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We present a new video stabilization technique that usgsqiie scene re-
construction to treat jittered video sequences. Unlikehogs that recover
the full three-dimensional geometry of the scene, this rhadeounts for
simple geometric relations between points and epipolaslitJsing this
level of scene understanding, we obtain the physical coress of 3D sta-
bilization methods yet avoid their lack of robustness andhmatational
costs. Our method consists of tracking feature points irstlese and using
them to compute fundamental matrices that model stabilezedera mo-
tion. We then project the tracked points onto the novel Bzaoi frames
using epipolar point transfer and synthesize new framegjusiage-based
frame warping. Since this model is only valid for static sgnwe develop
a time-view reprojection that accounts for non-statior@ints in a princi-
pled way. This reprojection is based on modeling the dynamfcsmooth
inertial object motion in three-dimensional space andialas to avoid the
need to interpolate stabilization for moving objects frdmeit static sur-
rounding. Thus, we achieve an adequate stabilization whtntbe camera
and the objects are moving. We demonstrate the abilitiesuphpproach
to stabilize hand-held video shots in various scenariames with no par-
allax that challenge 3D approaches, scenes containingriviai-parallax
effects, videos with camera zooming and in-camera staliia, as well as
movies with large moving objects.

Categories and Subject Descriptors: l.4.81§ige Processing and Com-
puter Vision]: Enhancement; 1.4.9 fnage Processing and Computer Vi-
sion]: Applications; 1.3.8 Computer Graphics]: Applications

Additional Key Words and Phrases: video stabilization,eiavew synthe-
sis, image warping, epipolar geometry

1. INTRODUCTION

Shooting pleasing smooth video sequences from a movingreame

is a non-trivial task which is often dealt with using rathevalved
solutions. Film-makers and broadcasting studios mourit tiaen-
eras on wheeled dollies that roll on tracks or use steadicatrish
are hand-held mechanical stabilizing systems. Often, thigy d
tracks need to be customized to the particular scene anditake
to set up. There are various scenarios where both solutiens-a
applicable or do not provide enough stabilization. This ivades
the development of computer-based video stabilizatioardtgns.

Existing stabilization techniques can be roughly dividetb itwo

categories based on the degree of complexity of the modgl the

use to interpret the input video. The first class consistsnoF t
dimensional (2D) methods that do not attempt to recover any e
plicit three-dimensional (3D) geometry of the scene. Thas¢h-
ods explain the observed motion in the video using 2D transde
tions in the image plane and search for their parametersleStzo-
tions are obtained by fixating or smoothing these parameiéies

formation. In general, 2D stabilization is computatiopafficient,
robust and is often found in still and video cameras [Luka@&0
However, when the video contains non-planar geometry aad th
camera shake is not purely rotational, this level of scendetiagy

is insufficient to account for parallax effects due to shake.

The second type of methods tackles these difficulties usirges
modeling of a greater complexity where various 3D quarstitiee
recovered. These 3D stabilization methods [Buehler et G012
Bhat et al. 2007; Liu et al. 2009] track a sparse set of fegianets

along the video and use the correspondences to recover the 3D

camera pose and the 3D location of every point using strectur
from-motion (SFM) [Hartley and Zisserman 2000]. Stabtliaa is
then achieved by computing smoother camera paths and eeproj
ing the 3D points to construct the novel frames. Liu et al 020
demonstrate stabilization of scenes with highly-chalieggeom-
etry by combining this approach with a content preservingping.
Nevertheless, the use of a richer model introduces varicekw
nesses. SFM is a non-linear problem which is typically sbiveing
bundle-adjustment [Triggs et al. 2000] and becomes costiyoal-
erately large numbers of tracked points. It is also unstablen the
scene complexity drops below the model complexity; smatiem
translation or approximately planar scene geometry (feai)
make it hard to determine the 3D location variables.

In view of these shortcomings, Liu et al. [2011] smooth tlaeked
point trajectories in 2D and do not recover any 3D informatio
This corresponds, however, to a very loose model that caargen
ate inconsistent point configurations. Therefore, Liu etedtrict
the 2D point trajectories to a low-dimensional subspacechvis
known to be approximately valid for projections of static 8&&nes
in short time intervals [Irani 2002]. This approach is shaarbe
more robust to degenerate camera motions than 3D approacties
at the same time, handles videos containing parallax kterthe
existing 2D stabilization. Since the low-dimensionaligsamption
holds for static scenes, Liu et al. discard feature poirds torre-
spond to moving objects. As a result, moving objects ardlszat
using interpolated warp constraints computed for stati&kgmund
points. Furthermore, this method as well as the 3D techsimqen-
tioned above operate on a limited number of points that atkew
liable tracking. In general these points are not necegsspilead
evenly across the frame, leaving large portions of it withcluse
and relevant warping constraints.

In this paper we present a new video stabilization technibaé
uses a mid-level scene modeling, knownpegjective reconstruc-

tion [Hartley and Zisserman 2000]. This model does not recover
explicit 3D point locations or 3D camera pose, rather it acts for
simple geometric relations between points and epipolasliihis
level of scene understanding is sufficient for obtainingghgsical
correctness of 3D stabilization methods while avoidingrtasso-
ciated drawbacks. More specifically, our method starts bgktr
ing points along the video and uses them to comguridamental

excess jittered movement is removed by the same type of-trans matrices that encapsulate the epipolar relations between suceessiv
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frames. We use these relations to generate virtual poiectaies
that last long enough to define the stabilized views by fitggthem
in time with large smoothing kernels. We then use the comesp
dences between the jittered input and these smoothedtoragsc
to compute another set of fundamental matrices that modedtt
bilized camera views. Finally, the output frames are comguis-
ing theepipolar point transfer of Laveau and Faugeras [1994] that
uses these matrices to reproject the input points to thélizeab
novel views. This level of scene modeling allows us to cartdtr
physically-correct warp constraints, applies to scenegaofble
depth complexity, it is valid for arbitrary uncalibratedrppective
cameras and allows camera zooming and in-camera stalgilizat

