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Light traveling through semi-transparent media such as smoke and marble is absorbed and scat-
tered. To achieve proper realistic visualizations of such media, illumination algorithms must
account for these events. In this paper, we present a new method for solving the Radiative Trans-
port Equation, which models such evolution of light. The new method falls into the category of the
Discrete Ordinates Method and inherits its generality and computational lightness. This method
is known to suffer from two main shortcomings, namely the false scattering and the ray effect,
which we avoid in our new method. By propagating the light using lower-dimensional maps of
rays we detach their transport from the Eulerian grid and use fine angular discretizations. Thus,
the scattering effect at each scattering generation is eliminated and the ray effect is significantly
reduced at no additional memory requirements. Results demonstrate the new method’s efficiency,
ability to produce high-quality approximations, and its usefulness for a wide-range of computer
graphics applications.

Categories and Subject Descriptors: 1.3oinputer Graphics]: Three-Dimensional Graphics and Realism—
Radiosity
General Terms: Algorithms

Additional Key Words and Phrases: global illumination, participating media, Discrete Ordinates
method, Radiosity, Monte Carlo

1. INTRODUCTION

Generating realistic rendering of natural objects is on¢ghefmain concerns in computer graphics. Over the last
years there was a consistent trend to use physical modeisrefisingly higher degrees of complexity and accuracy to
achieve this goal. Fluid flow, cloth dynamics, and fire sirtinlss are just a few examples to received such an attention.
In order to generate convincing rendering of scenes cantahmaze, clouds, dust, and translucent solids such as glass
and marble, one must account for light absorption, scatieend emission effects. These phenomena are formalized
in an integro-differential equation known as tRadiative Transport Equatio(RTE) which we present in Section 2.
This equation contains, as its unknown, the light intenaitgvery point in space and along every possible direction,
a total of five dimensions in the case of 3D physical spaces Tdtt alone poses major computational challenges
for those attempting to approximate the solution on discggids of limited resolution. Therefore, aside from the
asymptotic complexity of the number of flops they performlyers are measured by their running times and the
accuracy of their results. One critical factor is the amafmon-smoothness a method can sustain and produce at a
given resolution.

As for the RTE, several different methods are suggested Hythe thermal engineering and the computer graphics
communities, each approach with its own advantages andwdietages as we discuss in the following section. The
Discrete Ordinates Metho(DOM) is one family of such solvers that is popular among hestsfer engineers for
its good trade-off between accuracy and computational wbge not posing any restrictions on the nature of the
medium. Yet, it is known to suffer from two types of truncatierror: (i) the false scattering, also known as numerical
smearing, in which sharp beams are erroneously smoothe(iptite ray effect, whereby light that emanates from
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bright sources in a set of fictitious directions.

In this paper we propose a new technique for solving the RTiEwfalls into the category of the DOM. In this method,
the solution is constructed using maps of light rays thapagate the light across the domain. Since these maps
have one spatial dimension less than the original domairttaadcontain rays with a restricted set of orientations,
they can be discretized at high resolutions. Moreovery tlution through space is done parametrically and is
independent of the discretization used to store the salutibhus, the new approach allows us to: (i) avoid the
false scattering phenomenon at each scattering genegdtamether, and (ii) practice fine angular resolutions when
propagating the light and thereby significantly reducing tthy effects. This is achieved without compromising the
admissive nature of DOM,e., allowing unrestricted albedo range, accounting for mldtscattering, using arbitrary
scattering distribution, and not posing any smoothnesstcaints over profile of the media coefficients.

The remainder of this paper is organized as follows. In the section we review existing methods for solving the
RTE. In Section 2 we review the RTE and establish notatiohg. few method is described in Section 3. In Section 4
we report the tests and comparisons evaluating its perfaceyand in the last section we draw some conclusions.

1.1 Previous Work

Much effort was put into devising numerical solvers for thEEby different communities. We will not attempt to list
all these reports here but instead, we classify the teclsiqio groups and mention their respective represensative
The reader is referred to [Cerezo et al. 2005] and [Perez &98F] for a more elaborate survey of these approaches,
and to [Sigel and Howell 1992] for an additional summary @ thpic.

The Zonal MethodRushmeier 1988; Hottel and Sarofim 1967] extends the treatrsurfaces receive iRadiosity

to volume elements discretizing the 3D medium. This regui@mputing form-factors between every pair of voxels
(volume elements) and involves a computational complesitthe orderO(n’), wheren is the number of discrete
variables taken along each axis in 3D. In [Sillion 1995] a#niehical strategy is employed to reduce this complexity
under certain assumptions about the structure of the seneethod for accelerating the computation of the form-
factors is proposed in [Arges and Michelin 1996] and relies on spatial coherence. Tppscach is extended for
non-isotropic scattering in [Bhate and Tokuta 1992] wharspherical harmonics coefficients are used to represent
the angular light distribution. In this approach the numbkform-factors grows, and the order of computational
complexity increases t@(n’nv).

