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We present a new video stabilization technique that uses projective scene re-
construction to treat jittered video sequences. Unlike methods that recover
the full three-dimensional geometry of the scene, this model accounts for
simple geometric relations between points and epipolar lines. Using this
level of scene understanding, we obtain the physical correctness of 3D sta-
bilization methods yet avoid their lack of robustness and computational
costs. Our method consists of tracking feature points in thescene and using
them to compute fundamental matrices that model stabilizedcamera mo-
tion. We then project the tracked points onto the novel stabilized frames
using epipolar point transfer and synthesize new frames using image-based
frame warping. Since this model is only valid for static scenes, we develop
a time-view reprojection that accounts for non-stationarypoints in a princi-
pled way. This reprojection is based on modeling the dynamics of smooth
inertial object motion in three-dimensional space and allows us to avoid the
need to interpolate stabilization for moving objects from their static sur-
rounding. Thus, we achieve an adequate stabilization when both the camera
and the objects are moving. We demonstrate the abilities of our approach
to stabilize hand-held video shots in various scenarios: scenes with no par-
allax that challenge 3D approaches, scenes containing non-trivial parallax
effects, videos with camera zooming and in-camera stabilization, as well as
movies with large moving objects.

Categories and Subject Descriptors: I.4.3 [Image Processing and Com-
puter Vision]: Enhancement; I.4.9 [Image Processing and Computer Vi-
sion]: Applications; I.3.8 [Computer Graphics]: Applications

Additional Key Words and Phrases: video stabilization, novel view synthe-
sis, image warping, epipolar geometry

1. INTRODUCTION

Shooting pleasing smooth video sequences from a moving camera
is a non-trivial task which is often dealt with using rather involved
solutions. Film-makers and broadcasting studios mount their cam-
eras on wheeled dollies that roll on tracks or use steadicams, which
are hand-held mechanical stabilizing systems. Often, the dolly
tracks need to be customized to the particular scene and taketime
to set up. There are various scenarios where both solutions are in-
applicable or do not provide enough stabilization. This motivates
the development of computer-based video stabilization algorithms.

Existing stabilization techniques can be roughly divided into two
categories based on the degree of complexity of the model they
use to interpret the input video. The first class consists of two-
dimensional (2D) methods that do not attempt to recover any ex-
plicit three-dimensional (3D) geometry of the scene. Thesemeth-
ods explain the observed motion in the video using 2D transforma-
tions in the image plane and search for their parameters. Stable mo-
tions are obtained by fixating or smoothing these parameters. The
excess jittered movement is removed by the same type of trans-

formation. In general, 2D stabilization is computationally efficient,
robust and is often found in still and video cameras [Lukac 2008].
However, when the video contains non-planar geometry and the
camera shake is not purely rotational, this level of scene modeling
is insufficient to account for parallax effects due to shake.

The second type of methods tackles these difficulties using scene
modeling of a greater complexity where various 3D quantities are
recovered. These 3D stabilization methods [Buehler et al. 2001;
Bhat et al. 2007; Liu et al. 2009] track a sparse set of featurepoints
along the video and use the correspondences to recover the 3D
camera pose and the 3D location of every point using structure-
from-motion (SFM) [Hartley and Zisserman 2000]. Stabilization is
then achieved by computing smoother camera paths and reproject-
ing the 3D points to construct the novel frames. Liu et al. [2009]
demonstrate stabilization of scenes with highly-challenging geom-
etry by combining this approach with a content preserving warping.
Nevertheless, the use of a richer model introduces various weak-
nesses. SFM is a non-linear problem which is typically solved using
bundle-adjustment [Triggs et al. 2000] and becomes costly at mod-
erately large numbers of tracked points. It is also unstablewhen the
scene complexity drops below the model complexity; small camera
translation or approximately planar scene geometry (far objects)
make it hard to determine the 3D location variables.

In view of these shortcomings, Liu et al. [2011] smooth the tracked
point trajectories in 2D and do not recover any 3D information.
This corresponds, however, to a very loose model that can gener-
ate inconsistent point configurations. Therefore, Liu et al. restrict
the 2D point trajectories to a low-dimensional subspace, which is
known to be approximately valid for projections of static 3Dscenes
in short time intervals [Irani 2002]. This approach is shownto be
more robust to degenerate camera motions than 3D approachesand,
at the same time, handles videos containing parallax betterthan the
existing 2D stabilization. Since the low-dimensionality assumption
holds for static scenes, Liu et al. discard feature points that corre-
spond to moving objects. As a result, moving objects are stabilized
using interpolated warp constraints computed for static background
points. Furthermore, this method as well as the 3D techniques men-
tioned above operate on a limited number of points that allowre-
liable tracking. In general these points are not necessarily spread
evenly across the frame, leaving large portions of it with noclose
and relevant warping constraints.

In this paper we present a new video stabilization techniquethat
uses a mid-level scene modeling, known asprojective reconstruc-
tion [Hartley and Zisserman 2000]. This model does not recover
explicit 3D point locations or 3D camera pose, rather it accounts for
simple geometric relations between points and epipolar lines. This
level of scene understanding is sufficient for obtaining thephysical
correctness of 3D stabilization methods while avoiding their asso-
ciated drawbacks. More specifically, our method starts by track-
ing points along the video and uses them to computefundamental
matrices that encapsulate the epipolar relations between successive
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frames. We use these relations to generate virtual point trajectories
that last long enough to define the stabilized views by filtering them
in time with large smoothing kernels. We then use the correspon-
dences between the jittered input and these smoothed trajectories
to compute another set of fundamental matrices that model the sta-
bilized camera views. Finally, the output frames are computed us-
ing theepipolar point transfer of Laveau and Faugeras [1994] that
uses these matrices to reproject the input points to the stabilized
novel views. This level of scene modeling allows us to construct
physically-correct warp constraints, applies to scenes ofvariable
depth complexity, it is valid for arbitrary uncalibrated perspective
cameras and allows camera zooming and in-camera stabilization.