The classic epipolar point transfer applies only to poihg torre-
spond to static objects in 3D space. Therefore, similarixisting
methods, this approach cannot stabilize points that belomgn-
stationary objects. To overcome this limitation, we derdveovel
time-view point reprojection that allows us to deal with rimay
objects in a principled way that models the dynamics of simoot
inertial object motion in space. Thus, we avoid the need terin
polate stabilization for moving objects based on theirictsir-
rounding and achieve adequate stabilization when bothaherm
and the object are moving. Furthermore, we describe a paick-t
ing scheme that uses the epipolar point transfer to preditter
than search, additional corresponding points. This uskeeoépipo-
lar relations considerably reduces the aperture probletraliows
us to obtain correspondences at more challenging regiomiseof
frames. We use these additional correspondences to defipinga
constraints that are spread more uniformly across the framnae
hence better capture the scene shape and aid the stabiizsti
non-planar scenes.

We demonstrate the abilities of our approach to stabilirelHeeld
video shots in various scenarios: scenes with no paralkbctial-
lenge 3D approaches, scenes containing non-trivial peraffects,
videos with camera zooming, as well as movies with large nvi
objects.

2. BACKGROUND

Here we review the existing work on video stabilization adl ag
provide some background on view interpolation methods dhat
relevant to our work.

Video Stabilization. In case of approximately planer scenes or
cases were the camera shake is strictly rotational, und4itters
can be effectively reduced based on two-dimensional réagaf
the video. In these cases the camera jitter can be explambtea
moved by a homography transformation [Hartley and Zissarma
2000]. Irani et al. [1994] treat more complex scenes by cdmpu
ing the homography that stabilizes a dominant large plaegion

in a video. The stabilized motion is computed by either fuaiin-
celing or smoothing the camera rotation component. In Bl
and Liu 2008] the stabilized camera motion is computed bgrint
polating between homography transformations using maamix
arithms. Matsushita et al. [2006] discuss additional irtguar as-
pects of video stabilization, such as extending the stagalframes

to become full-frames and reducing the motion blur.

Assuming the scene geometry and camera motion do fall ieseth
categories, such 2D stabilization methods are robust,atpem
the entire frame, require a small number of tracked pointiscam-
sume minimal computing efforts. In fact, this type of stedaition

became very common in still and video cameras where it is im-
plemented via mechanical means, either in the lens or theam
sensor [Lukac 2008]. However, most scenes do contain abct
arbitrary depths and in many scenarios, such as hand-heldrea
shoots, it is virtually impossible to avoid any translagboompo-
nent in the camera shake. In these cases parallax effectetdam
ignored and 2D modeling is insufficient for video stabilinat

In order to cope with general scenes and camera jitter, three
dimensional modeling of the scene is used. Buehler et a01R0
compute SFM and recover the 3D camera pose and the 3D logation
of the tracked feature points. This is formulated in a genana
calibrated camera setting and solved using the bundlestm@nt
method [Triggs et al. 2000]. Stabilization is then achielgadtom-
puting new regularized camera projection matrices thatlyce
smooth trajectories and reprojecting the recovered ¢33 point
locations. The output novel stabilized frames are compusidg
image-based rendering technique, similar to [Buehler.e2G01],
that blends pixels from several frames. In [Bhat et al. 2QB&]av-
eraging is replaced by coherent patch-based image sysittésie
again, the pixels come from multiple images. Constructiaghe
stabilized frame from multiple frames requires the coroesiing
source pixels to be consistent and hence these technicrasdr
equate for non-static scenes.

Liu et al. [2009] construct each stabilized frame indivitigand
therefore operate better on videos containing moving ¢hjd@hey
suggest that for the purpose of video stabilization andrgilie lim-
ited amount of motion that is needed to be removed, the gaairof
thesizing physically-correct frames can be relaxed toisgeper-
ceptual plausibility. Liu et al. proposecantent-preserving warp-
ing thats attempts to meet two objectives: displace every @édick
feature coordinate to its regularized reprojected locadiod, at the
same time, minimize the warping distortion at content-riafjions.

In a more recent work, Liu et al. [2011] avoid the computagion
cost and the various sensitives of 3D models by directly atjrey
on the 2D point trajectories. This is done by restrictingittierpre-
tation and synthesis of the trajectories to a low-dimeraditinear
subspace, according to a previous result in computer visiani
2002]. This assumption holds for static 3D points being gxtgd
by a moving camera at short time intervals. This work alsa tise
content-preserving warps to generate the output framessplad-
ing every tracked point to its smoothed position in the fram@a
top of handling parallax effects, this approach can copk effects
due to camera zoom, in-camera stabilization and rollingtshun
our work we propose a mid-level scene modeling that useskpip
geometry to handle 3D scenes with moving objects.

Image-Based View Synthesis. Here we mention another relevant
line of work that deals with synthesizing physically-catr@ovel
views without knowing or recovering explicit 3D scene getiye
Laveau and Faugeras [1994] show that accurate novel viethesyn
sis does not necessitate full 3D point or camera recovettyerat
can be carried out under a setting they call ‘weakly-catéstathat
relies only on epipolar relations. THiendamental matrix governs
these relations and matches points in one image to thezsmond-
ing epipolar linesin a second image of the same scene (both taken
by general uncalibrated perspective cameras). This medrixbe
estimated from very few point correspondences [Hartley Zisel

1The epipolar line is the projection of an optical ray thatgessthrough a
point in one image, as seen in the second image, see [Haniteyiaserman
2000].
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smoothed virtual trajectories that define novel stabilized views

Fig. 1. A schematic overview of the new video stabilizatidgoaithm. Given a set of tracked point trajectories, we gateea few long virtual trajectories
which we smooth using large filters. The smoothed paths aeé tasmodel the motion of a stabilized camera, expressedrgafuental matrices. Stabilized
point coordinates are then obtained by intersecting theodgui lines of corresponding points in the stabilized vierisally, these point coordinates are used

to create stabilized frames by warping the input frames.

serman 2000]. Laveau and Faugeras generate novel viewdiby de
ing fundamental matrices that relate the input images tantve
view using three user-specified corresponding points. Eweim-
age is synthesized by mapping corresponding pixels frormghe
views to the intersection point of their epipolar lines ie tiew im-
age. Werner et al. [1995] address visibility issues of therpolated
points in this image-based framework.