In [Stam 1995] multiple scattering is approximated as audifin process to achieve a low-cost solution for scenes
with an optically thick medium. In [Premoze et al. 2004] theesnd of direct illumination is estimated by a model
relating scattering and absorption to the distance ligivelis from particular light sources.

In [Behrens and Ratering 1998] shadows due to the occludidirect light are computed in a texture-based volume
rendering. The volume is stored as parallel polygons whichyahe volume data as texture maps. These polygons are
shifted according to the light direction and thus interfiolas between successive layers are avoided. We use arsimila
mechanism for both the direct and indirect components ofillhination in the context of a more sophisticated
illumination model that accounts for emission and scattean top of absorption. In [Dobashi et al. 2000] a single
scattering effect is computed for clouds modeled by melsbal

Given the high dimensionality of the problem [Pattanaik &mgdur 1993] employ Monte Carlo based stochastic
sampling methods, [Lafortune and Willems 1996] use bidioeal tracing, and [Pauly et al. 2000] employ Metropolis
sampling. Despite the various variance reduction strategsed, these approaches require a considerable number
of samples to be drawn in order to remove the noise in thetiegumage. In [Jensen and Christensen 1998], the
amount of samples needed to obtain cleaner images is rebByegaproximating the direct component of illumination
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Fig. 1. On the left, a 2D Discrete Ordinates grid is illustdatIn each square element several variables discretigihgisliorientation are held. On
the right, a light propagation map is shown to sweep a 3D gtk discrete directions held in the LPM are finer and resttitdeone sixth of the
unit sphere.

deterministically, by sampling light sources using ragimg. In general, stochastic photon tracing approachasneq
the representation of individual spatial coordinates aed evolution. Therefore, they perform more computatioers
singlesample than what is required by methods based on stationsigbles discretizing space. Restricted models,
used to model light transport at a sub-surface layer, areritbesl in [Hanrahan and Krueger 1993] and in [Jensen et al.
2001] for the case of highly scattering media. These methedsa Monte Carlo integration to compute their solution
and are very efficient for their purpose.

In the Discrete Ordinates Method (DOM) [Chandrasekhar 1,%depicted in Figure 1, the quantities appearing in
the RTE are discretized in a straightforward fashion botpiace and orientation, typically in the original coordasat
systems. These discrete values are used to approximatéférertt terms in the RTE, which become a finite dimen-
sional system of equations expressing the light exchantyeele@ neighboring volume elements. In its classic form,
the angular discretization is tak@ointwise allowing light to travel only at a finite number of direct®ithe method
owes its name to this property). The DOM is the method of ahéic radiative transfer engineers and established
itself as the most cost effective approach [Coelho 2002gluanou et al. 1994]. The main reason behind this is that
the calculations are based only lmtal interactions and avoid the need to compute form-factornsdet every pair

of elements, thus reducing the complexity of the problensimerably. In fact, this approach corresponds to approxi-
mations made by the Finite Element Method [Zienkiewicz aagldr 2000] and the Finite Volume Method [Leveque
2002], which dominate many computational regimes, suchuéd énd solid mechanics as well as hyperbolic and
parabolic conservation laws.

Unfortunately this discretization is known [Perez et al979Coelho 2002; 2004] to suffer from two major truncation
errors, to the extent that they can become visually distgrbiRepeated averaging arising from the interpolation,
needed to approximate the flux between volume elementsesdight to smear in space. Effectively this does not
allow light beams to maintain a sharp profile. Note that tltisuss at each light orientation separately and therefore
the light direction remains unaltered, and the term sdatiés somewhat misleading. As shown in [Coelho 2002],
this effect is the counterpart of the artificial viscositisarg in computational fluid mechanics, where the momentum
is falsely-diffused in space. Discretizing the directi@msvhich light can travel causes another type of error, tlye ra
effect. This error consist of light that emanates from re¢dy small and intense regions and reveals this angular
discretization as spurious beams of light. This is more pumced in media that allow the light to propagate without
being immediately absorbed or scattered.

In order to reduce this effect [Ramankutty and Crosbie 198@pose theModified DOM where the ray intensity is
broken into direct and diffuse components. The direct laggimhponent is determined analytically under the assumption
of a homogeneous isotropic medium with a constant thickméssh cannot produce the ray effect. An extension of
this method that allows discontinuous medium emissionérpitesence of non-homogeneous non-isotropic scattering
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Fig. 2. The two images on the left (color coded differentlydwhthe result produced by a first-order DOM simulation with &€crkte direction
in each of the 128cells. In this example a sharp beam of light enters from the pefetrates the vase, and is scattered by its walls. Thenreg
where the light initially hits the vase indicates the beamife got already smeared before reaching the vase. The fegt & observed when
the light scattered from this regions propagates only itagedirections, reaching specific regions such as nearghaing and the right side of
the vase. A more accurate solution is shown in the two imageleright, which were obtained using LPMs. This involves a mioeler angular
discretization consisting of one variable per cell in thgpotigrid (enough for isotropic scattering) and six vanggio store the unpropagated light
during the construction of the solution. The angular diszagion used for the LPMs, which are 2D maps, is 9 different ray orientations and
their spatial resolution is 128equals to the output grid resolution).