The classic epipolar point transfer applies only to points that corre-
spond to static objects in 3D space. Therefore, similarly toexisting
methods, this approach cannot stabilize points that belongto non-
stationary objects. To overcome this limitation, we derivea novel
time-view point reprojection that allows us to deal with moving
objects in a principled way that models the dynamics of smooth
inertial object motion in space. Thus, we avoid the need to inter-
polate stabilization for moving objects based on their static sur-
rounding and achieve adequate stabilization when both the camera
and the object are moving. Furthermore, we describe a point track-
ing scheme that uses the epipolar point transfer to predict,rather
than search, additional corresponding points. This use of the epipo-
lar relations considerably reduces the aperture problem and allows
us to obtain correspondences at more challenging regions ofthe
frames. We use these additional correspondences to define warping
constraints that are spread more uniformly across the frameand
hence better capture the scene shape and aid the stabilization of
non-planar scenes.

We demonstrate the abilities of our approach to stabilize hand-held
video shots in various scenarios: scenes with no parallax that chal-
lenge 3D approaches, scenes containing non-trivial parallax effects,
videos with camera zooming, as well as movies with large moving
objects.

2. BACKGROUND

Here we review the existing work on video stabilization as well as
provide some background on view interpolation methods thatare
relevant to our work.

Video Stabilization. In case of approximately planer scenes or
cases were the camera shake is strictly rotational, unwanted jitters
can be effectively reduced based on two-dimensional reasoning of
the video. In these cases the camera jitter can be explained and re-
moved by a homography transformation [Hartley and Zisserman
2000]. Irani et al. [1994] treat more complex scenes by comput-
ing the homography that stabilizes a dominant large planar region
in a video. The stabilized motion is computed by either fullycan-
celing or smoothing the camera rotation component. In [Gleicher
and Liu 2008] the stabilized camera motion is computed by inter-
polating between homography transformations using matrixlog-
arithms. Matsushita et al. [2006] discuss additional important as-
pects of video stabilization, such as extending the stabilized frames
to become full-frames and reducing the motion blur.

Assuming the scene geometry and camera motion do fall into these
categories, such 2D stabilization methods are robust, operate on
the entire frame, require a small number of tracked points and con-
sume minimal computing efforts. In fact, this type of stabilization

became very common in still and video cameras where it is im-
plemented via mechanical means, either in the lens or the camera
sensor [Lukac 2008]. However, most scenes do contain objects at
arbitrary depths and in many scenarios, such as hand-held camera
shoots, it is virtually impossible to avoid any translational compo-
nent in the camera shake. In these cases parallax effects cannot be
ignored and 2D modeling is insufficient for video stabilization.

In order to cope with general scenes and camera jitter, three-
dimensional modeling of the scene is used. Buehler et al. [2001]
compute SFM and recover the 3D camera pose and the 3D locations
of the tracked feature points. This is formulated in a general un-
calibrated camera setting and solved using the bundle-adjustment
method [Triggs et al. 2000]. Stabilization is then achievedby com-
puting new regularized camera projection matrices that produce
smooth trajectories and reprojecting the recovered (static) 3D point
locations. The output novel stabilized frames are computedusing
image-based rendering technique, similar to [Buehler et al. 2001],
that blends pixels from several frames. In [Bhat et al. 2007]the av-
eraging is replaced by coherent patch-based image synthesis. Here
again, the pixels come from multiple images. Constructing each
stabilized frame from multiple frames requires the corresponding
source pixels to be consistent and hence these techniques are inad-
equate for non-static scenes.

Liu et al. [2009] construct each stabilized frame individually and
therefore operate better on videos containing moving objects. They
suggest that for the purpose of video stabilization and given the lim-
ited amount of motion that is needed to be removed, the goal ofsyn-
thesizing physically-correct frames can be relaxed to seeking per-
ceptual plausibility. Liu et al. propose acontent-preserving warp-
ing thats attempts to meet two objectives: displace every tracked
feature coordinate to its regularized reprojected location and, at the
same time, minimize the warping distortion at content-richregions.

In a more recent work, Liu et al. [2011] avoid the computational
cost and the various sensitives of 3D models by directly operating
on the 2D point trajectories. This is done by restricting theinterpre-
tation and synthesis of the trajectories to a low-dimensional linear
subspace, according to a previous result in computer vision[Irani
2002]. This assumption holds for static 3D points being projected
by a moving camera at short time intervals. This work also uses the
content-preserving warps to generate the output frames by displac-
ing every tracked point to its smoothed position in the frame. On
top of handling parallax effects, this approach can cope with effects
due to camera zoom, in-camera stabilization and rolling shutter. In
our work we propose a mid-level scene modeling that uses epipolar
geometry to handle 3D scenes with moving objects.

Image-Based View Synthesis. Here we mention another relevant
line of work that deals with synthesizing physically-correct novel
views without knowing or recovering explicit 3D scene geometry.
Laveau and Faugeras [1994] show that accurate novel view synthe-
sis does not necessitate full 3D point or camera recovery, rather it
can be carried out under a setting they call ‘weakly-calibrated’ that
relies only on epipolar relations. Thefundamental matrix governs
these relations and matches points in one image to their correspond-
ing epipolar lines1 in a second image of the same scene (both taken
by general uncalibrated perspective cameras). This matrixcan be
estimated from very few point correspondences [Hartley andZis-

1The epipolar line is the projection of an optical ray that passes through a
point in one image, as seen in the second image, see [Hartley and Zisserman
2000].
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Fig. 1. A schematic overview of the new video stabilization algorithm. Given a set of tracked point trajectories, we generate a few long virtual trajectories
which we smooth using large filters. The smoothed paths are used to model the motion of a stabilized camera, expressed by fundamental matrices. Stabilized
point coordinates are then obtained by intersecting the epipolar lines of corresponding points in the stabilized views. Finally, these point coordinates are used
to create stabilized frames by warping the input frames.

serman 2000]. Laveau and Faugeras generate novel views by defin-
ing fundamental matrices that relate the input images to thenew
view using three user-specified corresponding points. The new im-
age is synthesized by mapping corresponding pixels from theinput
views to the intersection point of their epipolar lines in the new im-
age. Werner et al. [1995] address visibility issues of the interpolated
points in this image-based framework.

