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Light traveling through semi-transparent media such as smoke and marble is absorbed and scat-

tered. To achieve proper realistic visualizations of such media, illumination algorithms must

account for these events. In this paper, we present a new method for solving the Radiative Trans-

port Equation, which models such evolution of light. The new method falls into the category of the

Discrete Ordinates Method and inherits its generality and computational lightness. This method

is known to suffer from two main shortcomings, namely the false scattering and the ray effect,

which we avoid in our new method. By propagating the light using lower-dimensional maps of

rays we detach their transport from the Eulerian grid and use fine angular discretizations. Thus,

the scattering effect at each scattering generation is eliminated and the ray effect is significantly

reduced at no additional memory requirements. Results demonstrate the new method’s efficiency,

ability to produce high-quality approximations, and its usefulness for a wide-range of computer

graphics applications.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Radiosity

General Terms: Algorithms

Additional Key Words and Phrases: global illumination, participating media, Discrete Ordinates

method, Radiosity, Monte Carlo

1. INTRODUCTION

Generating realistic rendering of natural objects is one ofthe main concerns in computer graphics. Over the last
years there was a consistent trend to use physical models of increasingly higher degrees of complexity and accuracy to
achieve this goal. Fluid flow, cloth dynamics, and fire simulations are just a few examples to received such an attention.
In order to generate convincing rendering of scenes containing haze, clouds, dust, and translucent solids such as glass
and marble, one must account for light absorption, scattering, and emission effects. These phenomena are formalized
in an integro-differential equation known as theRadiative Transport Equation(RTE) which we present in Section 2.
This equation contains, as its unknown, the light intensityat every point in space and along every possible direction,
a total of five dimensions in the case of 3D physical space. This fact alone poses major computational challenges
for those attempting to approximate the solution on discrete grids of limited resolution. Therefore, aside from the
asymptotic complexity of the number of flops they perform, solvers are measured by their running times and the
accuracy of their results. One critical factor is the amountof non-smoothness a method can sustain and produce at a
given resolution.

As for the RTE, several different methods are suggested by both the thermal engineering and the computer graphics
communities, each approach with its own advantages and disadvantages as we discuss in the following section. The
Discrete Ordinates Method(DOM) is one family of such solvers that is popular among heattransfer engineers for
its good trade-off between accuracy and computational costwhile not posing any restrictions on the nature of the
medium. Yet, it is known to suffer from two types of truncation error: (i) the false scattering, also known as numerical
smearing, in which sharp beams are erroneously smoothed and(ii) the ray effect, whereby light that emanates from
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bright sources in a set of fictitious directions.

In this paper we propose a new technique for solving the RTE which falls into the category of the DOM. In this method,
the solution is constructed using maps of light rays that propagate the light across the domain. Since these maps
have one spatial dimension less than the original domain andthey contain rays with a restricted set of orientations,
they can be discretized at high resolutions. Moreover, their evolution through space is done parametrically and is
independent of the discretization used to store the solution. Thus, the new approach allows us to: (i) avoid the
false scattering phenomenon at each scattering generationaltogether, and (ii) practice fine angular resolutions when
propagating the light and thereby significantly reducing the ray effects. This is achieved without compromising the
admissive nature of DOM,i.e., allowing unrestricted albedo range, accounting for multiple scattering, using arbitrary
scattering distribution, and not posing any smoothness constraints over profile of the media coefficients.

The remainder of this paper is organized as follows. In the next section we review existing methods for solving the
RTE. In Section 2 we review the RTE and establish notations. The new method is described in Section 3. In Section 4
we report the tests and comparisons evaluating its performance, and in the last section we draw some conclusions.

1.1 Previous Work

Much effort was put into devising numerical solvers for the RTE by different communities. We will not attempt to list
all these reports here but instead, we classify the techniques into groups and mention their respective representatives.
The reader is referred to [Cerezo et al. 2005] and [Perez et al. 1997] for a more elaborate survey of these approaches,
and to [Sigel and Howell 1992] for an additional summary of the topic.

The Zonal Method[Rushmeier 1988; Hottel and Sarofim 1967] extends the treatment surfaces receive inRadiosity
to volume elements discretizing the 3D medium. This requires computing form-factors between every pair of voxels
(volume elements) and involves a computational complexityof the orderO(n7), wheren is the number of discrete
variables taken along each axis in 3D. In [Sillion 1995] a hierarchical strategy is employed to reduce this complexity
under certain assumptions about the structure of the scene.A method for accelerating the computation of the form-
factors is proposed in [Arqùes and Michelin 1996] and relies on spatial coherence. This approach is extended for
non-isotropic scattering in [Bhate and Tokuta 1992] wherem spherical harmonics coefficients are used to represent
the angular light distribution. In this approach the numberof form-factors grows, and the order of computational
complexity increases toO(n7m2).

In [Stam 1995] multiple scattering is approximated as a diffusion process to achieve a low-cost solution for scenes
with an optically thick medium. In [Premoze et al. 2004] the spread of direct illumination is estimated by a model
relating scattering and absorption to the distance light travels from particular light sources.

In [Behrens and Ratering 1998] shadows due to the occlusion of direct light are computed in a texture-based volume
rendering. The volume is stored as parallel polygons which carry the volume data as texture maps. These polygons are
shifted according to the light direction and thus interpolations between successive layers are avoided. We use a similar
mechanism for both the direct and indirect components of theillumination in the context of a more sophisticated
illumination model that accounts for emission and scattering on top of absorption. In [Dobashi et al. 2000] a single
scattering effect is computed for clouds modeled by metaballs.