is described in [Coelho 2004], at the cost of computing doldlitl spatial integrals. In [Kajiya and Herzen 1984] under
the assumption of high albedo medium, a truncated sphdrézatonics expansion is used to represent angular light
distribution for rendering clouds. Another way of propagatlight through whole bins is reported in [Max 1994].
In this method inaccuracies are introduced because lighttésuated not only along a straight path but along many
other possible routes. In [Stam 2001] the DOM is used to nehdman skin layer by modeling its boundary as rough
surfaces.

A family of High-Resolutiortechniques were developed for approximating the hyperioolivective terms [Leveque
2002] in computational fluid mechanics. This reduces thearigal viscosity by maintaining a high-order of accuracy
and adaptively switching to lower accuracy stencils in otdevithstand discontinuities. The use of these techniques
to solve the RTE is proposed in [Jessee and Fiveland 1997h€@602] and [Liu and Pollard 1996]. As we shall
show later, this action reduces the numerical smearing tiytup to a limited extent. The low-order stencils used to
avoid non-physical oscillations, near sharp transitiorthé solution, are diffusive and hence cause a noticeaiti in
smoothing to sharp beams. Also, although the RTE is linbasd operators yield a systemrafn-linearequations,
which are harder to solve. These high-resolution scheme®staoffer any reduction in the ray effect.

2. GOVERNING EQUATIONS

The radiative transport equation models the propagatigadifition through a participating medium which absorbs,
scatters, and emits light. For a particular wavelength fhE R given by

(w-0O)1(x,w) = e(x, w) — (k(X,w) + (X)) (x, w)

1)
+ % /Q I(x, ) f(w,o)da,

wherel (x, ) is the radiation intensity{ /m? - sr), at a pointx that propagates in the direction @ The scalar fields

e andk are the medium self-emission and absorption coefficieatpectively, and describe the production and loss
of radiation alongw throughx. The scattering coefficient of the mediumnappears both in the out-scattering term
g(x)1(x, w), where the intensity alon@ is reduced, and in the in-scattering (last) term, whereataah, arriving from

all incident directionsv’ € Q and scattered tw, is integrated. Thehase function fw, w') expresses the fraction of
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scattered radiation along arriving from «/, relative to the isotropic scattering fraction. Predigtliight refraction or
Fresnel reflection within the context of the RTE requiregslar coefficients and phase function. In our scope we do
not account for these cases of interfacing media.

3. NEW METHOD

Discretizing the RTE either using the DOM or the Zonal methegllts in a system of linear equations which is then
typically solved via iterative sweeps such as those of Ja@duss-Seidel, or Southwell. As shown in [Gortler et al.
1994] these iterations have different physical intergrets in terms of light propagation. In [Languenou et al. 4199
similar observation is made in the context of the DOM, whagktlrays traveling close to one another induce a sweep
direction when using these iterative solvers to computel@ien. This is exploited by [Jessee and Fiveland 1997]
where the iterations are ordered in an “upstream to dowensifefashion. Here we take a more explicit advantage
of these interpretations. In the course of solution coesibn, we iteratively propagate light across the domain by
solving (1) explicitly along light rays that are close to caeother in their direction of propagation. This is done
usingLight Propagation Map$LPMs), which are temporary two-dimensional maps of raygt&iming only a fraction
(one sixth in our implementation) of all possible direcéorHence, in contrast to the standard DOM and what is
traditionally done in Finite Volume methods, we dot approximate the light flux between adjacent cells based on
the discrete variables storing the solution. Instead,dted tight reaching a cell is estimated from the LPMs, and the
stationary grid variables serve merely for bookkeeping. tiiggt we achieve two goals: (i) since the light stored in
the LPMs is unattached to the coarse grid, it is propagateahpetrically and independently of its orientation with
respect to the axes of the 3D solution grid. Thus, we bypassehld to estimate the spatial derivatives in (1) and avoid
interpolations. As a result a major source of numerical smgaarising from averaging due to the interpolations,
is totally eliminated. And (ii) the use of such lower-dimamsmaps with a reduced set of orientations allows us to
practice fine discretizations of space, and more impostamtientation. As we will show, this allows us to reduce the
ray effect significantly at minimal memory costs, since dhky LPM resolution is refined.

The numerical method presented in this section can be agpdith in two- and three-dimensional space. The scheme
is derived for the 3D case and can be straightforwardly pmeged in 2D. Also, for the sake of clarity, we assume the

spatial discretization to consist of rectangular cellsSéttion 3.2 we simplify the domain even more by taking it to be

the unit cube so that formulas take on a simple and clear féhis. method can be implemented for arbitrary domains

with arbitrary control volume shapes and arrangementsgiumild requirements of coherence between the different
discretizations involved (described in Section 3.3).