Our purposed image stabilization method also operates at this level
of scene modeling and does not explicitly estimate any 3D shape
of the scene. Faugeras et al. [1993] show that this model can also
be used for computing denser correspondences by restricting the
search to epipolar lines in rectified image coordinates. Avidan and
Shashua [1997] propose to use a trilinear epipolar relation, pre-
viously derived in [Shashua 1995], for synthesizing novel views.
This formulation, as well, does not recover 3D structure andallows
specifying the virtual camera intuitively. Moreover, it isrobust to
the singular configuration where the positions of three cameras are
collinear.

Seitz and Dyer [1995] describe and analyze linear view interpola-
tion methods that operate in rectified coordinates. They show that
such interpolations produce physically-valid views undera general
affine viewing model. In their interpolation algorithm, they also
compute dense correspondences and exploit a monotonicity prop-
erty that reduces the search into matching uniform intervals along
scanlines. Finally, theunstructured lumigraph method of Buehler et
al. [2001] assumes a partial knowledge of the plenoptic function
and constructs novel frames by blending rays from existing ones.

3. NEW METHOD

The scene model used for video stabilization dictates, according to
its level of complexity, to what scenes the method is applicable and
its robustness to ambiguities and inaccuracies in the tracked data.
As we discussed in Section 2, 2D methods are efficient and robust
to noise, yet they are too limited in terms of the scene geometry and
camera shake they can handle. 3D methods, on the other hand, can
cope with more general scenes yet involve heavier and more deli-
cate computations that break down when scene complexity drops.
One alternative, discussed by Liu et al. [2009], is to switchon-line
between models, based on the scene complexity [Torr et al. 1999].
Liu et al. [2011] propose a mid-level scene model that does not
use explicit 3D geometry but relies on the approximation that cor-
responding point coordinates lie in a low-dimensional linear sub-
space. We suggest to use a projective reconstruction of the scene

which is also an intermediate level of modeling between 2D and
full 3D scene models. This is a more monolithic alternative com-
pared to model-switching and it still provides the non-approximate
physically-correctness that full 3D scene model provides.We pro-
ceed by giving a brief description of this model and then explain
how we use it for video stabilization.

Scene reconstruction up to a projective transformation is known
as projective reconstruction [Hartley and Zisserman 2000]. This
model accounts for intrinsic geometric relations between views of
general uncalibrated cameras. These relations are encapsulated by
the fundamental matrix F which is a3-by-3 rank-two matrix that
relates a point in one view to its epipolar line in a second view.
More formally, if q is a point (expressed in homogeneous coor-
dinates) in one image, thenl = Fq is its corresponding epipo-
lar line in the image of the second view. Therefore, any pointq′

that belongs tol, i.e., l⊤q′ = 0, obeysq′⊤Fq = 0. Similarly to
Faugeras et al. [1993] who discuss general novel view synthesis,
we show how this level of scene modeling is sufficient for model-
ing stabilized views and projecting jittered points in the input video
to these views. In fact, we show that this model allows us to match
most of the capabilities 3D stabilization methods have and,at the
same time, since it does not explicitly estimate 3D quantities, such
as point coordinates and camera pose and inner-parameters,it suf-
fers from less ambiguous configurations and involves lighter com-
putations.

3.1 Overview

We start with an overview of our proposed video stabilization tech-
nique and in the subsequent sections we explain and discuss at
greater depth the different components we mention here. Similarly
to existing techniques, we start by tracking an initial set of fea-
ture points along the video sequence using standard 2D KLT point
tracking algorithm [Shi and Tomasi 1994]. We denote the 2D coor-
dinates of the tracked points bypit where the super-indexi specifies
the point and the sub-indext the frame. We use these point cor-
respondences to compute the fundamental matricesF s,t between
every frames and its close-in-time framest. These matrices are
estimated using the standard eight-point algorithm and RANSAC
estimation [Hartley 1997], under the assumption that the major-
ity of the pointspit belongs to a static background. To avoid over-
fitting these matrices to a particular region in the frame, weuse the
following stratification; we divide each frame into blocks,ranging
between 16-by-16 to 32-by-32 pixels depending on the video reso-
lution, and limit the number of points we take from each blockinto
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the RANSAC estimation. We use these matrices for several pur-
poses: constructing the novel stabilized camera views, reprojecting
the tracked points in time, and for computing additional point cor-
respondences.

Views of a stabilized camera motion are computed from a set ofvir-
tual points trajectoriesvt which we do not track but generate using
theepipolar point transfer [Faugeras et al. 1993; Hartley and Zis-
serman 2000]. As we detail in Section 3.2, this is done by intersect-
ing the epipolar lines casted by corresponding points in past frames
in future frames. If these points were viewed by a stabilizedcam-
eras, their 2D trajectories in the video would be smoother. There-
fore, we filter these trajectories in time by convolving their coordi-
nates (independently) with a Gaussian kernel, and denote the result
by ṽit. In general we denote smoothed quantities with tilde. We then
use the correspondence between the jitteredvis and smoothed̃vit co-
ordinates to compute another set of fundamental matricesF̃ s,t that
relate the jittered views of the input frames and the output stabi-
lized views. Finally, we use these matrices to transfer every tracked
point pit in the jittered input frames to its new coordinates in the
stabilized frame. This pipeline is illustrated in Figure 1.