Our purposed image stabilization method also operatessdttrel

of scene modeling and does not explicitly estimate any 3Ppeha
of the scene. Faugeras et al. [1993] show that this modellsan a
be used for computing denser correspondences by regiritten
search to epipolar lines in rectified image coordinatesdéwiand
Shashua [1997] propose to use a trilinear epipolar relapoe-
viously derived in [Shashua 1995], for synthesizing novelvs.
This formulation, as well, does not recover 3D structure @imivs
specifying the virtual camera intuitively. Moreover, itrisbust to
the singular configuration where the positions of three camare
collinear.

Seitz and Dyer [1995] describe and analyze linear view juer
tion methods that operate in rectified coordinates. Theyshat
such interpolations produce physically-valid views unageneral
affine viewing model. In their interpolation algorithm, thalso
compute dense correspondences and exploit a monotonicipy p
erty that reduces the search into matching uniform interaédng
scanlines. Finally, thenstructured lumigraph method of Buehler et
al. [2001] assumes a partial knowledge of the plenoptic tianc
and constructs novel frames by blending rays from existimgso

3. NEW METHOD

The scene model used for video stabilization dictates,rdoupto

its level of complexity, to what scenes the method is appleand

its robustness to ambiguities and inaccuracies in the echdata.
As we discussed in Section 2, 2D methods are efficient andstobu
to noise, yet they are too limited in terms of the scene gegnaeid
camera shake they can handle. 3D methods, on the other feand, ¢
cope with more general scenes yet involve heavier and mdire de
cate computations that break down when scene complexifysdro
One alternative, discussed by Liu et al. [2009], is to swinHine
between models, based on the scene complexity [Torr et 88]19
Liu et al. [2011] propose a mid-level scene model that dods no
use explicit 3D geometry but relies on the approximatiorn tioa-
responding point coordinates lie in a low-dimensional dinsub-
space. We suggest to use a projective reconstruction ofcéres

which is also an intermediate level of modeling between 2B an
full 3D scene models. This is a more monolithic alternativene
pared to model-switching and it still provides the non-appmate
physically-correctness that full 3D scene model providfés.pro-
ceed by giving a brief description of this model and then aixpl
how we use it for video stabilization.

Scene reconstruction up to a projective transformationnisak
as projective reconstruction [Hartley and Zisserman 2000js
model accounts for intrinsic geometric relations betweiews of
general uncalibrated cameras. These relations are enatgusby
the fundamental matrix F which is a3-by-3 rank-two matrix that
relates a point in one view to its epipolar line in a secondvvie
More formally, if g is a point (expressed in homogeneous coor-
dinates) in one image, thdn= Fq is its corresponding epipo-
lar line in the image of the second view. Therefore, any pgint
that belongs td, i.e.,lT¢ = 0, ObeySq’T]-—q = 0. Similarly to
Faugeras et al. [1993] who discuss general novel view sgighe
we show how this level of scene modeling is sufficient for mode
ing stabilized views and projecting jittered points in thptit video
to these views. In fact, we show that this model allows us ttchma
most of the capabilities 3D stabilization methods have andhe
same time, since it does not explicitly estimate 3D quajtsuch
as point coordinates and camera pose and inner-paranieters,
fers from less ambiguous configurations and involves ligboen-
putations.

3.1 Overview

We start with an overview of our proposed video stabilizatiech-
nique and in the subsequent sections we explain and distuss a
greater depth the different components we mention herela8iyn

to existing techniques, we start by tracking an initial sefea-
ture points along the video sequence using standard 2D Ktk po
tracking algorithm [Shi and Tomasi 1994]. We denote the 28rco
dinates of the tracked points by where the super-indexspecifies
the point and the sub-indexthe frame. We use these point cor-
respondences to compute the fundamental matiitesbetween
every frames and its close-in-time frames These matrices are
estimated using the standard eight-point algorithm and BA®
estimation [Hartley 1997], under the assumption that th¢goma
ity of the pointsp? belongs to a static background. To avoid over-
fitting these matrices to a particular region in the frame pyae the
following stratification; we divide each frame into blockanging
between 16-by-16 to 32-by-32 pixels depending on the vidso-r
lution, and limit the number of points we take from each blothk
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the RANSAC estimation. We use these matrices for several pur
poses: constructing the novel stabilized camera viewsojegting

the tracked points in time, and for computing additionahpair-
respondences.

Views of a stabilized camera motion are computed from a sat-of
tual points trajectories, which we do not track but generate using
the epipolar point transfer [Faugeras et al. 1993; Hartley and Zis-
serman 2000]. As we detail in Section 3.2, this is done by selet-
ing the epipolar lines casted by corresponding points ihfpases

in future frames. If these points were viewed by a stabilizah-
eras, their 2D trajectories in the video would be smoothberg&-
fore, we filter these trajectories in time by convolving tresordi-
nates (independently) with a Gaussian kernel, and denetetult
by %¢. In general we denote smoothed quantities with tilde. We the
use the correspondence between the jittefexhd smoothed; co-
ordinates to compute another set of fundamental matfi¢esthat
relate the jittered views of the input frames and the outpaibis
lized views. Finally, we use these matrices to transfenetracked
point p! in the jittered input frames to its new coordinates in the
stabilized frame. This pipeline is illustrated in Figure 1.