3.1 Spatial and Angular Discretizations

In the new approach we discretize both the physical spacehengphere of orientations in the finite volume fash-
ion [Leveque 2002]. We break up the unit sph&fénto a set of non-overlapping bi3™, such thatuQ™ = . We

also break the spatial domaihc IR? into a grid of non-overlapping rectangular cdlls « of lengthsAx, Ay, Az along

the principle axes, such thaC; ; « = D. Note that the inder conveys a mapping to a discrete 2D manifold. Similarly
to [Languenou et al. 1994], our goal here is to estimate tkes@e scattered radiation intensity at each control volume
in the complete cross-product spdeex D, namely

M (VT ‘1/ @/ I(x, ) f(w,w)dw/dxdw, 2
i,j.k ( I,J,k) G Jam A Jg ( ) ( ) ()

where\/i"}k = AxAyAz|Q™M|, the total volume of then,i, j, k-cell. This choice of a weak-form numerical representation
of cell averages is known to be robust to discontinuities/ficeie 2002], such as the ones we expect to encounter
here due to occlusions and non-smooth media coefficients.eftission, absorption, and scattering scalar fields are
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assumed to be given either as constants in each cell or atharhigder of representation to allow a higher order
formal accuracy as discussed below. Throughout this papeefer them,i, j,k grid, used to store the input medium
coefficients and the solution itself, as tb@arse-gridfor it holds a coarser spatial and angular discretizatiam tine
one used in the LPMs.

3.2 Light Propagation Maps

Each LPM consists of a 2D array of light rays passing throughdomainD alongsimilar directions, and hence
similar calculations can be performed collectivly. In ommplementation we divid&? into six subsets induced by the
cartesian coordinates,

QY ={we S wx <0, |w|/Ax > |w|/Dy, |w,|/Az},
QA ={we S wx >0, |a|/Ax > |w|/Dy, |w,|/Az},

and the analogically define@d’—, QY+, Q%~, andQ**. To simplify the description we will assume that the domin
is the unit cub€0, 1)° and derive the equations only for the LPM that correspontéqbsitiveZ axis. The equivalent
treatment along the other principle directions is easifgrired. The LPM that corresponds to this direction congists
the set of rays defined by

er'],s(z) = (Xf73+z' o'))r(]/ajgvyl’,s"'z' @]/@]72)7

wherew" sampleQ?* andx; s, yr s sSample[0,1]2. In our implementation we use a uniform sampling for bothcepa
and orientation, meaning thaf' /] and«y'/ i are given by a uniform sampling 6f 1, 1]?, i.e., a uniform sampling
of the cube faces. Here again the 2D angular discretizasiomdiexed by a single number We refer to ther,s,n
discretization of the LPM as thePM discretizatioror thefine-grid discretizatiorin contrast to then,i, j,k grid used
for the final solution (and the input media coefficients) vbhiee call thecoarse-grid

We use the LPMs to propagate light throughout the domain bgepimg along the consequent set of directions
(QX, QY Q) iteratively. The evolution of the,r,s-ray intensity is derived from (1) by plugging in the parame-
terized ray positiofR's(z) and intensityL{'s(2) to get

O TL2(2) = (D)) (Riy(2), &) = e(Rs(2), &)

— (k(R's(2),0") + 0(R's(2)))L7s(2)
+70(Rf4*;'[(z)) /Q |(Ry(2), @) f (", ) deo .

We cannot express the unknown in-scattering term by theotutrPM, which contains only a partial set of all ordi-
nates, and use an axillary variable instead. We introdueesealar fieldi to account for theinpropagatedntensity
arising from the emission and scattering of previous swe@p&n this quantity, the equation above becomes
d
W Lrs(2) = = (K(Rs(2), ") + 0(Ris(2) ) L1s(2) + U(Ris(2), &) ®)
This derivation is quite similar to the one used in the pregnee radiosity [Cohen et al. 1988] where the final inteasiti

are calculated by accumulating the exchanged radiatioaddt step. In Section 5 we discuss the differences between
the two approaches.