Given the high dimensionality of the problem [Pattanaik andMudur 1993] employ Monte Carlo based stochastic
sampling methods, [Lafortune and Willems 1996] use bidirectional tracing, and [Pauly et al. 2000] employ Metropolis
sampling. Despite the various variance reduction strategies used, these approaches require a considerable number
of samples to be drawn in order to remove the noise in the resulting image. In [Jensen and Christensen 1998], the
amount of samples needed to obtain cleaner images is reducedby approximating the direct component of illumination
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Fig. 1. On the left, a 2D Discrete Ordinates grid is illustrated. In each square element several variables discretizing light’s orientation are held. On
the right, a light propagation map is shown to sweep a 3D grid. The discrete directions held in the LPM are finer and restricted to one sixth of the
unit sphere.

deterministically, by sampling light sources using ray tracing. In general, stochastic photon tracing approaches require
the representation of individual spatial coordinates and their evolution. Therefore, they perform more computationsper
singlesample than what is required by methods based on stationary variables discretizing space. Restricted models,
used to model light transport at a sub-surface layer, are described in [Hanrahan and Krueger 1993] and in [Jensen et al.
2001] for the case of highly scattering media. These methodsuse a Monte Carlo integration to compute their solution
and are very efficient for their purpose.

In the Discrete Ordinates Method (DOM) [Chandrasekhar 1950], as depicted in Figure 1, the quantities appearing in
the RTE are discretized in a straightforward fashion both inspace and orientation, typically in the original coordinates
systems. These discrete values are used to approximate the different terms in the RTE, which become a finite dimen-
sional system of equations expressing the light exchange between neighboring volume elements. In its classic form,
the angular discretization is takenpointwise, allowing light to travel only at a finite number of directions (the method
owes its name to this property). The DOM is the method of choice for radiative transfer engineers and established
itself as the most cost effective approach [Coelho 2002; Languenou et al. 1994]. The main reason behind this is that
the calculations are based only onlocal interactions and avoid the need to compute form-factors between every pair
of elements, thus reducing the complexity of the problem considerably. In fact, this approach corresponds to approxi-
mations made by the Finite Element Method [Zienkiewicz and Taylor 2000] and the Finite Volume Method [Leveque
2002], which dominate many computational regimes, such as fluid and solid mechanics as well as hyperbolic and
parabolic conservation laws.

Unfortunately this discretization is known [Perez et al. 1997; Coelho 2002; 2004] to suffer from two major truncation
errors, to the extent that they can become visually disturbing. Repeated averaging arising from the interpolation,
needed to approximate the flux between volume elements, causes light to smear in space. Effectively this does not
allow light beams to maintain a sharp profile. Note that this occurs at each light orientation separately and therefore
the light direction remains unaltered, and the term scattering is somewhat misleading. As shown in [Coelho 2002],
this effect is the counterpart of the artificial viscosity arising in computational fluid mechanics, where the momentum
is falsely-diffused in space. Discretizing the directionsin which light can travel causes another type of error, the ray
effect. This error consist of light that emanates from relatively small and intense regions and reveals this angular
discretization as spurious beams of light. This is more pronounced in media that allow the light to propagate without
being immediately absorbed or scattered.

In order to reduce this effect [Ramankutty and Crosbie 1997]propose theModified DOM, where the ray intensity is
broken into direct and diffuse components. The direct lightcomponent is determined analytically under the assumption
of a homogeneous isotropic medium with a constant thicknesswhich cannot produce the ray effect. An extension of
this method that allows discontinuous medium emission in the presence of non-homogeneous non-isotropic scattering
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Fig. 2. The two images on the left (color coded differently) show the result produced by a first-order DOM simulation with 54 discrete direction
in each of the 1283 cells. In this example a sharp beam of light enters from the left, penetrates the vase, and is scattered by its walls. The region
where the light initially hits the vase indicates the beam’s profile got already smeared before reaching the vase. The ray effect is observed when
the light scattered from this regions propagates only in certain directions, reaching specific regions such as near the opening and the right side of
the vase. A more accurate solution is shown in the two images on the right, which were obtained using LPMs. This involves a muchlower angular
discretization consisting of one variable per cell in the output grid (enough for isotropic scattering) and six variables to store the unpropagated light
during the construction of the solution. The angular discretization used for the LPMs, which are 2D maps, is 9×9 different ray orientations and
their spatial resolution is 1282 (equals to the output grid resolution).

is described in [Coelho 2004], at the cost of computing additional spatial integrals. In [Kajiya and Herzen 1984] under
the assumption of high albedo medium, a truncated sphericalharmonics expansion is used to represent angular light
distribution for rendering clouds. Another way of propagating light through whole bins is reported in [Max 1994].
In this method inaccuracies are introduced because light isattenuated not only along a straight path but along many
other possible routes. In [Stam 2001] the DOM is used to render human skin layer by modeling its boundary as rough
surfaces.

A family of High-Resolutiontechniques were developed for approximating the hyperbolic convective terms [Leveque
2002] in computational fluid mechanics. This reduces the numerical viscosity by maintaining a high-order of accuracy
and adaptively switching to lower accuracy stencils in order to withstand discontinuities. The use of these techniques
to solve the RTE is proposed in [Jessee and Fiveland 1997; Coelho 2002] and [Liu and Pollard 1996]. As we shall
show later, this action reduces the numerical smearing but only up to a limited extent. The low-order stencils used to
avoid non-physical oscillations, near sharp transitions in the solution, are diffusive and hence cause a noticeable initial
smoothing to sharp beams. Also, although the RTE is linear, these operators yield a system ofnon-linearequations,
which are harder to solve. These high-resolution schemes donot offer any reduction in the ray effect.