The epipolar transfer is limited to static points, therefore in order
to handle non-static scenes we derive, in Section 3.3, a novel time-
view point reprojection. This procedure estimates the projections of
points on moving objects in nearby frames, as if their motionwas
frozen in time. Since these new correspondences do belong to static
points in 3D, the epipolar point transfer can be used. This allows us
to compute the stabilized locations of smoothly moving objects in
the same way we stabilize static background points. Anotherissue
that we address in our work is the non-uniform distribution of the
tracked pointspit across the frame. We useF s,t and the epipolar
point transfer to compute, rather than search for, additional corre-
spondences (on top ofpit). This allows us to find matches at regions
where the initial 2D KLT failed to find suitable feature points due
the aperture problem, which is greatly reduced by the epipolar con-
straints. As we explain in Section 3.4, we perform this search in a
stratified manner that achieves more uniform frame coverage.

3.2 Static Scene Stabilization

In this section we explain in more detail how we use the epipolar
point transfer in practice and how we compute the stabilizedviews.

Epipolar Point Transfer. As mentioned earlier, the epipolar rela-
tions can be used for transferring points between differentviews.
Since we use this mechanism extensively and extend it to non-
stationary scenes in Section 3.3, we review here the epipolar trans-
fer of Faugeras et al. [1993]. Assumeqt are projections of a static
3D point in different viewst, e.g., camera views of different frames
in our context. The epipolar lines casted by the pointsqt in a novel
view are given bylt = F t,novelqt whereF t,novel are the fundamen-
tal matrices relating the different viewst to the novel view, e.g., a
stabilized or future frame in our application. Since these epipolar
lines share the same 3D point, they intersect at asingle point q in
the novel view. This point is given bylt × lt′ for everyt 6= t′ and it
is the projection of the 3D point onto the novel view. Hence, based
solely on epipolar relations, one can transfer two or more corre-
sponding points to new views without extracting their 3D locations
or any camera information. We use this mechanism for computing
long virtual trajectories that are needed for modeling the stabilized
views, map tracked jittery points to their new coordinates in the sta-

tt-1 t+1

F
t,

F
t+1,novel

F
t -1,novel

q t-1 q t q t+1

q

novel

~

Fig. 2. Epipolar point transfer. Corresponding points at different views
(frames) cast epipolar lines that intersect at a single point in a novel (stabi-
lized) view. This point corresponds to the projection of the3D point onto
the novel view.

bilized views and for finding additional corresponding points in the
input video. Figure 2 illustrates this epipolar point transfer.

While two corresponding points are sufficient for using thistrans-
fer, noise and tracking and modeling errors undermine the accuracy
of the transferred point location. In order to obtain a more accurate
mapping, we use correspondences from more than two views that
provide many possible intersections and use robust averaging to
compute a more reliable estimate. Degenerate camera configura-
tions may lead to nearly parallel epipolar lines whose intersection
is less accurate. Therefore, we discard intersections between lines
whose difference in orientation falls below1.5 degrees1. Points that
are close to the epipole2 are algebraically close to the kernel of
the fundamental matrix and hence the vector norm of the respec-
tive epipolar lines is small, indicating they are more sensitive to
noise. Therefore, we discard lines with norm smaller than10−3 (in
normalized pixel coordinates)1 and use the average of the remain-
ing intersection points as the transferred point. We declare that the
corresponding points are unreliable for transfer when the distance
between the median and average intersection points are morethan
5 pixels apart (for 640-by-480 videos) since it indicates tracking
error. In such cases, the use of this trajectory is terminated.

Stabilized Views Construction. In order to define stabilized cam-
era views in the epipolar geometry, we have to define the fundamen-
tal matrices that relate the jittered input camera views andthe sta-
bilized camera views. This task is not equivalent to smoothing the
fundamental matricesF s,t computed between the jittered views,
since we need matrices that relate jittered camera motion tosmooth
motion, rather than between different views of a smoothed camera
motion. We achieve this by computing trajectories of virtual points
vit using the epipolar transfer described above. We initiate these
virtual points using coordinates taken from the tracked points, i.e.,
vit = pit for their first five frames (which provide ten possible in-
tersection points). We do not need a large number of virtual trajec-
tories and select about a hundred trajectories that are spread evenly
across the frame. We select these points by dividing the frames into
bins and picking a single tracked point from every bin (assuming
one can be found). Note thatvit are expected to be jittery since they
are transferred according to the input camera motion, viaF s,t. In
fact,vit coincides withpit as long as the latter is not occluded by an-

1This value was found empirically and used for producing all our output
videos.
2The epipole is the image in one view of the camera center of theother
view, see [Hartley and Zisserman 2000].
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other object in the scene, in which casevit will last longer. In order
to define stabilized camera views, we estimate how these trajecto-
ries appear in such a camera motion by simply smoothing them in
time,

ṽit = (g ∗ vi)t (1)

using a Gaussian blurring kernelgt = e−t2/2σ2

, and useσ = 50.
This smoothing is computed for the horizontal and vertical coor-
dinates independently. These trajectories are computed aslong as
they remain relevant for the shot and drop them once they exitthe
frame. For this purpose we increase the frame size by adding amar-
gin of 20% its size in each direction. Note that using small windows
in time (ten frames) we construct long virtual trajectoriesincre-
mentally. Hence, we do not rely on the KLT tracking to find long
trajectories that are needed for strong stabilization, i.e., convolving
with large Gaussians in (1).

We use these smoothed trajectories to compute another set offun-
damental matrices̃F s,t that relate points in jittered input views
s and the epipolar lines these points cast in the novel stabilized
views of close-in-time framest. Here again we use|t − s| ≤ 5
to obtain multiple point intersections when we later use thepoint
transfer. These matrices are computed withvis and ṽit at the cor-
responding points in the eight-point algorithm (used, as before,
with RANSAC estimation). We use these matrices with the epipo-
lar point transfer described above to compute the mapping between
pit and their stabilized locations̃pti which provide us the constraints
needed for warping the input frames to produce the output frames,
as we explain below. In our implementation, we apply additional
fine smoothing to each of the stabilized trajectoriesp̃ti using a Gaus-
sian kernel withσ = 6 before we use them. This is done to smooth-
out gentle high-frequency jitters that might remain due to tracking
inaccuracies and errors in the stabilization process.

