’). The temporal structure of actual time



clauses is then further analyze@uUNDIT's classi- in a syntactic sense dictionary. Unlike in other se-
fication is much simpler than in the TSD task, admantic disambiguation tasks, the sense to be disam-
dressing only actual vs. non-actual tinUNDIT's  biguated is not lexical but of ayntacticstructure.
algorithmic approach is that of a Prolog rule basetlVe prepared a syntactic sense dictionary, annotated
system, compared to our statistical learning corpust corpus by it, and developed a supervised classifier
based approach. We are not aware of further réer sense disambiguation that outperformed a strong
search that followed their sense disambiguation dbaseline.
rection. An obvious direction for future work is to expand
Current temporal reasoning research focuses d¢he annotated corpus and improve the algorithm by
temporal ordering of events (e.g., (Lapata, 200G&xperimenting with additional features. For exam-
Chambers and Jurafsky, 2008)), for which an agle, we saw that seeing the full paragraph containing
cepted atomic task is the identification of the tema sentence helps human annotators decide on the ap-
poral relation between two expressions (see e.g., tipgopriate sense which implies that using larger con-
TempEval task in SemEval '07 (Verhagen et al.texts may improve the algorithm.
2007)). This direction is very different from TSD, TSD can be a very useful operation for various
which deals with the semantics ofdividual con- high-level applications, for example textual infer-
crete tense syntactic forms. In this sense, TSD is amnce, question answering, and information retrieval,
even more atomic task for temporal reasoning.  in the same way that textual entailment (Dagan et
A potential application of TSD is machine trans-al., 2006) was designed to be. In fact, TSD can assist
lation where it can assist in translating tense and atextual entailment as well, since the sense of a tense
pect. Indeed several papers have explored tense dndm may provide substantial information about the
aspect in the MT context. Dorr (1992) explored theelations entailed from the sentence. Using TSD
integration of tense and aspect information with lexi such applications is a major direction for future
ical semantics for machine translation. Schiehlework.
(2000) analyzed the effect tense understanding has
on MT. Ye and Zhang (2005) explored tense taggin
in a cross-lingual context. Ye et al., (2006) extractegleferences

featqres for tense translation between Chinese agfleyo Agirre and Philip Edmonds (Eds). 200@Vord

English. Murata et al., (2007) compared the perfor- sense Disambiguation: Algorithms and Applications

mance of several MT systems in translating tense Springer Verlag.

and aspect and found that various ML techniquesimothy Baldwin, Mark Dras, Julia Hockenmaier, Tracy

perform better on the task. Holloway King, and Gertjan van Noord. 2007. The
Another related field is ‘deep’ parsing, where a Impact of Deep Linguistic Processing on Parsing

sentence is annotated with a structure containing in- Téchnology. IWPT '07.

formation that might be relevant for semantic interDOUglanB'bzr’ Stclig Johansson, Geoffrey Leech, Susan

pretation (e.g. (Hajic, 1998: Baldwin et al., 2007)). conard, Edward Finegan. 1998ongman Grammar

- of Spoken and Written Englishongman.

TSD senses, however, are not explicitly represented o .
in these grammatical structures. and we are ng,[amuel Brody, Roberto Navigli and Mirella Lapata.
9 ' 2006. Ensemble Methods for Unsupervised WSD.

aware of any work that utilized them to do some- ac| _.coLING '06.
thing close to TSD. This is a good subject for futurq_ou Burnard. 2000.The British National Corpus User

research. Reference Guide Technical Report, Oxford Univer-
sity.
9 Conclusion and Future Work Nathanael Chambers and Dan Jurafsky. 2008. Jointly

] ] ) Combining Implicit Constraints Improves Temporal
In this paper we introduced the Tense Sense Disam-ordering. EMNLP "08.

biguation (TSD) task, defined as selecting the COfgichelle Cutrer. 1994. Time and Tense in Narratives and
rect sense of a concrete tense syntactic formin a sen-in Everyday LanguagePhD dissertation University
tence among the senses of abstract syntactic formsof California at San Diego.
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