2. GOVERNING EQUATIONS

The radiative transport equation models the propagation ofradiation through a participating medium which absorbs,
scatters, and emits light. For a particular wavelength the RTE is given by

(ω ·∇)I(x,ω) = e(x,ω)−
(

k(x,ω)+σ(x)
)

I(x,ω)

+
σ(x)
4π

∫

Ω
I(x,ω ′) f (ω,ω ′)dω ′ ,

(1)

whereI(x,ω) is the radiation intensity (W/m2 ·sr), at a pointx that propagates in the direction ofω. The scalar fields
e andk are the medium self-emission and absorption coefficients, respectively, and describe the production and loss
of radiation alongω throughx. The scattering coefficient of the mediumσ appears both in the out-scattering term
σ(x)I(x,ω), where the intensity alongω is reduced, and in the in-scattering (last) term, where radiation, arriving from
all incident directionsω ′ ∈ Ω and scattered toω, is integrated. Thephase function f(ω,ω ′) expresses the fraction of
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scattered radiation alongω arriving fromω ′, relative to the isotropic scattering fraction. Predicting light refraction or
Fresnel reflection within the context of the RTE requires singular coefficients and phase function. In our scope we do
not account for these cases of interfacing media.

3. NEW METHOD

Discretizing the RTE either using the DOM or the Zonal methodresults in a system of linear equations which is then
typically solved via iterative sweeps such as those of Jacobi, Gauss-Seidel, or Southwell. As shown in [Gortler et al.
1994] these iterations have different physical interpretations in terms of light propagation. In [Languenou et al. 1994] a
similar observation is made in the context of the DOM, where light rays traveling close to one another induce a sweep
direction when using these iterative solvers to compute a solution. This is exploited by [Jessee and Fiveland 1997]
where the iterations are ordered in an “upstream to downstream,” fashion. Here we take a more explicit advantage
of these interpretations. In the course of solution construction, we iteratively propagate light across the domain by
solving (1) explicitly along light rays that are close to oneanother in their direction of propagation. This is done
usingLight Propagation Maps(LPMs), which are temporary two-dimensional maps of rays containing only a fraction
(one sixth in our implementation) of all possible directions. Hence, in contrast to the standard DOM and what is
traditionally done in Finite Volume methods, we donot approximate the light flux between adjacent cells based on
the discrete variables storing the solution. Instead, the total light reaching a cell is estimated from the LPMs, and the
stationary grid variables serve merely for bookkeeping. Bythat we achieve two goals: (i) since the light stored in
the LPMs is unattached to the coarse grid, it is propagated parametrically and independently of its orientation with
respect to the axes of the 3D solution grid. Thus, we bypass the need to estimate the spatial derivatives in (1) and avoid
interpolations. As a result a major source of numerical smearing, arising from averaging due to the interpolations,
is totally eliminated. And (ii) the use of such lower-dimension maps with a reduced set of orientations allows us to
practice fine discretizations of space, and more importantly, orientation. As we will show, this allows us to reduce the
ray effect significantly at minimal memory costs, since onlythe LPM resolution is refined.

The numerical method presented in this section can be applied both in two- and three-dimensional space. The scheme
is derived for the 3D case and can be straightforwardly interpreted in 2D. Also, for the sake of clarity, we assume the
spatial discretization to consist of rectangular cells. InSection 3.2 we simplify the domain even more by taking it to be
the unit cube so that formulas take on a simple and clear form.This method can be implemented for arbitrary domains
with arbitrary control volume shapes and arrangements, under mild requirements of coherence between the different
discretizations involved (described in Section 3.3).

3.1 Spatial and Angular Discretizations

In the new approach we discretize both the physical space andthe sphere of orientations in the finite volume fash-
ion [Leveque 2002]. We break up the unit sphereS2 into a set of non-overlapping binsΩm, such that∪Ωm = S2. We
also break the spatial domainD ⊂ IR3 into a grid of non-overlapping rectangular cellsCi, j,k of lengths∆x,∆y,∆zalong
the principle axes, such that∪Ci, j,k = D. Note that the indexmconveys a mapping to a discrete 2D manifold. Similarly
to [Languenou et al. 1994], our goal here is to estimate the average scattered radiation intensity at each control volume
in the complete cross-product spaceΩ×D, namely

Im
i, j,k ≈ (Vm

i, j,k)
−1

∫

Ci, j,k

∫

Ωm

σ(x)
4π

∫

S2
I(x,ω ′) f (ω,ω ′)dω ′dxdω , (2)

whereVm
i, j,k = ∆x∆y∆z|Ωm|, the total volume of them, i, j,k-cell. This choice of a weak-form numerical representation

of cell averages is known to be robust to discontinuities [Leveque 2002], such as the ones we expect to encounter
here due to occlusions and non-smooth media coefficients. The emission, absorption, and scattering scalar fields are
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assumed to be given either as constants in each cell or at a higher order of representation to allow a higher order
formal accuracy as discussed below. Throughout this paper we refer them, i, j,k grid, used to store the input medium
coefficients and the solution itself, as thecoarse-gridfor it holds a coarser spatial and angular discretization than the
one used in the LPMs.