Note that the trajectories̃vis computed in this process are smoothed
independently, and in the 2D frame plane. Hence these coordinates
do not necessarily correspond to a projection of geometrically-valid
3D points locations on any realizable camera configuration.How-
ever, these smoothed points locations are not the final stabilized
point locations, rather they are used to define new views by defin-
ing the fundamental matrices̃F s,t. Since every rank-two matrix
defines a geometrically-valid view, the matricesF̃ s,t model view
of a physically-realizable camera. This camera is moving smoothly
in space since it is optimized (via the eight-point algorithm) to re-
late the jittered pointsvit to the smoothly moving points̃vit.

Frame Warping. As we explain below, similarly to 3D stabi-
lization methods our point transfer is physically-correct. However,
occlusions in the scene prevents us from producing proper novel
views and therefore we follow the approach of Liu et al. [2009]
and synthesize the stabilized frames by warping the frames in a
content-preserving manner. This warping attempts to displace ev-
ery input pointpti to its stabilized locatioñpti while minimizing
the distortion at content-rich regions. In this method eachframe is
warped individually such that pixels from different framesdo not
intermix. Thus, corresponding pixels in different frames are not re-
quired to have the same color value. This property allows handling
non-static scenes containing moving objects. Algorithm 1 summa-
rizes the steps of our stabilization algorithm.

Discussion. The point transfer described here corresponds to a
physically-correct novel view, i.e., there exists a perspective cam-
era that contains the very same new point coordinatesp̃it. Hence, the
fact that the scene is reconstructed only up to a projective transfor-

Algorithm 1: Epipolar Video Stabilization.

track feature points in the movie using standard KLT tracking ;
for every frame t do

compute fundamental matricesF s,t for |s− t| ≤ 10
end
optional: add trajectories using epipolar tracking (Section 3.4);
choosen trajectories uniformly spread across the first frame ;
for i = 1..n do

set vit = pit for t = 1..5 ;
computevit for t = 6..end using epipolar transfer using
F s,t andvis, with t− 10 ≤ s < t ;

end
smooth virtual trajectories bỹvit = (g ∗ vi)t ;
for every frame t do

usevis andṽit to compute fundamental matrices̃F s,t for
|s− t| ≤ 5 ;

end
for every trajectory i do

if trajectory belongs to a dynamic object, calculate
time-view reprojection (Section 3.3) ;
for every frame t do

useF̃ s,t andpsi to computẽpti using epipolar point
transfer for|s− t| ≤ 5 ;

end
end
Use correspondence between original trajectoriespti and
stabilized trajectories̃pti as input for frame warping ;

mation, does not undermine its ability to produce physically-correct
views as 3D stabilization methods do. However, since this approach
requires only the estimation of fundamental matrices, it isalso valid
for scenarios where the camera movement is translation-free (e.g.,
in far scenes) or when the scene is approximately planar.

In these cases the fundamental matricesF s,t can be factored to
the productsF s,t = Ss,tHs,t whereSs,t are arbitrary skew-
symmetric matrices andHs,t are the homography matrices relat-
ing the points between the two frames. Multiplying a homography
by a skew-symmetric matrix maps the points into lines that pass
through an arbitrary epipole, see [Hartley and Zisserman 2000, Sec-
tion 11.9.3]. Applying the point transfer using such fundamental
matrices is equivalent to mapping points using the appropriate ho-
mography regardless of the skew-symmetric matrices. Whilethe
arbitrary fluctuations in the epipole location do not undermine the
point transfer, cases where the matricesSs,t are identical will not
allow the transfer (corresponding epipolar lines will be identical).
In practice this does not pose a problem as we use more than two
views and robust averaging to perform the point transfer. Hence,
in cases where the scene does not contain parallax effects our al-
gorithm naturally boils-down to the proper 2D stabilization needed
for such time segments.

Furthermore, camera zooming while shooting the video or using
the in-camera stabilization does not interfere with our scene mod-
eling. In fact, any changes in the internal parameters of thecamera
that retain its perspective nature do not undermine the ability to
model the scene using fundamental matrices as well as apply the
point transfer. We test such scenarios in Videos 5-8.

We should note that our approach is not entirely free from degen-
eracies; in cases where the frames differ by a pure linear motion in
the camera projection plane, the epipolar lines will all be parallel
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Fig. 3. Dynamic window of frames used for the point transfer.Blue plot
shows the vertical component of a single trajectory, shown to indicate
whether the camera is moving or not. Normally we use eleven frames for
the point transfer yet when the number of valid intersections decrease (due
to camera fixation in this example) the oldest frame used doesnot advance
in time (green plot) and the number of frames used increases (red plot).
Dashed gray plot shows a normal progression where eleven frames are used
at every frame.

and hence the point transfer would not be possible. Another degen-
erate scenario is when the camera motion is restricted to an arbi-
trary plane in which case points that lie in this plane will also pro-
duce parallel lines. It is virtually impossible that such motions will
be obtained by a jittery hand-held camera, besides the case where
the camera is held still. Nevertheless, such scenarios can be eas-
ily avoided by considering more frames, that do not correspond to
this degenerate camera motion, when computing the point transfer.
This can be implemented in various different ways, for example,
we simply extend the time window (which normally contain eleven
frames, since we use|s− t| ≤ 5) until enough intersections are left
in the point transfer after discarding the degenerate intersections.
The result of this strategy is shown in Figure 3 and in Video 15.

3.3 Time-View Reprojection of non-Static Scenes

When a tracked point corresponds to a moving object in 3D space,
the point transfer we described above ceases to be valid. Indeed,
points of moving objects are usually discarded by stabilization
methods [Liu et al. 2009; Liu et al. 2011] and these regions of
the frames receive their stabilization from other points that belong
to the static surrounding. When this distance is large or when the
depth difference between the object and its background is not neg-
ligible, the object will not receive an adequate stabilization.