The epipolar transfer is limited to static points, therefor order
to handle non-static scenes we derive, in Section 3.3, d e
view point reprojection. This procedure estimates theqmtipns of
points on moving objects in nearby frames, as if their moti@s

q)‘-] PY qt+l

Fl-],novel FH/,nOVel

AN

Fig. 2. Epipolar point transfer. Corresponding points dfedént views
(frames) cast epipolar lines that intersect at a singletpoia novel (stabi-
lized) view. This point corresponds to the projection of &2 point onto
the novel view.

bilized views and for finding additional corresponding fsiim the
input video. Figure 2 illustrates this epipolar point triamns

While two corresponding points are sufficient for using tiéns-
fer, noise and tracking and modeling errors undermine tberacy
of the transferred point location. In order to obtain a maeusate
mapping, we use correspondences from more than two views tha
provide many possible intersections and use robust aveyagi

compute a more reliable estimate. Degenerate camera cafigu

frozenintime. Since these new correspondences do belong to statictjons may lead to nearly parallel epipolar lines whose eetion

points in 3D, the epipolar point transfer can be used. Thisvalus
to compute the stabilized locations of smoothly moving otgen
the same way we stabilize static background points. Anatisere
that we address in our work is the non-uniform distributidrhe
tracked pointg? across the frame. We ugé®:* and the epipolar
point transfer to compute, rather than search for, additioorre-
spondences (on top pf). This allows us to find matches at regions
where the initial 2D KLT failed to find suitable feature pardue
the aperture problem, which is greatly reduced by the epipmin-
straints. As we explain in Section 3.4, we perform this deanca
stratified manner that achieves more uniform frame coverage

3.2 Static Scene Stabilization

In this section we explain in more detail how we use the epipol
point transfer in practice and how we compute the stabilizeds.

Epipolar Point Transfer. As mentioned earlier, the epipolar rela-
tions can be used for transferring points between diffevéaws.

Since we use this mechanism extensively and extend it to non-

stationary scenes in Section 3.3, we review here the epipalas-
fer of Faugeras et al. [1993]. Assumeare projections of a static
3D point in different viewsg, e.g., camera views of different frames
in our context. The epipolar lines casted by the poifits a novel
view are given by, = Ftm°velg, whereFtm°ve! are the fundamen-
tal matrices relating the different viewgo the novel view, e.g., a
stabilized or future frame in our application. Since thegp@ar
lines share the same 3D point, they intersect sihgle point ¢ in
the novel view. This point is given by x I, for everyt # ¢’ and it
is the projection of the 3D point onto the novel view. Hencasdxl
solely on epipolar relations, one can transfer two or momeeco
sponding points to new views without extracting their 3Dations
or any camera information. We use this mechanism for comguti
long virtual trajectories that are needed for modeling tabiized
views, map tracked jittery points to their new coordinatethe sta-

is less accurate. Therefore, we discard intersectionsdagtwnes
whose difference in orientation falls beldws degrees. Points that
are close to the epipdleare algebraically close to the kernel of
the fundamental matrix and hence the vector norm of the cespe
tive epipolar lines is small, indicating they are more siresito
noise. Therefore, we discard lines with norm smaller th@r? (in
normalized pixel coordinate'siand use the average of the remain-
ing intersection points as the transferred point. We dedlaat the
corresponding points are unreliable for transfer when thadce
between the median and average intersection points arethwaore
5 pixels apart (for 640-by-480 videos) since it indicatexcking
error. In such cases, the use of this trajectory is termihate

Stabilized Views Construction. In order to define stabilized cam-
eraviews in the epipolar geometry, we have to define the fueda
tal matrices that relate the jittered input camera viewstaedsta-
bilized camera views. This task is not equivalent to smagthihe
fundamental matrice$™'* computed between the jittered views,
since we need matrices that relate jittered camera motismtmth
motion, rather than between different views of a smooth&deca
motion. We achieve this by computing trajectories of virpaints

v{ using the epipolar transfer described above. We initiaéseh
virtual points using coordinates taken from the trackechimii.e.,

vi = pt for their first five frames (which provide ten possible in-
tersection points). We do not need a large number of virtag¢-
tories and select about a hundred trajectories that aracgerenly
across the frame. We select these points by dividing thedsanto
bins and picking a single tracked point from every bin (assgm
one can be found). Note tha} are expected to be jittery since they
are transferred according to the input camera motionAfid. In
fact, v? coincides withp? as long as the latter is not occluded by an-

IThis value was found empirically and used for producing all output
videos.

2The epipole is the image in one view of the camera center obther
view, see [Hartley and Zisserman 2000].
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other object in the scene, in which casewill last longer. In order

to define stabilized camera views, we estimate how thesectmj
ries appear in such a camera motion by simply smoothing them i
time,

= @
using a Gaussian blurring kerngl = e t*/29 and user = 50.
This smoothing is computed for the horizontal and verticare
dinates independently. These trajectories are computémhgsas
they remain relevant for the shot and drop them once theythexit
frame. For this purpose we increase the frame size by addimey-a
gin of 20% its size in each direction. Note that using smatideivs
in time (ten frames) we construct long virtual trajectoriesre-
mentally. Hence, we do not rely on the KLT tracking to find long
trajectories that are needed for strong stabilization,d¢a@nvolving
with large Gaussians in (1).

o = (g*v')

We use these smoothed trajectories to compute another fet-of
damental matriced™s* that relate points in jittered input views
s and the epipolar lines these points cast in the novel stakii
views of close-in-time frames Here again we usg — s| < 5
to obtain multiple point intersections when we later usepbimt
transfer. These matrices are computed withand @¢ at the cor-
responding points in the eight-point algorithm (used, aforee
with RANSAC estimation). We use these matrices with the @pip
lar point transfer described above to compute the mappitvagssn
pi and their stabilized locations which provide us the constraints
needed for warping the input frames to produce the outpoids
as we explain below. In our implementation, we apply addélo
fine smoothing to each of the stabilized trajectofigssing a Gaus-
sian kernel withe = 6 before we use them. This is done to smooth-
out gentle high-frequency jitters that might remain duerécking
inaccuracies and errors in the stabilization process.