3.2 Light Propagation Maps

Each LPM consists of a 2D array of light rays passing through the domainD alongsimilar directions, and hence
similar calculations can be performed collectivly. In our implementation we divideS2 into six subsets induced by the
cartesian coordinates,

ΩX− = {ω ∈ S2 : ωx < 0, |ωx|/∆x > |ωy|/∆y, |ωz|/∆z},

ΩX+ = {ω ∈ S2 : ωx > 0, |ωx|/∆x > |ωy|/∆y, |ωz|/∆z},

and the analogically definedΩY−,ΩY+,ΩZ−, andΩZ+. To simplify the description we will assume that the domainD
is the unit cube[0,1]3 and derive the equations only for the LPM that correspond to the positiveZ axis. The equivalent
treatment along the other principle directions is easily inferred. The LPM that corresponds to this direction consistsof
the set of rays defined by

Rn
r,s(z) = (xr,s+z·ωn

x/ωn
z ,yr,s+z·ωn

y/ωn
z ,z),

whereωn samplesΩZ+ andxr,s,yr,s sample[0,1]2. In our implementation we use a uniform sampling for both space
and orientation, meaning thatωn

x/ωn
z andωn

y/ωn
z are given by a uniform sampling of[−1,1]2, i.e., a uniform sampling

of the cube faces. Here again the 2D angular discretization is indexed by a single numbern. We refer to ther,s,n
discretization of the LPM as theLPM discretizationor thefine-grid discretizationin contrast to them, i, j,k grid used
for the final solution (and the input media coefficients) which we call thecoarse-grid.

We use the LPMs to propagate light throughout the domain by sweeping along the consequent set of directions
(Ω±X,Ω±Y,Ω±Z) iteratively. The evolution of then, r,s-ray intensity is derived from (1) by plugging in the parame-
terized ray positionRn

r,s(z) and intensityLn
r,s(z) to get

ωn
z

d
dz

Ln
r,s(z) = (ωn ·∇)I(Rn

r,s(z),ωn) = e(Rn
r,s(z),ωn)

−
(

k(Rn
r,s(z),ωn)+σ(Rn

r,s(z))
)

Ln
r,s(z)

+
σ(Rn

r,s(z))

4π

∫

Ω
I(Rn

r,s(z),ω ′) f (ωn,ω ′)dω ′ .

We cannot express the unknown in-scattering term by the current LPM, which contains only a partial set of all ordi-
nates, and use an axillary variable instead. We introduce a new scalar fieldu to account for theunpropagatedintensity
arising from the emission and scattering of previous sweeps. Given this quantity, the equation above becomes

ωn
z

d
dz

Ln
r,s(z) = −

(

k(Rn
r,s(z),ωn)+σ(Rn

r,s(z))
)

Ln
r,s(z)+u(Rn

r,s(z),ωn) . (3)

This derivation is quite similar to the one used in the progressive radiosity [Cohen et al. 1988] where the final intensities
are calculated by accumulating the exchanged radiation at each step. In Section 5 we discuss the differences between
the two approaches.

Equation (3) is integrated numerically by incrementingRn
r,s in finite steps matching the cell lengths along that direction

(e.g. ∆z in the case of theZ+ sweep). Such an increment will advance the ray by less than∆x,∆y along theX andY
axes respectively. As shown in Figure 3, this allows us to expect intersections with no more than two cell faces before
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Fig. 3. Ray segments between cells.

hitting the face perpendicular to theZ-axis. TheZ-coordinates of the corresponding intersections between the ray and
cells faces are denoted byzq for q= 0...3, provided all four exist. The parameterized lengths of theresulting segments,
zq− zq−1, are denoted by∆lq for q = 1,2,3. By treating the coupling between rays due to scattering explicitly, i.e.,
ignoring the scattered light of the current sweep when evaluatingu, equation (3) admits the following exact integration
formula along the segments

Ln
r,s(zq) = Ln

r,s(zq−1)e
−∆lq(Km

i, j,k+Si, j,k)/ωn
z +Um

i, j,k

(

1−e−∆lq(Km
i, j,k+Si, j,k)/ωn

z
)

/(Km
i, j,k +Si, j,k) , (4)

for 2 ≤ q ≤ 2,33, depending on the number of intersections. The indicesi, j,k correspond to the cell containing
the ray fragment[Rn

r,s(zq),Rn
r,s(zq−1)]. The numbersKm

i, j,k,Si, j,k, andUm
i, j,k approximatek,σ , andu respectively and

corresponds to a zero-order interpolation. The ordinate indexm is taken such thatωn ∈ Ωm, which again corresponds
to a constant interpolation. We further discuss the meaningand role ofUm

i, j,k in the next section. We avoid the numerical
restriction∆lq(Km

i, j,k + Si, j,k)/ωn
z < 1 by using the exponentials in formula (4) which keeps positive intensity values

independently of the extinction rates. Higher order interpolations combined with a high-order integration scheme
along the rays can be used to achieve a higher order of formal accuracy when approximating (4). Also, ifk,σ , and
e are given more accurately, then they can be evaluated on demand at the LPMs fine resolution as these evolve. We
exploit the fact that many rays in the LPM have the same direction and make our calculation faster by choosing the
LPMs’ fine-resolution to be equal the coarse grid’s resolution times some integer factor. This choice yield the same
cell-ray intersections and ray fragment lengths such that the same integration weights can be used in all cells.