We propose a novel time-view point reprojection that exploits the
smoothness of the motion trajectories real-world objects typically
follow. Consider a pointps, defined inview and time of frames,
and the epipolar lines it casts on theview of framet still at time
s, i.e., ls = F s,tps. Assuming this is the projection of a moving
point, we cannot not expectpt to lie on this epipolar line. Never-
theless, we can consider the locationqs,t of this point attime s in
theview of framet. In other words, we consider how this point is
seen at times by a stationary camera coinciding with the camera
of framet. Now, for anys the projectionsqs,t must lie on the the
epipolar linels, i.e.,l⊤qs,t = 0, as these are correspondences of a
point that is ‘frozen’ in times. While this does not provide us with
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Fig. 4. Dynamic point reprojection. An inertial moving point in 3D space
projects a smooth trajectory onto a fixed view (of framet). This constraint
is used to find its locations along each of the epipolar lines it casts from
views of different times.

enough geometrical constraints to determineqs,t, we estimateqs,t

based on its dynamical behavior. The pointsqs,t as a functions of
s, is a projected trajectory of a moving point in 3D space viewed
by a fixed camera. Assuming this object moves smoothly, or more
accurately, that its motion results from the minimal actingforces
needed to create it, then according to the law of dynamics itsveloc-
ity vectorsus,t = qs+1,t − qs,t must change as little as possible.
Figure 4 illustrates this dynamical scenario.

This additional assumption makes it sufficient to pose enough con-
straints overqs,t which we now derive. Denote byDu the following
time-differentiation matrix
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. (2)

This matrix has one row less than columns as every derivativeis
computed from two instants of time. Denote byDa the matrixDu

with its last row and column removed. When operating on the ve-
locities vectoru~s, this time-differentiation matrix produces the ac-
celeration valuesa~s = Dau

~s, where~s is a vector containing the
considered timess. Therefore, in order to obtain a trajectory re-
sulting from minimal forces such that every pointqs,t lies on its
corresponding epipolar linels, we have to solve the following con-
strained system

min
q~s,t

‖Lq~s,t‖2 s.t. ∀s 6= t (ls)⊤qs,t = 0, and qt,t = pt,

(3)
whereL is the second-order derivative matrixDaDu. Applying
Lagrange multipliers rule reduces this problem to solving the fol-
lowing linear system

(

L⊤L C⊤

C 0

)

·

(

q~s,t

λ

)

=

(

0
b

)

, (4)

whereC andb are the matrix and vector expressing the linear con-
straints in (3). Note that these equations are formulated and solved
independently over the horizontal and vertical coordinates of each
point qs,t and the homogeneous (last) coordinates are set to one.

In practice, errors prevent the points from falling exactlyon their
respected epipolar lines and hence we relax the hard constraints
in (3) to soft constraints and minimize‖Lq~s,t‖2 + α‖Cq~s,t − b‖2

with α = 10−4. Upon differentiation, this optimization is solved
by

(

L⊤L+ αC⊤C
)

· q~s,t = αC⊤ · b. (5)

We compute this for|s − t| ≤ 5 which is what we normally use
for transferring points and therefore the system above consists of a
22-by-22 matrix operating on the coordinates ofqs,t.
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points transfer without reprojection

points transfer with our reprojection

Fig. 5. Results obtained when running the epipolar point transfer with and
without our time-view reprojection step. This scene contains points that be-
long to a static background (gray trajectories) and to a moving person in
front (colored trajectories). When transferring the points without our repro-
jection step, there are noticeable high-frequency jittersin the output trajec-
tories of the moving person, while the ones belonging to the static back-
ground are smooth. Applying our reprojection yields smoothtrajectories
for both the moving and static scene objects.

The resultingqs,t, with s andt exchanged in their order and con-
sidered as a function oft, provide us with correspondences be-
tween the views of framest of a static point (frozen at times).
This allows us to transfer the pointpt (≈ qt,t) using the corre-
spondencesqt,~s to its stabilized coordinates using̃F s,t by apply-
ing the same epipolar transfer we described above. Note thatthis
formulation is equally valid for stationary points, where the cost
functional in (5) is expected to vanish, and hence this procedure
acts as an extension to the static point transfer mechanism.How-
ever, we avoid solving these systems for static points and apply
it only for points that deviate from the epipolar constraints. More
specifically, we apply this time-view reprojection to points that
min{|p⊤t−5F

t,t−5|, |p⊤t+5F
t,t+5pt|} > 3. The fact that this formu-

lation applies for both dynamic and static points makes the method
insensitive to misclassification of points as moving points.

Figure 5 shows the effect of using our reprojection procedure
when stabilizing video containgin a moving person (taken from
Video 13). Videos 12-14 show real video sequences where there
are relatively large moving objects whose distance from theback-
ground is non-negligible. In such cases the stabilization needed
for these objects cannot be inferred from the background, as
done in [Liu et al. 2009; Liu et al. 2011]. The use of the time-
view reprojection achieves proper stabilization in such scenes.
In Video S1 we show a synthetic scene where the objects are
moving in a linear motion that changes its direction abruptly
(i.e., the motion is not differentiable). Nonetheless, ourrepro-
jection procedure did not result in a noticeable failure andcon-
clude that the requirement of smooth motion is rather tolerant.

TVR w/o TVR
static 0.1141 0.1173
moving 0.2098 2.4173

We use this test to provide
a quantitative comparison be-
tween the stabilized trajecto-
ries of the static and moving

objects with and without our time-view reprojection (TVR).This is
based on measuring their smoothness by computing the mean ab-
solute time-derivative of their coordinates. As indicatedin the inset
above, the use of the time-view reprojection significantly improves
the smoothness of the trajectories of the moving objects.