Equation (3) is integrated numerically by incrementiRilgin finite steps matching the cell lengths along that directio
(e.g.Azin the case of th&@+ sweep). Such an increment will advance the ray by lessMlxafwy along theX andY
axes respectively. As shown in Figure 3, this allows us teeekntersections with no more than two cell faces before
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Fig. 3. Ray segments between cells.

hitting the face perpendicular to tReaxis. TheZ-coordinates of the corresponding intersections betwaenay and
cells faces are denoted lyfor = 0...3, provided all four exist. The parameterized lengths ofésailting segments,
zq— Zy-1, are denoted bl for g = 1,2,3. By treating the coupling between rays due to scatterimgjatty, i.e.,
ignoring the scattered light of the current sweep when ataigu, equation (3) admits the following exact integration
formula along the segments

L?,S(Zq) _ Lp’s(zqi1)e7A|q(Kir?]-‘k+SAj.k>/w? +Ui‘j}7k(1— e7A|q(Kirf}1k+S,j,k)/w?)/( KM +S), W, 4)

for 2 < q < 2,33, depending on the number of intersections. The indicg& correspond to the cell containing
the ray fragmen{R's(zy), Ris(zg-1)]. The numbers< .S j . andU"} , approximatek, o , andu respectively and
corresponds to a zero-order interpolation. The ord|nalexm is taken such thab" € Q™, which again corresponds
to a constant interpolation. We further discuss the meaayole o™ | in the next section. We avoid the numerical
restrictionAlg(K™ , + S, x)/@) < 1 by using the exponentials in formula (4) which keeps pasititensity values
independently d#’the extinction rates. Higher order intdapons combined with a high-order integration scheme
along the rays can be used to achieve a higher order of foroeeakacy when approximating (4). Also,kfo, and

e are given more accurately, then they can be evaluated onmdkatahe LPMs fine resolution as these evolve. We
exploit the fact that many rays in the LPM have the same doeand make our calculation faster by choosing the
LPMs’ fine-resolution to be equal the coarse grid’s resotutimes some integer factor. This choice yield the same
cell-ray intersections and ray fragment lengths such tisame integration weights can be used in all cells.

The variabled["} , are set to zero and/"} , to E"} ,, which is the discrete approximation to the cell emissioight
penetrating the domain from its facess the f)oundary conditions associated with the RTE, is teaedlin this
formulation to the initial conditions of{'s. This process must not be regarded simply as Lagrangiarctoiveof
light, since all light rays are coupled by the scatteringjohidictates a certain synchronization when storing and
evolving light between successive sweeps, as we descrilsysh

3.3 lterative Radiance Estimation using LPMs

The iterated sweeps of the LPMs provide means for estimatiagamount of light traveling and being scattered.
This is needed to construct the solutikﬁij’]k, as defined by (2), by accumulating the fluxes across eacleafahtrol
volumes. In each of these sweeps some fraction of light igesea in all directions, including ones which are not
represented in the current LPM sweep. In fact, this is thecgoaf the coupling inherent in the RTE, which is in turn
responsible for the need for iterative solvers. The fraxctibthe scattered light flux which cannot be propagated at
the current sweep is temporarily stored in the auxiliarydfiel until an adequate LPM sweep arrives. This light is
stored across the entire domain at the coarse-resolused, for storing the solution itself, by averaging it insite t
m,i, j,k-cell and denote it bjui’,‘}’k. These variables are updated using the LPM sweeps accdtdrgell-averaged
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in-scattering term in (2) which we discretize as followinlfe replace the lighk(x, «'), arriving from directions that

are represented via the current LPM, i@.,c Q*%, by a zero-order approximation basedlgh(z). This means that

the light within the LPM’s control volumes, which are suraglements partitionin{, 1] andQ%*, is constant and

equals td_'s(z). Thus, the amount of light being scattered from a single LiMatong a single ray-cell intersection
segment is given by the following quadrature

S A
an1k 3 Ar,an‘m/Zqu Li's(2)/w dz

i,j,knrs

where o is replaced by a zero-order approximati§in k, the A;ss are the areas of the spatial LPM volumes, and
41,2 is the third coordinate of the segment intersecting withciherse-resolution j, k-cell. The light rayd ['s(2)
may show a rapid exponential decay, which is typical to higddattering media, and thus evaluations of its integral
along(z4-1,24] may lead to a discrepancy between this added quantity aratthel light loss in the LPM due to the
scattering, as computed by (4). We avoid this by approximgatiis integral directly from the amount of light scattered
in (4) and use

VMO S AcsF ML (2g-1) (1 — e PaSin/OE) (5)

nr.s

where the expected integration weidtgS j /) is replaced by 1 e MaS,jk/% The discrete form-factors are given
by

1
Fhm_ E[/Qm/gn f(w,w)dw dw,

and are computed in advance. Note that the angular areast@ppear in (5) explicitly, but they are factored by
the form-factors. As we mentioned earlier, the discreitiratve use for the LPMs equals to the one used for the
course-grid times some integer factor and helygeequalsixAy divided by that factor squared.

The angular resolution of the scattered light is reducedwhis transferred from the LPM thm Yet, since the
scattering kernef acts as a low-pass filter in space of directions, we expeststtattered light to be smoother than
the distribution of the light that produced it. Hence, inessf strongly diffusing phase function this will introduce
moderate inaccuracies, whereas a temporary storage oharhigsolution will be required for more concentrated
scattering functions.