The variablesIm
i, j,k are set to zero andUm

i, j,k to Em
i, j,k, which is the discrete approximation to the cell emission. Light

penetrating the domain from its faces,i.e., the boundary conditions associated with the RTE, is translated in this
formulation to the initial conditions ofLn

r,s. This process must not be regarded simply as Lagrangian advection of
light, since all light rays are coupled by the scattering, which dictates a certain synchronization when storing and
evolving light between successive sweeps, as we describe shortly.

3.3 Iterative Radiance Estimation using LPMs

The iterated sweeps of the LPMs provide means for estimatingthe amount of light traveling and being scattered.
This is needed to construct the solutionIm

i, j,k, as defined by (2), by accumulating the fluxes across each of the control
volumes. In each of these sweeps some fraction of light is scattered in all directions, including ones which are not
represented in the current LPM sweep. In fact, this is the source of the coupling inherent in the RTE, which is in turn
responsible for the need for iterative solvers. The fraction of the scattered light flux which cannot be propagated at
the current sweep is temporarily stored in the auxiliary field, u, until an adequate LPM sweep arrives. This light is
stored across the entire domain at the coarse-resolution, used for storing the solution itself, by averaging it inside the
m, i, j,k-cell and denote it byUm

i, j,k. These variables are updated using the LPM sweeps accordingthe cell-averaged
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in-scattering term in (2) which we discretize as following.We replace the lightI(x,ω ′), arriving from directions that
are represented via the current LPM, i.e.,ω ′ ∈ Ω+Z, by a zero-order approximation based onLn

r,s(z). This means that
the light within the LPM’s control volumes, which are surface elements partitioning[0,1]2 andΩZ+, is constant and
equals toLn

r,s(z). Thus, the amount of light being scattered from a single LPM bin along a single ray-cell intersection
segment is given by the following quadrature

Si, j,k

Vm
i, j,k

∑
n,r,s

Ar,sF
n,m

∫ z=zq

z=zq−1

Ln
r,s(z)/ωn

z dz

whereσ is replaced by a zero-order approximationSi, j,k, the Ar,ss are the areas of the spatial LPM volumes, and
[zq−1,zq] is the third coordinate of the segment intersecting with thecoarse-resolutioni, j,k-cell. The light raysLn

r,s(z)
may show a rapid exponential decay, which is typical to highly-scattering media, and thus evaluations of its integral
along[zq−1,zq] may lead to a discrepancy between this added quantity and theactual light loss in the LPM due to the
scattering, as computed by (4). We avoid this by approximating this integral directly from the amount of light scattered
in (4) and use

(Vm
i, j,k)

−1 ∑
n,r,s

Ar,sF
n,mLn

r,s(zq−1)(1−e−∆lqSi, j,k/ωn
z ) , (5)

where the expected integration weight∆lqSi, j,k/ωn
z is replaced by 1−e−∆lqSi, j,k/ωn

z . The discrete form-factors are given
by

Fn,m =
1

4π

∫

Ωm

∫

Ωn
f (ω,ω ′)dω ′dω ,

and are computed in advance. Note that the angular areas do not appear in (5) explicitly, but they are factored by
the form-factors. As we mentioned earlier, the discretization we use for the LPMs equals to the one used for the
course-grid times some integer factor and henceAr,s equals∆x∆y divided by that factor squared.

The angular resolution of the scattered light is reduced when it is transferred from the LPM intoUm
i, j,k. Yet, since the

scattering kernelf acts as a low-pass filter in space of directions, we expect this scattered light to be smoother than
the distribution of the light that produced it. Hence, in cases of strongly diffusing phase function this will introduce
moderate inaccuracies, whereas a temporary storage of a higher resolution will be required for more concentrated
scattering functions.

The only discretization restriction posed by this scheme isthat all ray directions belonging to a certain LPM must
be fully contained in some subset of the angular coarse-gridbinsΩm, and these bins must not contain any other ray
direction belonging to a different LPM. This relation must also hold between each ofΩ±X,Ω±Y,Ω±Z and the coarse-
grid angular bins. We use the following simple constructionwhich obeys this rule. We start with some partitioning of
the sphere of all orientations, e.g.,Ω±X,Ω±Y,Ω±Z, which is dictated by the major directions along which we intend
to scan the domain. Then, we take an integer division of each of these bins to define the coarse-grid angular bins,
indexed bym, which depends on the phase function. For isotropic scattering a single bin is enough, whereas more bins
are needed to represent non-isotropy. This is followed by another integer refinement, applied to each of the coarse-
level angular (and spatial) bins that defines the LPM bins, which we index byn. This refinement is aimed to achieve
accuracy and reduce the ray effect. This rule is needed in order to preserve the validity of the unpropagated energy
values between successive sweeps.
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Fig. 4. The left four images show a beam of light entering the domain from the left, passing through a medium of constant isotropic scattering.
The ray effect is clearly evident in the upper two images, where we use 3x3 directions in each LPM. This artifact is considerably reduced when
increasing the angular distribution of the LPMs to 9x9 as shown in the lower two images. On the right we show a comparison between different
light propagation schemes. The images show the intensity of a light beam passing through a domain that does not absorb, emit, or scatter. Ideally,
in this case we expect the beam’s profile to remain unchanged. The Top-left image shows the beam generated by a first-order upwind and to its right
we show the output of a second-order Lax-Wendroff advectionscheme. At the bottom-left image we see the result of using a flux-limiter and to the
right we see the result by propagating the light using LPMs.