3.4 Uniform Correspondence Maps

KLT-based feature point trackers [Shi and Tomasi 1994] identify
every point with a very small window of pixels surrounding it.
Matching points between frames is done by measuring the sim-
ilarity of these windows. Hence, these methods require thatthe
windows contain a sufficient amount of variation that will allow
identifying movement at any direction. Straight edges, forexam-
ple, do not provide this information and suffer from what is known
as theaperture problem; an upward movement of a vertical edge
does not change its surrounding pixels. Therefore, these trackers
restrict their operation to unique points such as corner edges. Typi-
cally few hundreds such points are tracked at every frame in videos
of NTSC resolution. While this is enough for recovering the fun-
damental matricesF s,t and F̃ s,t, in many cases these points are
not spread uniformly across the frame and hence do not capture the
geometry of the scene at uncovered regions.

Faugeras et al. [1993] and Seitz and Dyer [1995] use the epipolar
constraints to search for matching points in rectified imagecoor-
dinates. This one-dimensional search allows reducing the aperture
ambiguity since now every edge which is not parallel to the epipo-
lar line can be matched. We follow this idea combined with the
epipolar point transfer in order to track more points that are evenly
spread across the frame. To achieve this we divide each frameinto
blocks, ranging between16-by-16 to32-by-32 pixels depending on
the video resolution, and search for one or more suitable points for
tracking. We choose the points with the maximal Laplacian mag-
nitude |∆It(pt)| in each block, whereIt denotes the frame pixel
values. We then search for a matching point along the epipolar line
pt casts in the next frame, i.e.,F t,t+1pt. We measure the matching
error between the points using theL2 norm over windows of7-by-
7 pixels around them. We normalize the pixels in each window to
obtain variance of unit intensity. This search is performedalong a
segment of about 50 pixels, computed by intersecting the epipolar
line in framet + 1 with a 50-by-50 pixels square aroundpt. We
allow a sub-pixel correction to the best match found by running a
few iterations of KLT search, constrained to the epipolar line. In
order to avoid ambiguities along the line, we discard pointswhose
closest-match score does not fall below half the score of thenext
best match. Besides storing the matching point coordinatespt+1

we also store the matching errore for future reference. Starting with
more than one point per block makes it more likely that we willfind
at least one correspondence within it. We initiate this search only in
blocks that contain no tracked points (either ones found previously
by this tracking mechanism or by the initial KLT tracking).

Once a correspondence is found, wedo not continue tracking it
using line searches, and instead we use the point transfer topre-
dict its location. More specifically, we compute the epipolar lines
casted at the next framet + 1 based on the corresponding points
found in past frames (last five if available), i.e.,ls = F s,t+1ps

with s = t− 4, .., t. Intersecting these lines with one another gives
possible locations forpt+1. As we did before, we discard intersec-
tions between lines whose difference in orientation is small or lines
obtained with low-magnitude vectors. We then test which of the re-
maining points gives the lowest matching error (computed the same
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Fig. 6. Frame (taken from Video 16) showing the initial tracked points
(red), the additional points obtained by the point transfer(green), and the
32-by-32 pixel blocks used (dashed white).
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Fig. 7. Plots show the proportion of blocks containing a tracked points in
every frame of Video 16. The initial KLT trajectories cover less than half
the block (red) whereas our search achieves a coverage higher than 80% of
the blocks (green).

way as above). We correct this match by running a few iterations of
a 2D KLT search, limited to±1 pixel. Finally, we stop tracking a
point (and discard its matches in the last 10 frames) if the matching
error between its window and the corresponding one in the previ-
ous frame is higher than20 times its initial matching errore. We
use this relative criteria in order to normalize the matching quality
of different windows. We do not use trajectories that last less than
twenty frames.

Figure 6 shows the points tracked by the initial 2D KLT track-
ing and the ones obtained using the procedure described here. A
better coverage is achieved at regions where no adequate feature
points were found for the KLT tracking (e.g., the road). Video 16
demonstrates the more accurate frame warping achieved by these
additional points. In Figure 7 we show the increased proportion of
blocks containing a tracked point in this sequence.

In Videos 23b and 24b we use the initial KLT tracking only for
computing the fundemental matricesF s,t, and do not use these
trajectories in the stabilizing stage. Instead, we used ourepipolar
transfer-based tracking to generate the all the trajectories used for
stabilization. The resulting videos confirm the accuracy ofthis new
procedure. In addition, we measure the distance between thecoor-
dinates of the trajecories found by standard KLT tracking and our
predicted coodinates (before runing the sub-pixel 2D KLT correc-
tion step) in a frame-by-frame basis. The average distance found in
two videos that we run this experiment on (Videos 23 and 24) fall
below 0.2 pixels. In Figure 8 we provide the histrogram of these
distances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

5%

10%

15%

20%

25%

distance in pixels

Video 23

Video 24

Fig. 8. Histograms of the distances between the points tracked by the KLT
and the ones predicted by our epiplar transfer scheme.

4. RESULTS

We used the Voodoo camera tracker3 software set to perform stan-
dard 2D KLT search for computing our initial point correspon-
dences. The rest of the method was implemented in Matlab with
very little optimization and executed on i7 Intel 3.07GHz machine.
The running-time per frame on 1280-by-720 pixels videos areas
following. The initial point tracking runs in about 5fps andour
epipolar-based point tracking runs in about 4fps. Computing the
fundamental matrices (bothF and F̃ ) as well as solving the 22-
by-22 linear systems when necessary (using LU decomposition) is
done in 2fps.

Comparison. Videos 1 and 2 show non-planar scenes captured by
a jittery camera. Our method handles these scenes well and matches
the results of the 3D video stabilization method of Liu et al.[2009].
In Videos 3, 6 and 8-11 we compare our method with the subspace
video stabilization of Liu et al. [2011]. These videos confirm our
ability to match their results on scenes that: lack parallax, cam-
era auto-stabilization turned on, camera zooming and smallrolling
shutter effect. Video 12 contains a moving person that covers a
large portion of the frame and whose distance from the background
results in a different response to the camera jitter. In suchcases
the stabilization needed for the object cannot be inferred from the
background, as done in [Liu et al. 2009; Liu et al. 2011]. Our time-
view point reprojection is designed to cope with such scenarios and
manages to provide stabilization with considerably less artifacts.