The only discretization restriction posed by this schemthas all ray directions belonging to a certain LPM must
be fully contained in some subset of the angular coarsekinslQ™, and these bins must not contain any other ray
direction belonging to a different LPM. This relation mulstaahold between each 6%, QY Q*% and the coarse-
grid angular bins. We use the following simple constructidrich obeys this rule. We start with some partitioning of
the sphere of all orientations, e.@;*X, Q*Y, Q*4, which is dictated by the major directions along which wett

to scan the domain. Then, we take an integer division of e&these bins to define the coarse-grid angular bins,
indexed bym, which depends on the phase function. For isotropic séadtersingle bin is enough, whereas more bins
are needed to represent non-isotropy. This is followed lmgteer integer refinement, applied to each of the coarse-
level angular (and spatial) bins that defines the LPM binsclvive index byn. This refinement is aimed to achieve
accuracy and reduce the ray effect. This rule is needed ier aodpreserve the validity of the unpropagated energy
values between successive sweeps.
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Fig. 4. The left four images show a beam of light entering theaio from the left, passing through a medium of constant ipatrecattering.
The ray effect is clearly evident in the upper two images, whee use 23 directions in each LPM. This artifact is considerably regtliwhen
increasing the angular distribution of the LPMs t&®%s shown in the lower two images. On the right we show a congrakistween different
light propagation schemes. The images show the intensityigheldeam passing through a domain that does not absorb, eragatier. Ideally,
in this case we expect the beam’s profile to remain unchangedTdprleft image shows the beam generated by a first-ordemaipavid to its right

we show the output of a second-order Lax-Wendroff advedt@heme. At the bottom-left image we see the result of using difhiter and to the
right we see the result by propagating the light using LPMs.

3.4 Algorithm Summary

As we carry light across the domain using the LPMs, the smiuﬁ‘ is constructed by accumulating the average
intensity scattered in thm,i, j,k-cell. We summarizes the dlfferent steps of this algoritnnthie following pseudo-
code lines:

Initialize Um x and |m k With medium emitted light
repeat unt|| maXn; j k \UI I, W <€
for each map Qd de {£X,1Y,+7}
if first sweep along d, then set the rays’ initial conditions
set U 1 —Uv ., for each coarse-grid direction contained in map Q¢
for each ray in map Q¢
foreach ray segment
update L{'s according eq. (4) given ljif'?j,
add eq. (5) to lir,T},k and Ui',‘jj, for all m
end
end
advance along the domain in the direction d
end
end

The temporary layer of coarse-grid unpropagated I@'IHP is simply used to evaluate the scattered light, integrated
in (4), while allowing newly scattered light from the curtexweep to be safely addestt{S“ « As evident from these
lines, the LPMs belonging to each directiefX, +Y,+Z are used one at a time, and can thus be temporarily stored.
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Fig. 5. These images show a medium with binaryhe scattering region consists of two strips at the low &edipper edges plus two circles close
to the upper strip. A beam of light enters from the left sidéhef domain and propagates towards the lower strip, hittiagthe middle. The light
scattered from that region serves as an indirect light soillaninating the upper part of the domain. The two thick @sctast shadows on the
upper strip. This is generated using LPMs witk 9 bins in their angular discretization.)

As the maps advance, they will cease to cover the entire sszg®n of the domain, unless they are sufficiently large.
For this reason, the rays leaving the domain should be alp@ddahile new ones must be introduced on the other
end. In our implementation we solve this issue using cychppings; the rays exiting the domain are used as the ones
entering it by properly initializing them. Also, note thabhse the unpropagated light cells are overwritten, it means
that all the light they contained must have been carried byctirrent LPM sweep. The validity of this exchange is
ensured by the condition we described earlier, requiriad &l rays corresponding to the same angular bitii'fhk
belong to the same LPM.

Once the solutiomimj « is calculated, similarly to [Languenou et al. 1994], it i®dg0 evaluate the emitted and out-

scattered light corﬁbonents when rendering the scene wsyngpssting. More formally, along each visual rdy) we
approximate the following integral

/' 4n / I(r f(F,of)ded +e(r(),F) )t

wherer’= dt (assummg\ i |l = 1) and the transmittance function is definedt) = exp(— ['(k(s)+ a(s))ds). Note
that the functior (r(t), o ) is precisely what"; , approximates. We use a trilinear interpolation to whengrating
along the ray casts at equidistant sampllng We do not use@@yiasing preventative steps suchjiisring [Pauly
et al. 2000], which can be further incorporated.