3.4 Algorithm Summary

As we carry light across the domain using the LPMs, the solution Im
i, j,k is constructed by accumulating the average

intensity scattered in them, i, j,k-cell. We summarizes the different steps of this algorithm in the following pseudo-
code lines:

Initialize Um
i, j,k and Im

i, j,k with medium emitted light

repeat until maxm,i, j,k |U
m
i, j,k| < ε

for each map Ωd , d ∈ {±X,±Y,±Z}
if first sweep along d, then set the rays’ initial conditions

set Ũm
i′, j ′ = Um

i′, j ′ for each coarse-grid direction contained in map Ωd

for each ray in map Ωd

for each ray segment

update Ln
r,s according eq. (4) given Ũm

i′, j ′

add eq. (5) to Im
i, j,k and Um

i′, j ′ for all m
end

end

advance along the domain in the direction d
end

end

The temporary layer of coarse-grid unpropagated lightŨm
i′, j ′ is simply used to evaluate the scattered light, integrated

in (4), while allowing newly scattered light from the current sweep to be safely added toUm
i, j,k. As evident from these

lines, the LPMs belonging to each direction±X,±Y,±Z are used one at a time, and can thus be temporarily stored.
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Fig. 5. These images show a medium with binaryσ , the scattering region consists of two strips at the low and the upper edges plus two circles close
to the upper strip. A beam of light enters from the left side ofthe domain and propagates towards the lower strip, hitting itat the middle. The light
scattered from that region serves as an indirect light source illuminating the upper part of the domain. The two thick circles cast shadows on the
upper strip. This is generated using LPMs with 9×9 bins in their angular discretization.)

As the maps advance, they will cease to cover the entire crosssection of the domain, unless they are sufficiently large.
For this reason, the rays leaving the domain should be abandoned while new ones must be introduced on the other
end. In our implementation we solve this issue using cyclic mappings; the rays exiting the domain are used as the ones
entering it by properly initializing them. Also, note that since the unpropagated light cells are overwritten, it means
that all the light they contained must have been carried by the current LPM sweep. The validity of this exchange is
ensured by the condition we described earlier, requiring that all rays corresponding to the same angular bin inUm

i, j,k
belong to the same LPM.

Once the solutionIm
i, j,k is calculated, similarly to [Languenou et al. 1994], it is used to evaluate the emitted and out-

scattered light components when rendering the scene using ray casting. More formally, along each visual rayr(t) we
approximate the following integral

∫

τ(t)
(σ(r(t))

4π

∫

S2
I(r(t),ω ′) f (r̂,ω ′)dω ′ +e(r(t), r̂)

)

dt,

where ˆr = dr
dt (assuming‖dr

dt ‖= 1) and the transmittance function is defined byτ(t) = exp(−
∫ t(k(s)+σ(s))ds). Note

that the functionI(r(t),ω ′) is precisely whatIm
i, j,k approximates. We use a trilinear interpolation to when integrating

along the ray casts at equidistant sampling. We do not use anyno aliasing preventative steps such asjittering [Pauly
et al. 2000], which can be further incorporated.

4. RESULTS

We implemented a three-dimensional version of our method inC++ and run it on a 2.7GHz Pentium IV machine. Here
we report three kinds of testing: one in which we construct artificial scenarios in order to isolate and evaluate different
aspects of the method’s performance. The second is a comparison of this method with traditional Discrete Ordinates
and Monte Carlo techniques. In the third kind of test, we validate the new approach’s applicability for a wide range
of typical computer graphics scenarios involving different albedo ranges. Unless stated otherwise, we use the same
spatial resolution for the LPMs and coarse-grid. The angular resolution of the coarse-grid is a single variable per cell,
representing isotropic scattering, and six for the unpropagated lightUm

i, j,k. The LPM angular resolution, which has a
critical role in suppressing the the ray effect, differers from one experiment to the next and is reported in each case.
We perform three LPM sweeps in each direction to generate theresults and account by that for three generations of
light scattering.
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4.1 Performance Evaluation

We begin by evaluating how the LPM angular resolution effects the resulting solution. In Figure 4, a beam of light
enters the domain from the left encountering a constantσ ande,k= 0. The coarse-grid resolution is 643 with 6 angular
variables for the unpropagated light and a single one for thesolution itself, allowing us to simulate isotropic scattering.
The top-left two images, color coded differently, show the ray effect resulting from a 3×3 LPM angular discretization.
Spurious light streaks are apparent and correspond to this coarse angular discretization. For this extremely concen-
trated intensity, increasing the LPM discretization to 9×9 angular variables makes this artifact disappear. Resolving
the ray effect by refining the LPM angular discretizationalonewill pose critical memory requirements for these kind
of calculations in 3D, as we quantify later. Also, the beam itself, all along its trajectory, remains as sharp as it was
when entering the domain, showing a total absence of numerical smearing. The smearing effect is further investigated
in Figure 4, where four different methods of propagating light are compared. The first-order upwind shows a signifi-
cant amount of smearing while the second-order (Lax-Wendroff) generates severe oscillations and introduces negative
intensities. Adding a flux limiter (minmod, see [Leveque 2002]) to the second-order scheme manages to avoid these
oscillations, yet still shows a considerable amount of numerical smearing to this discontinuous beam profile. When
propagating light using the LPMs, no smearing is generated and the light’s cross section is perfectly preserved. In
Figure 5, we demonstrate the importance of propagating indirect scattered light instraight lines and at high precision.
The light reaching the upper edges shows a relatively sharp profile due to the shadows casted by the two scattering
circles. These variations in indirect illumination show that there are cases where it can not be properly represented us-
ing coarse volume photon maps. Finally we evaluate how the proposed solution copes with strong forward-scattering.
This is tested on a constant Heyney-Greenstein scattering medium withg = 0.9. In this case there is a concern that
the scheme will over scatter the light and will tend toward isotropy, as the unpropagated light is temporarily stored in
coarse angular bins. This is investigated by refining both the coarse-grid and LPM angular discretizations indepen-
dently. The results shown in Figure 6 indicate that indeed both the coarse-grid and LPMs must be refined to achieve
a decent convergence. Based on these results, it seems that for visual purposes a resolution of 54 directions for the
coarse-grid and LPMs consisting of 9×9 directions achieve reasonable convergence (the middle graph).