Note that the trajectories computed in this process are smoothed
independently, and in the 2D frame plane. Hence these cuaiadi
do not necessarily correspond to a projection of geoméirivalid
3D points locations on any realizable camera configuratitow-
ever, these smoothed points locations are not the finalligexdbi
point locations, rather they are used to define new views bp-de
ing the fundamental matrice&=*. Since every rank-two matrix
defines a geometrically-valid view, the matricE$* model view
of a physically-realizable camera. This camera is movingathly
in space since it is optimized (via the eight-point algarijto re-
late the jittered points; to the smoothly moving pointa;.

Frame Warping. As we explain below, similarly to 3D stabi-
lization methods our point transfer is physically-corrétbwever,
occlusions in the scene prevents us from producing propeslno
views and therefore we follow the approach of Liu et al. [2009
and synthesize the stabilized frames by warping the frames i
content-preserving manner. This warping attempts to aéspkv-
ery input pointp! to its stabilized locatiorp! while minimizing
the distortion at content-rich regions. In this method eaame is
warped individually such that pixels from different frands not
intermix. Thus, corresponding pixels in different frames @ot re-
quired to have the same color value. This property allowsl iz
non-static scenes containing moving objects. Algorithmirhma-
rizes the steps of our stabilization algorithm.

Discussion. The point transfer described here corresponds to a
physically-correct novel view, i.e., there exists a pectipe cam-
era that contains the very same new point coordingtedence, the
fact that the scene is reconstructed only up to a projeataresfor-

Algorithm 1: Epipolar Video Stabilization.

track feature points in the movie using standard KLT tragkin
for every frame ¢t do
| compute fundamental matricés* for |s — ¢| < 10
end
optional: add trajectories using epipolar tracking (Set8.4);
choosen trajectories uniformly spread across the first frame ;
for i = 1..ndo
setvi =pifort=1.5;
computev; for t = 6..end using epipolar transfer using
Fstandvi, witht — 10 < s < t;
end
smooth virtual trajectories by = (g * v%); ;
for every framet do
usev’ and@! to compute fundamental matricé-* for
|s —t| <5;
end
for every trajectory ¢ do
if trajectory belongs to a dynamic object, calculate
time-view reprojection (Section 3.3) ;
for every frame ¢ do
useF** andp? to computep! using epipolar point
transfer forls — ¢| < 5;
end

end
Use correspondence between original trajectgrjesnd
stabilized trajectorieg’ as input for frame warping ;

mation, does not undermine its ability to produce physjeatirrect
views as 3D stabilization methods do. However, since thisagrh
requires only the estimation of fundamental matrices dtss valid
for scenarios where the camera movement is translatientég.,
in far scenes) or when the scene is approximately planar.

In these cases the fundamental matrié&s' can be factored to
the productsFs* = SstH*! where S are arbitrary skew-
symmetric matrices and/ -t are the homography matrices relat-
ing the points between the two frames. Multiplying a hompgsa
by a skew-symmetric matrix maps the points into lines thaspa
through an arbitrary epipole, see [Hartley and Zisserm#928ec-
tion 11.9.3]. Applying the point transfer using such fundsmal
matrices is equivalent to mapping points using the appatgtio-
mography regardless of the skew-symmetric matrices. Wthie
arbitrary fluctuations in the epipole location do not undesrthe
point transfer, cases where the matriéés are identical will not
allow the transfer (corresponding epipolar lines will beritdcal).

In practice this does not pose a problem as we use more than two
views and robust averaging to perform the point transfendde
in cases where the scene does not contain parallax effects-ou
gorithm naturally boils-down to the proper 2D stabilizativeeded
for such time segments.

Furthermore, camera zooming while shooting the video angusi
the in-camera stabilization does not interfere with ounsceod-
eling. In fact, any changes in the internal parameters otémeera
that retain its perspective nature do not undermine thétyld
model the scene using fundamental matrices as well as apply t
point transfer. We test such scenarios in Videos 5-8.

We should note that our approach is not entirely free fromedeg
eracies; in cases where the frames differ by a pure lineaomot
the camera projection plane, the epipolar lines will all beagiel
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Fig. 3. Dynamic window of frames used for the point transBiue plot
shows the vertical component of a single trajectory, showrnticate
whether the camera is moving or not. Normally we use elevemés for
the point transfer yet when the number of valid intersestidacrease (due
to camera fixation in this example) the oldest frame used doeadvance
in time (green plot) and the number of frames used increasesplot).
Dashed gray plot shows a normal progression where eleverefrare used

at every frame.

and hence the point transfer would not be possible. Anotbge-
erate scenario is when the camera motion is restricted tokan a
trary plane in which case points that lie in this plane wiiapro-
duce parallel lines. It is virtually impossible that suchtians will
be obtained by a jittery hand-held camera, besides the chssew
the camera is held still. Nevertheless, such scenarios eaabs-
ily avoided by considering more frames, that do not correddo
this degenerate camera motion, when computing the poimfea
This can be implemented in various different ways, for exemp
we simply extend the time window (which normally containvele
frames, since we uge — ¢| < 5) until enough intersections are left
in the point transfer after discarding the degenerate setgions.
The result of this strategy is shown in Figure 3 and in Video 15

3.3 Time-View Reprojection of non-Static Scenes

When a tracked point corresponds to a moving object in 3Despac
the point transfer we described above ceases to be validethd
points of moving objects are usually discarded by stahitma
methods [Liu et al. 2009; Liu et al. 2011] and these regions of
the frames receive their stabilization from other point thelong

to the static surrounding. When this distance is large omathe
depth difference between the object and its backgroundtinew
ligible, the object will not receive an adequate stabilmat