4. RESULTS

We implemented a three-dimensional version of our meth@in and run it on a 2.7GHz Pentium IV machine. Here
we report three kinds of testing: one in which we construiifieiel scenarios in order to isolate and evaluate differen
aspects of the method’s performance. The second is a canpaf this method with traditional Discrete Ordinates
and Monte Carlo techniques. In the third kind of test, wedatt the new approach’s applicability for a wide range
of typical computer graphics scenarios involving diffaratbedo ranges. Unless stated otherwise, we use the same
spatial resolution for the LPMs and coarse-grid. The angelsolution of the coarse-grid is a single variable per, cell
representing isotropic scattering, and six for the unpgaped IlghtUm The LPM angular resolution, which has a
critical role in suppressing the the ray effect, differexai one expenment to the next and is reported in each case.
We perform three LPM sweeps in each direction to generateethdts and account by that for three generations of
light scattering.
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4.1 Performance Evaluation

We begin by evaluating how the LPM angular resolution effébe resulting solution. In Figure 4, a beam of light
enters the domain from the left encountering a consteanide, k = 0. The coarse-grid resolution isbwith 6 angular
variables for the unpropagated light and a single one fosdigtion itself, allowing us to simulate isotropic scaittgr

The top-left two images, color coded differently, show thg effect resulting from a 8 3 LPM angular discretization.
Spurious light streaks are apparent and correspond to dhise angular discretization. For this extremely concen-
trated intensity, increasing the LPM discretization te 9 angular variables makes this artifact disappear. Regplvi
the ray effect by refining the LPM angular discretizatalanewill pose critical memory requirements for these kind
of calculations in 3D, as we quantify later. Also, the beaselit all along its trajectory, remains as sharp as it was
when entering the domain, showing a total absence of nuaieficearing. The smearing effect is further investigated
in Figure 4, where four different methods of propagatintptigre compared. The first-order upwind shows a signifi-
cant amount of smearing while the second-order (Lax-Wdf)dyenerates severe oscillations and introduces negative
intensities. Adding a flux limitermiinmod see [Leveque 2002]) to the second-order scheme managesidatiaese
oscillations, yet still shows a considerable amount of nicaésmearing to this discontinuous beam profile. When
propagating light using the LPMs, no smearing is generatetitie light's cross section is perfectly preserved. In
Figure 5, we demonstrate the importance of propagatingdntscattered light istraightlines and at high precision.
The light reaching the upper edges shows a relatively sharfilgpdue to the shadows casted by the two scattering
circles. These variations in indirect illumination showatkhere are cases where it can not be properly represented us
ing coarse volume photon maps. Finally we evaluate how thpgsed solution copes with strong forward-scattering.
This is tested on a constant Heyney-Greenstein scattergajum withg = 0.9. In this case there is a concern that
the scheme will over scatter the light and will tend towaxtrispy, as the unpropagated light is temporarily stored in
coarse angular bins. This is investigated by refining bo¢hcbarse-grid and LPM angular discretizations indepen-
dently. The results shown in Figure 6 indicate that indedti bwe coarse-grid and LPMs must be refined to achieve
a decent convergence. Based on these results, it seemsithédifal purposes a resolution of 54 directions for the
coarse-grid and LPMs consisting o&k® directions achieve reasonable convergence (the middfshyr

4.2 Methods Comparison

In order to demonstrate the new method’s advantages ovadisidnal DOM calculation, we test the two on the same
input. We do that on a 3D volumetric model of a vase that defihesscattering coefficient, and we perturb it
slightly to imitate the appearance of marble. The mediunsawe emit nor does it absorb light. We solve the linear
equations arising from a first-order DOM with a spatial disization of 128 cells and the total of & 3 x 6(= 54)
angular bins. Despite the large amount of memory neededhéogtid (0.9GB), the results strongly suffer both from
false scattering and the ray effect. Figure 2 shows a bearadaiowards the vase which gets smeared even before
hitting the surface of the vase and shows a falsely smoogintyieak. From this lit region, light is scattered only along
the discrete directions which proves to be insufficientlg filthe light distributes non-uniformly inside the vase tavi
and creates an unrealistic bright peak just on the oppoagte wall (same horizonal level as the primary penetration
region). Due to the strong smearing along the other direstino other light peaks are observed, but nevertheless this
illumination is highly inaccurate. Note that the use of l@gbrder propagation scheme, may reduce the smearing, as
shown earlier, but may also accentuate the ray effect. Usimgpproach, light can be propagated in more directions
at lower storage costs (100MBs) as we show this figure. Used ®ih 9x 9 angular bins we significantly reduce
the ray effect without introducing any smearing. In Figuréh& visual implication of these errors is shown. In this
simulation a vase is lit by three light stripes which pertetithe vase walls and scatter. The excessive amount of
smearing produced by the ordinary DOM does not allow us tedéhe light pattern which is totally smeared. The
result obtained using LPMs captures more accurately tihe igips on both sides of the vase.
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Fig. 6. A beam of light entering from the left is passing thtghwa constant Heyney-Greenstein scattering medium gwt0.9. The coarse-grid
angular resolution is refined from top row to bottom, consg®f the following numbers of bins»41(x6), 3x 3(x6), and 5<5(x6). The LPM
angular resolution is refined from left column to right, multipg the coarse-grid angular resolution by factors (8,land 5.

Fig. 7. Perturbedr vase lit by three bright light stripes. The left two imageswsltioe result of using a first-order DOM with a total of 54 diieat
(shown at two different viewpoints). And the right two imag®w the result of computing a solution using LPMs with an dexgresolution of
9x 9 bins.