4.2 Methods Comparison

In order to demonstrate the new method’s advantages over a traditional DOM calculation, we test the two on the same
input. We do that on a 3D volumetric model of a vase that definesthe scattering coefficientσ , and we perturb it
slightly to imitate the appearance of marble. The medium does not emit nor does it absorb light. We solve the linear
equations arising from a first-order DOM with a spatial discretization of 1283 cells and the total of 3×3×6(= 54)
angular bins. Despite the large amount of memory needed for the grid (0.9GB), the results strongly suffer both from
false scattering and the ray effect. Figure 2 shows a beam aimed towards the vase which gets smeared even before
hitting the surface of the vase and shows a falsely smooth bright peak. From this lit region, light is scattered only along
the discrete directions which proves to be insufficiently fine. The light distributes non-uniformly inside the vase cavity
and creates an unrealistic bright peak just on the opposite vase wall (same horizonal level as the primary penetration
region). Due to the strong smearing along the other directions, no other light peaks are observed, but nevertheless this
illumination is highly inaccurate. Note that the use of higher order propagation scheme, may reduce the smearing, as
shown earlier, but may also accentuate the ray effect. Usingour approach, light can be propagated in more directions
at lower storage costs (100MBs) as we show this figure. Use LPMs with 9×9 angular bins we significantly reduce
the ray effect without introducing any smearing. In Figure 7, the visual implication of these errors is shown. In this
simulation a vase is lit by three light stripes which penetrate the vase walls and scatter. The excessive amount of
smearing produced by the ordinary DOM does not allow us to detect the light pattern which is totally smeared. The
result obtained using LPMs captures more accurately the light strips on both sides of the vase.
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Fig. 6. A beam of light entering from the left is passing through a constant Heyney-Greenstein scattering medium withg = 0.9. The coarse-grid
angular resolution is refined from top row to bottom, consisting of the following numbers of bins 1×1(×6), 3×3(×6), and 5×5(×6). The LPM
angular resolution is refined from left column to right, multiplying the coarse-grid angular resolution by factors of 1,3, and 5.

Fig. 7. Perturbedσ vase lit by three bright light stripes. The left two images show the result of using a first-order DOM with a total of 54 directions
(shown at two different viewpoints). And the right two imagesshow the result of computing a solution using LPMs with an angular resolution of
9×9 bins.

We also compare our method with results obtained from a MonteCarlo photon tracing simulation. We perform this
test on an unperturbed vase model, where parallel light is emitted from the upper face of the domain to illuminate it.
The light particles’ initial position at the upper wall is determined randomly, and the scattering events are implemented
via a Russian Roulette strategy. In Figure 8, we show the results obtained using 106 and 5×106 particles to illuminate
a grid of 1283 cells. It takes 3.5 and 17.6 minutes respectively to performthese simulations. Even in the case where
5×106 particles are used some amount of noise is still apparent in the final rendering. Only doubling this number of
particles fully eliminates the perceptible noise and the solution converges to the one obtained using a 9×9 LPM that
takes 3.7 minutes to compute using 5 scattering iterations–one order of magnitude difference.
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Fig. 8. Left two images show the results obtained using a MonteCarlo simulation with 106 light particles. The middle images were generated using
5×106 particles, and the right images show the result obtained using 9×9 LPMs. All three calculations were performed on a 1283 cells grid.

4.3 Computer Generated Scenes

As for typical CG scenes, requiring such a simulation, we useour method to illuminate marble, clouds and smoke. In
Figure 10 two marble vases are illuminated from the top. One is modeled by a constantσ and a perturbedk, while
the other hask = 0 and itsσ is perturbed. In both cases, the method captured the complexinner marble structures
interactions with the light penetrating the thick walls. This effect appears more dramatically when an intense laser
beam hits the third vase. This example is made by two independent simulations, for red and white wavelengths. We
used LPMs with the resolution of 9×9 LPM angular bins to propagate the light in the red wavelength and 5×5 bins
for the white. Modeling scattering due to smoke dynamics involve complexσ fields, as shown in Figure 11. Light,
radiated from spot projectors, is scattered when hitting the smoke and illuminates the whole domain. Cloud models,
involving a denserσ coefficient, are shown in Figure 9. The illumination produced by the new method brings out
clouds’ structure and is able to generate some light streaks. In both cases the absorption and emission coefficients
are set to zero. The running times of this method, with no hardware acceleration, are as following. Computing the
solution over a resolution of 643 cells using LPM with angular resolution of 5×5 directions and accounting for three
scattering iterations (each involves six LPM sweeps) take 17 seconds. Using a 9×9 LPM angular discretization this
takes 135 seconds. It takes a minute to simulate a non-isotropic medium with coarse-grid angular discretization of
3×3×6(= 54) bins and 643 cells using 6×6 LPMs. These numbers grow linearly with the number of variables used,
and are comparable with the running times of standard iterative linear solvers.
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Fig. 9. The upper-left image shows a layer of clouds lit from above, while in the lower images the clouds lit from their back. Both solutions are
computed over a coarse-grid containing 256×1282 cells and LPMs with 5×5 discrete angular bins. The upper-right image is made by compositing
a layer of clouds with the image shown below it as the background. Here the clouds are modeled by a Henvey-Greenstein scattering with g = 0.25.
Coarse-grid resolution consists of 1283 spatial cells and 3×3(×6) angular bins. The LPM angular resolution used here consistsof 6×6 directions.