We propose a novel time-view point reprojection that expltie
smoothness of the motion trajectories real-world objegiecally
follow. Consider a poinp*, defined inview and time of frames,
and the epipolar lines it casts on thew of frame¢ still at time

s, i.e.,l® = F*tps. Assuming this is the projection of a moving
point, we cannot not expegf to lie on this epipolar line. Never-
theless, we can consider the locatigrf of this point attime s in
theview of framet. In other words, we consider how this point is
seen at times by a stationary camera coinciding with the camera
of framet. Now, for anys the projections;®* must lie on the the
epipolar linel®, i.e.,I"¢>* = 0, as these are correspondences of a
point that is ‘frozen’ in times. While this does not provide us with

F1+Z,t
t-1,t

HF
P o
pr2

N [ )
pr-2 Fu/,z prl

271
F

Fig. 4. Dynamic point reprojection. An inertial moving pbin 3D space
projects a smooth trajectory onto a fixed view (of fratheThis constraint
is used to find its locations along each of the epipolar linesasts from
views of different times.

enough geometrical constraints to determjfié, we estimatey*-*
based on its dynamical behavior. The poigtg as a functions of

s, is a projected trajectory of a moving point in 3D space viewe
by a fixed camera. Assuming this object moves smoothly, oemor
accurately, that its motion results from the minimal actioces
needed to create it, then according to the law of dynamic®ltz-

ity vectorsu®t = ¢5t1* — ¢** must change as little as possible.
Figure 4 illustrates this dynamical scenario.

This additional assumption makes it sufficient to pose ehaam-
straints over;*'* which we now derive. Denote b, the following
time-differentiation matrix

-1 1 0 : :

0 -1 1 0 qs—l,t us—l
et = v |- @

P qs+1,t us+1

0 —-11 :

This matrix has one row less than columns as every derividive
computed from two instants of time. Denote By, the matrixD,,
with its last row and column removed. When operating on the ve
locities vectoru?, this time-differentiation matrix produces the ac-
celeration values® = D,u®, wheres is a vector containing the
considered times. Therefore, in order to obtain a trajectory re-
sulting from minimal forces such that every poift? lies on its
corresponding epipolar ling, we have to solve the following con-
strained system
and qt,t — pt7
®3)
where L is the second-order derivative matri, D,,. Applying
Lagrange multipliers rule reduces this problem to solving fol-

lowing linear system
qg,t
P

L'L CT
c 0

whereC' andb are the matrix and vector expressing the linear con-

straints in (3). Note that these equations are formulateidsatved

independently over the horizontal and vertical coordinateeach

point ¢t and the homogeneous (last) coordinates are set to one.

12 st

min || Lg Vs £t (I°)T¢5" =0,
gt

(4)

In practice, errors prevent the points from falling exaatytheir
respected epipolar lines and hence we relax the hard comstra
in (3) to soft constraints and minimizLq®t||?> + o Cq¢%t — b|?
with o = 10~*. Upon differentiation, this optimization is solved
by

(L'L+aC"C)-¢"" =aC" -b. (5)

We compute this fofs — ¢| < 5 which is what we normally use
for transferring points and therefore the system aboveistsnsf a
22-by-22 matrix operating on the coordinatesft.
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points transfer with our reprojection

Fig. 5. Results obtained when running the epipolar poimisfier with and
without our time-view reprojection step. This scene carggioints that be-
long to a static background (gray trajectories) and to a mpyierson in
front (colored trajectories). When transferring the peintthout our repro-
jection step, there are noticeable high-frequency jittette output trajec-
tories of the moving person, while the ones belonging to thécsback-
ground are smooth. Applying our reprojection yields smaoéectories
for both the moving and static scene objects.

The resultingg*-t, with s andt¢ exchanged in their order and con-
sidered as a function of, provide us with correspondences be-
tween the views of frames of a static point (frozen at times).
This allows us to transfer the poipt (~ ¢**) using the corre-
spondenceg® to its stabilized coordinates usirfg:* by apply-
ing the same epipolar transfer we described above. Notehtsat
formulation is equally valid for stationary points, wheketcost
functional in (5) is expected to vanish, and hence this miome
acts as an extension to the static point transfer mechamism-
ever, we avoid solving these systems for static points amdyap
it only for points that deviate from the epipolar constrairi¥lore
specifically, we apply this time-view reprojection to pairthat
min{|p_sF*75|, |p/ s F**"5p,|} > 3. The fact that this formu-
lation applies for both dynamic and static points makes ththod
insensitive to misclassification of points as moving paints

Figure 5 shows the effect of using our reprojection procedur
when stabilizing video containgin a moving person (takesmfr
Video 13). Videos 12-14 show real video sequences where ther
are relatively large moving objects whose distance frombtek-
ground is non-negligible. In such cases the stabilizatieaded

for these objects cannot be inferred from the background, as
done in [Liu et al. 2009; Liu et al. 2011]. The use of the time-
view reprojection achieves proper stabilization in sucknss.

objects with and without our time-view reprojection (TVRhis is
based on measuring their smoothness by computing the mean ab
solute time-derivative of their coordinates. As indicaitethe inset
above, the use of the time-view reprojection significantipioves

the smoothness of the trajectories of the moving objects.

3.4 Uniform Correspondence Maps

KLT-based feature point trackers [Shi and Tomasi 1994] tifien
every point with a very small window of pixels surrounding it
Matching points between frames is done by measuring the sim-
ilarity of these windows. Hence, these methods require tifat
windows contain a sufficient amount of variation that willoat
identifying movement at any direction. Straight edges, oam-
ple, do not provide this information and suffer from what imetn

as theaperture problem; an upward movement of a vertical edge
does not change its surrounding pixels. Therefore, thesskers
restrict their operation to unique points such as corneesdbypi-
cally few hundreds such points are tracked at every framaligng

of NTSC resolution. While this is enough for recovering the-f
damental matrice's'* and F=*, in many cases these points are
not spread uniformly across the frame and hence do not eaffter
geometry of the scene at uncovered regions.