Evaluation. We tested our methods on scenes with non-trivial 3D
geometry (Videos 1 and 2) as well as on scenes with planar geome-
try or little camera translation. The lack of parallax does not intro-
duce any difficulty to our method. This is demonstrated in shown in
Videos 3 and 4 which contain distant objects and mostly rotational
camera motion. Similarly, camera zooming and in-camera stabi-
lization produce views that are valid in the epipolar geometry and
hence our method performs well on such shots. Videos 5-6 were
acquired while the camera zoom was changing (hence affecting the
intrinsic camera parameters) and in Videos 7 and 8 the in-camera
stabilization system was active and affected the camera optics.

Videos 12-14 demonstrate and compare the time-view point repro-
jection on scenes containing dominant moving objects. As weex-
plained earlier, in these scenes the background’s stabilization is in-
adequate for the foreground moving object. These tests showthat
the reprojection step is a critical component for treating such tra-
jectories. Video S1 shows a synthetic scene where the objects are
moving in a linear motion and changes their direction abruptly. Our

3http://www.digilab.uni-hannover.de
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Table I. Summary of example videos accompanying this paper.
Video # Description
1-2 Comparison with 3D stabilization of Liu et al. [2009]
3-4 3D stabilization failure cases: Lack of parallax
4-5 3D stabilization failure cases: Camera zoom
7-8 3D stabilization failure cases: in-camera stabilization
9-11 Comparison with subspace stabilization of Liu et al. [2011]
12 Subspace stabilization failure case: dynamic scene
13,14,S1 Time-View reprojection of scenes containing dominant

moving objects.
15 Video containing degenerate segments
16 Enhanced tracking using the epipolar point transfer
17 Path fitting
18 Insufficient trajectories
19 Camera occlusions cut trajectories
20 Tracking failure due to motion blur
21 Tracking failure due to excessive camera shake
22 Warp failure due to lack of smooth regions
23,24 Stabilization using only epipolar transfer-based tracking
25-42 Additional assortment of videos

reprojection procedure, which relies on the smoothness of the mo-
tion, appears to be robust to these changes. As we described in Sec-
tion 3.2 segments with no camera motion do not allow to recover
the stabilizing fundamental matrices. We cope with such situations
using a dynamic window containing non-degenerate frames when
extracting these matrices. Video 15 shows how this strategyallows
us to cope with a scenario where the camera is placed on a table
and picked up a few seconds later. In Video 16 we show the benefit
of extracting additional trajectories using our epipolar point trans-
fer tracking scheme. Videos 23 and 24 show the stabilizationthat
results by replacing all the trajectories obtained using KLT with
our epipolar point transfer tracking. Finally, in Videos 25-42 we
test our method on an unselected collection of videos taken by a
moving person or driving car.

All our example videos, at their full resolution, are available at:
http://www.cs.huji.ac.il/~raananf/projects/stab/.

5. CONCLUSIONS

We presented a new video stabilization method that uses epipo-
lar geometry to model the input and synthesize the output videos.
This level of modeling falls, in terms of the amount of recovered
scene data, between the models 2D and 3D methods use. Despiteits
lower complexity, this model is sufficient for generating physically-
correct stabilize views at the tracked points locations andcan han-
dle non-trivial 3D scene geometry. The advantages of this approach
are its robustness to ambiguities, including planar scenesand de-
generate camera motion, and that it is more computationallyeffi-
cient than existing full 3D approaches. Furthermore, we presented
an extension of the epipolar point transfer to for handling non-
stationary points. This approach exploits the fact that themotion of
3D objects is smooth and assumes they experience minimal forces.
Unlike existing solutions, this principled homogeneous approach
allows us to stabilize trajectories of moving objects instead of ap-
plying them an irrelevant stabilization from their background. Fi-
nally, we described a scheme for increasing the number of tracked
points efficiently using the epipolar point transfer that exploits the
epipolar relation to reduce the aperture problem and achieve a more
uniform distribution of tracked points across the frame.

Limitations. Video stabilization strongly depends on the number
and accuracy of the tracked feature points. Scenes with little tex-
ture, excessively strong camera jitters, and cases where the static
background cannot not detected, based on majority voting, will not
allow successful stabilization, see Videos 20 and 21. Caseswhere
successive frames share a small overlap (due to rapid cameramo-
tion) undermine the ability to track corresponding points as well as
require stronger frame cropping when producing rectangular out-
put frames. Strong occlusions and highly non-Lambertian surfaces
are another source for failure, see Videos 18 and 19. Our method
uses the epipolar geometry which relates point with lines between
images of different views. Therefore, unlike the method of Liu et
al. [2011], it cannot cope with strong rolling shutter effects that dis-
tort these relations. The content-preserving warp of Liu etal. [2009]
that we use relies on having smooth regions with little content that
will absorb the warping distortion. Texture-rich frames donot have
such regions and some deformation can be visible, as seen in Video
22. Another limitation of our method, compared to 3D methods, is
the inability to provide explicit 3D camera motion planning. How-
ever, as shown in [Liu et al. 2011] low-order polynomials andspline
camera motions can be approximated by replacing the trajectory
smoothing in (1) with fitting these models to the jittered trajectories
and using them instead of the smoothed trajectoriesṽit . In Video 17
we show the result achieved by fitting a quadratic polynomialthat
mimics a quadratic camera path.

As future work, we intend to investigate the possibility of using
the tri-focal tensor [Shashua 1995] to express the epipolarrelations
instead of using fundamental matrices. This formulation isknown
to be more robust to degeneracies as well as allowing to specify
more explicit novel views which could provide a better camera path
planning. We also believe that developing point trackers that can
recover from occlusions will greatly benefit video stabilization.
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