5. CONCLUSIONS

We presented a new method to transport light in the presence of a participating media. In this method, we exploit the
simple pattern by which light travels in space to advect light frontscollectivelyandindependently. This requires fewer
computations per single light ray in comparison to stochastic photon-tracing approaches where each light-particle
trajectory is calculatedindividually. Since these fronts are of one dimension less than the physical domain and consist
of a reduced set of directions, high-resolution angular discretizations can be used in practice to reduce the errors due
to angular truncations. The LPMs’ detachment from the stationary coarse-gridIm

i, j,k, inherently avoids interpolation
artifacts such as oscillation and smearing.

The method presented here is robust and shows its ability to generate high quality calculations on a wide range of
scenes with no special restriction over the media coefficients. Yet, as in the case of restricted subsurface scattering
models, specifically developed solutions will be more efficient in their operation. Also, in cases where no such detailed,
deep matter models are needed, volumetric representationswould be less attractive than polygonal or other parametric
surface models due to their low memory requirements and higher resolution.

The computational order of the new method in 3D is given byO
(

n(n2 + p2)mq
)

wheren and p are the numbers of
variables along each spatial dimension in the coarse-grid and LPM respectively, andm andq are the total numbers of
angular variables in each of the coarse-grid and LPM bins respectively. The factorn2 + p2 describes the number of
cells visited when scanning each slice of the coarse-grid and the entire LPM. The factorn describes the progression
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Fig. 10. The vase on the left is made of a constantσ and a perturbedk, while the ones in the middle and the right are modeled byk = 0 and
a perturbedσ . In each of these three examples, the coarse-grid resolutions is 1283 cells and the LPM angular discretization consists of 5× 5
orientations. Specular highlights were added during rendering.

Fig. 11. The model shown on the left is made of a constantσ and a perturbedk. The coarse-grid resolution is 2563 cells, and the LPM angular
discretization is 5×5 bins. Hygia sculpture courtesy of Image-based 3D Models Archive, Tlcom. The images on the right show smoke that scatters
light and is lit by projectors, computed on a coarse-grid resolution of 643 cells and LPM angular discretization of 7×7 orientations.

along the third direction of the coarse-grid and themq factor results from the coupling between the angular variables
in each coarse-grid and corresponding LPM cells.

While this new approach allows finer ordinates discretizations to be used, light cannot be propagated ineverydirection.
This means that a beam of uniformly oriented light can not be properly propagated unless its orientation coincides
with one of the LPMs’. However, in most cases this inherent limitation of the DOM does not have any consequential
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implication; scattered light tends to be distributed over acontinuous set of directions, which is shown to be well
resolved by the proposed method. And direct light arriving from the boundaries (e.g., infinite light sources) can be
propagated in a single pre-sweep at that light’s exact direction. Similar solutions can be practiced to illuminate scenes
with a point or other types of light sources, adding no major computational costs.

In the case of highly scattering media, which is also the caseof a highly-diffusing heat equation, iterative solvers
require many iterations until they fully converge. The design of our method does not allow multi-resolution or other
form of a change of basis for accelerating the convergence. Yet, for the variety of scenes we reported here, three itera-
tions (along each direction) reached a visually satisfyingresult since the amount of light involves decays exponentially
at each generation.

Iterative distribution of unpropagated light bears some resemblance to the Progressive Radiosity approach [Cohen
et al. 1988]. As shown in [Gortler et al. 1994], Progressive Radiosity is equivalent to an iterative scheme known as
Southwell Relaxation, used for solving linear equations just like Jacobi and Gauss-Seidel iterations. Although the
process described here iteratively approximates a solution to a linear system, it does not correspond to a fixed point
stationary iterative method. In fact, different orderingsof the LPM sweeps result in different solutions (i.e., differing
from one another by a magnitude that is proportional to the truncation errors). Also, this process does not follow the
strategy of distributing energy from the brightest elementto the rest, according element-pair interactions.

Surfaces interchanging light with the medium can be added tothe existing approach. Since they will be swept by the
LPMs, they must be able to hold a constructed and unpropagated light across them which can be implemented via a
mechanism similar to texture-mapping. Future steps related to this method can be to achieve a higher order of formal
accuracy by devising the proper approximation formulas at each discretization step. The structure of the proposed
algorithm may allow better parallelization than iterativesolvers as the LPM sweeps do not dependent on one another.
Also, given nowadays graphics processors supporting 3D textures, the possibility of a hardware implementation seems
like a promising direction to speed up these calculations.
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