Faugeras et al. [1993] and Seitz and Dyer [1995] use the kpipo
constraints to search for matching points in rectified imeger-
dinates. This one-dimensional search allows reducing peetare
ambiguity since now every edge which is not parallel to thpep
lar line can be matched. We follow this idea combined with the
epipolar point transfer in order to track more points thatearenly
spread across the frame. To achieve this we divide each firsme
blocks, ranging betweet6-by-16 to 32-by-32 pixels depending on
the video resolution, and search for one or more suitabletpfor
tracking. We choose the points with the maximal Laplaciag-ma
nitude|AT?(p')| in each block, wherd® denotes the frame pixel
values. We then search for a matching point along the epifpinka
pt casts in the next frame, i.et 1 pt. We measure the matching
error between the points using thg norm over windows of-by-

7 pixels around them. We normalize the pixels in each window to
obtain variance of unit intensity. This search is perforratuhg a
segment of about 50 pixels, computed by intersecting theotgoi
line in framet + 1 with a 50-by-50 pixels square aroungt. We
allow a sub-pixel correction to the best match found by rogra
few iterations of KLT search, constrained to the epipolaeliln
order to avoid ambiguities along the line, we discard paivitese
closest-match score does not fall below half the score ohthe
best match. Besides storing the matching point coordinaites
we also store the matching errofor future reference. Starting with
more than one point per block makes it more likely that we fivitl

at least one correspondence within it. We initiate thiscteanly in
blocks that contain no tracked points (either ones foundipusly

by this tracking mechanism or by the initial KLT tracking).

Once a correspondence is found, d@ not continue tracking it

In Video S1 we show a synthetic scene where the objects areusing line searches, and instead we use the point transfaeto

moving in a linear motion that changes its direction abguptl
(i.e., the motion is not differentiable). Nonetheless, oepro-
jection procedure did not result in a noticeable failure and-
clude that the requirement of smooth motion is rather tolera
We use this test to provide [ TVR [WOTVR |

a quantitative comparison b

tween the stabilized traject 8%(1)3513 gﬂ;g
ries of the static and movi : :

| static
,moving
=4

dict its location. More specifically, we compute the epipdiaes
casted at the next frame+ 1 based on the corresponding points
found in past frames (last five if available), i.&, = Fst+ips
with s =t — 4, .., t. Intersecting these lines with one another gives
possible locations fopi*+!. As we did before, we discard intersec-
tions between lines whose difference in orientation is sordines
obtained with low-magnitude vectors. We then test whichefre-
maining points gives the lowest matching error (computedstime
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Fig. 6. Frame (taken from Video 16) showing the initial tradkpoints
(red), the additional points obtained by the point trangfgeen), and the
32-by-32 pixel blocks used (dashed white).

1
091 B
OBWWM |
071 B
06 4
051 4

MWWWMWWW\" |

L L L L L L L
0 50 100 150 200 250 300 350 400 450

Fig. 7. Plots show the proportion of blocks containing akeacpoints in
every frame of Video 16. The initial KLT trajectories covess than half
the block (red) whereas our search achieves a coverager tiigire80% of
the blocks (green).

way as above). We correct this match by running a few itemataf

a 2D KLT search, limited tat1 pixel. Finally, we stop tracking a
point (and discard its matches in the last 10 frames) if thechiiag
error between its window and the corresponding one in theipre
ous frame is higher tha0 times its initial matching erroe. We
use this relative criteria in order to normalize the matgtguality
of different windows. We do not use trajectories that lass lthan
twenty frames.

Figure 6 shows the points tracked by the initial 2D KLT track-
ing and the ones obtained using the procedure described Aere
better coverage is achieved at regions where no adequdtedea
points were found for the KLT tracking (e.g., the road). \Gd&5
demonstrates the more accurate frame warping achievedelgg th
additional points. In Figure 7 we show the increased pripomf
blocks containing a tracked point in this sequence.

In Videos 23b and 24b we use the initial KLT tracking only for
computing the fundemental matricé&t, and do not use these
trajectories in the stabilizing stage. Instead, we usedepipolar
transfer-based tracking to generate the all the trajextarsed for
stabilization. The resulting videos confirm the accuracthisf new
procedure. In addition, we measure the distance betweerotire
dinates of the trajecories found by standard KLT tracking aar
predicted coodinates (before runing the sub-pixel 2D KLireo
tion step) in a frame-by-frame basis. The average distangedfin
two videos that we run this experiment on (Videos 23 and 2) fa
below 0.2 pixels. In Figure 8 we provide the histrogram ofsthe
distances.

m— \/ideo 23
= \lideo 24

07 08 09
distance in pixels

Fig. 8. Histograms of the distances between the pointsechbly the KLT
and the ones predicted by our epiplar transfer scheme.

4. RESULTS

We used the Voodoo camera trackeoftware set to perform stan-
dard 2D KLT search for computing our initial point correspon
dences. The rest of the method was implemented in Matlab with
very little optimization and executed on i7 Intel 3.07GHzahiae.

The running-time per frame on 1280-by-720 pixels videosaae
following. The initial point tracking runs in about 5fps adir
epipolar-based point tracking runs in about 4fps. Computire
fundamental matrices (botA and £') as well as solving the 22-
by-22 linear systems when necessary (using LU decompnokigo
done in 2fps.

Comparison. Videos 1 and 2 show non-planar scenes captured by
a jittery camera. Our method handles these scenes well antiesa
the results of the 3D video stabilization method of Liu e{2009].

In Videos 3, 6 and 8-11 we compare our method with the subspace
video stabilization of Liu et al. [2011]. These videos camfiour
ability to match their results on scenes that: lack paraltam-

era auto-stabilization turned on, camera zooming and swilitig
shutter effect. Video 12 contains a moving person that coeer
large portion of the frame and whose distance from the backgt
results in a different response to the camera jitter. In stades

the stabilization needed for the object cannot be inferrenhfthe
background, as done in [Liu et al. 2009; Liu et al. 2011]. Omet
view point reprojection is designed to cope with such sdesand
manages to provide stabilization with considerably leti&ats.

Evaluation. We tested our methods on scenes with non-trivial 3D
geometry (Videos 1 and 2) as well as on scenes with planargeom
try or little camera translation. The lack of parallax doesintro-
duce any difficulty to our method. This is demonstrated irmghim
Videos 3 and 4 which contain distant objects and mostly imtat
camera motion. Similarly, camera zooming and in-camerhi-sta
lization produce views that are valid in the epipolar geagnanhd
hence our method performs well on such shots. Videos 5-6 were
acquired while the camera zoom was changing (hence afteitten
intrinsic camera parameters) and in Videos 7 and 8 the irecam
stabilization system was active and affected the cameiasopt

Videos 12-14 demonstrate and compare the time-view pgimore
jection on scenes containing dominant moving objects. Aexve
plained earlier, in these scenes the background'’s statidizis in-
adequate for the foreground moving object. These tests haiv
the reprojection step is a critical component for treatinghstra-
jectories. Video S1 shows a synthetic scene where the shjeet
moving in a linear motion and changes their direction aliyu@ur

Shttp://www.digilab.uni-hannover.de

ACM Transactions on Graphics, Vol. XX, No. X, Article XXX, Blication date: XXXX XXXX.



Table I. Summary of example videos accompanying this paper.

Video # | Description

1-2 Comparison with 3D stabilization of Liu et al. [2009]

3-4 3D stabilization failure cases: Lack of parallax

4-5 3D stabilization failure cases: Camera zoom

7-8 3D stabilization failure cases: in-camera stabilization

9-11 Comparison with subspace stabilization of Liu et al. [2011

12 Subspace stabilization failure case: dynamic scene

13,14,S1| Time-View reprojection of scenes containing domingnt
moving objects.

15 Video containing degenerate segments

16 Enhanced tracking using the epipolar point transfer

17 Path fitting

18 Insufficient trajectories

19 Camera occlusions cut trajectories

20 Tracking failure due to motion blur

21 Tracking failure due to excessive camera shake

22 Warp failure due to lack of smooth regions

23,24 Stabilization using only epipolar transfer-based tragkin

25-42 Additional assortment of videos

reprojection procedure, which relies on the smoothneskeofrto-
tion, appears to be robust to these changes. As we descnilSeat
tion 3.2 segments with no camera motion do not allow to recove
the stabilizing fundamental matrices. We cope with sualasions
using a dynamic window containing non-degenerate framemwh
extracting these matrices. Video 15 shows how this streaéigws

us to cope with a scenario where the camera is placed on a tabl
and picked up a few seconds later. In Video 16 we show the henefi
of extracting additional trajectories using our epipolamp trans-

fer tracking scheme. Videos 23 and 24 show the stabilizatiah
results by replacing all the trajectories obtained using Kiith

our epipolar point transfer tracking. Finally, in Videos-28 we
test our method on an unselected collection of videos takea b
moving person or driving car.

All our example videos, at their full resolution, are avhlta at:
http://www.cs.huji.ac.il/"raananf/projects/stab/.

5. CONCLUSIONS

We presented a new video stabilization method that use®-epip
lar geometry to model the input and synthesize the outposd
This level of modeling falls, in terms of the amount of reamde
scene data, between the models 2D and 3D methods use. D&spite
lower complexity, this model is sufficient for generatingpitally-
correct stabilize views at the tracked points locations @ardhan-
dle non-trivial 3D scene geometry. The advantages of thpsageh
are its robustness to ambiguities, including planar scanesde-
generate camera motion, and that it is more computatiowediity
cient than existing full 3D approaches. Furthermore, wesgmeed
an extension of the epipolar point transfer to for handlirmg-n
stationary points. This approach exploits the fact thatlo&on of
3D objects is smooth and assumes they experience minintasor
Unlike existing solutions, this principled homogeneougrapch
allows us to stabilize trajectories of moving objects instef ap-
plying them an irrelevant stabilization from their backgnd. Fi-
nally, we described a scheme for increasing the number ciech
points efficiently using the epipolar point transfer thapleits the
epipolar relation to reduce the aperture problem and aefdenore
uniform distribution of tracked points across the frame.

€,

Limitations. Video stabilization strongly depends on the number
and accuracy of the tracked feature points. Scenes wilh ték-
ture, excessively strong camera jitters, and cases wherstétic
background cannot not detected, based on majority votiilgnet
allow successful stabilization, see Videos 20 and 21. Cabese
successive frames share a small overlap (due to rapid canwera
tion) undermine the ability to track corresponding poirds\ell as
require stronger frame cropping when producing rectamguii&
put frames. Strong occlusions and highly non-Lambertiafasas
are another source for failure, see Videos 18 and 19. Ouradeth
uses the epipolar geometry which relates point with linega/een
images of different views. Therefore, unlike the method of &t
al. [2011], it cannot cope with strong rolling shutter eftethat dis-
tort these relations. The content-preserving warp of Lal.g2009]
that we use relies on having smooth regions with little contieat
will absorb the warping distortion. Texture-rich framesrdaa have
such regions and some deformation can be visible, as seedeon V
22. Another limitation of our method, compared to 3D methasls
the inability to provide explicit 3D camera motion plannirtgpw-
ever, as shown in [Liu et al. 2011] low-order polynomials aptine
camera motions can be approximated by replacing the tomject
smoothing in (1) with fitting these models to the jitteredectories
and using them instead of the smoothed trajectatiet Video 17
we show the result achieved by fitting a quadratic polynonfiat
mimics a quadratic camera path.

As future work, we intend to investigate the possibility afing
the tri-focal tensor [Shashua 1995] to express the epipelations
instead of using fundamental matrices. This formulatiokniewn

to be more robust to degeneracies as well as allowing to fgpeci
more explicit novel views which could provide a better caangaith
planning. We also believe that developing point trackeeg tan
recover from occlusions will greatly benefit video stalatipn.
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