We also compare our method with results obtained from a M@a#o photon tracing simulation. We perform this
test on an unperturbed vase model, where parallel light itexhfrom the upper face of the domain to illuminate it.
The light particles’ initial position at the upper wall istdemined randomly, and the scattering events are implezdent
via a Russian Roulette strategy. In Figure 8, we show thétsssitained using 10and 5x 10° particles to illuminate

a grid of 128 cells. It takes 3.5 and 17.6 minutes respectively to perfibrase simulations. Even in the case where
5 x 10° particles are used some amount of noise is still apparehgifinnal rendering. Only doubling this number of
particles fully eliminates the perceptible noise and that&m converges to the one obtained using:a®LPM that
takes 3.7 minutes to compute using 5 scattering iteratmmes-erder of magnitude difference.
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Fig. 8. Left two images show the results obtained using a M@ato simulation with 18 light particles. The middle images were generated using
5x 10° particles, and the right images show the result obtainedy%in9 LPMs. All three calculations were performed on a328lls grid.

4.3 Computer Generated Scenes

As for typical CG scenes, requiring such a simulation, weatsamethod to illuminate marble, clouds and smoke. In
Figure 10 two marble vases are illuminated from the top. Gnaadeled by a constaot and a perturbed, while

the other hak = 0 and itso is perturbed. In both cases, the method captured the coriplex marble structures
interactions with the light penetrating the thick walls. iFkffect appears more dramatically when an intense laser
beam hits the third vase. This example is made by two indepersgimulations, for red and white wavelengths. We
used LPMs with the resolution of:@9 LPM angular bins to propagate the light in the red waveleagid 5x 5 bins

for the white. Modeling scattering due to smoke dynamicslver complexo fields, as shown in Figure 11. Light,
radiated from spot projectors, is scattered when hittimgsttmoke and illuminates the whole domain. Cloud models,
involving a denseo coefficient, are shown in Figure 9. The illumination prodiid®y the new method brings out
clouds’ structure and is able to generate some light strelikboth cases the absorption and emission coefficients
are set to zero. The running times of this method, with nowward acceleration, are as following. Computing the
solution over a resolution of 64ells using LPM with angular resolution of55 directions and accounting for three
scattering iterations (each involves six LPM sweeps) takseconds. Using a:99 LPM angular discretization this
takes 135 seconds. It takes a minute to simulate a nonqBotnoedium with coarse-grid angular discretization of
3 x 3x 6(= 54) bins and 62 cells using 6< 6 LPMs. These numbers grow linearly with the number of vaeissed,
and are comparable with the running times of standard iterlihear solvers.
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Fig. 9. The upper-left image shows a layer of clouds lit froroah) while in the lower images the clouds lit from their baclotiBsolutions are
computed over a coarse-grid containing 25828 cells and LPMs with 5 5 discrete angular bins. The upper-right image is made by caitimmps
a layer of clouds with the image shown below it as the backgtotiere the clouds are modeled by a Henvey-Greenstein sogtteith g = 0.25.
Coarse-grid resolution consists of P2atial cells and & 3(x6) angular bins. The LPM angular resolution used here consigts: 6 directions.

5. CONCLUSIONS

We presented a new method to transport light in the presdrecparticipating media. In this method, we exploit the
simple pattern by which light travels in space to advecttlfgbntscollectivelyandindependentlyThis requires fewer
computations per single light ray in comparison to stodbgstoton-tracing approaches where each light-particle
trajectory is calculatethdividually. Since these fronts are of one dimension less than the @hykimain and consist

of a reduced set of directions, high-resolution angulacrdiizations can be used in practice to reduce the errors due
to angular truncations. The LPMs’ detachment from the citatiy coarse-gridﬂk, inherently avoids interpolation
artifacts such as oscillation and smearing.

The method presented here is robust and shows its abilitgergte high quality calculations on a wide range of
scenes with no special restriction over the media coeffisielet, as in the case of restricted subsurface scattering
models, specifically developed solutions will be more effitin their operation. Also, in cases where no such detailed
deep matter models are needed, volumetric representatimuiid be less attractive than polygonal or other parametric
surface models due to their low memory requirements and=higdsolution.

The computational order of the new method in 3D is giver(:t(yn(n2 + pz)mq) wheren and p are the numbers of
variables along each spatial dimension in the coarse-gdd_#M respectively, anch andq are the total numbers of
angular variables in each of the coarse-grid and LPM binseeis/ely. The facton? + p? describes the number of
cells visited when scanning each slice of the coarse-grittla@ entire LPM. The factan describes the progression
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Fig. 10. The vase on the left is made of a const@rand a perturbedt, while the ones in the middle and the right are modelek by0 and
a perturbeds. In each of these three examples, the coarse-grid resaduisoh28 cells and the LPM angular discretization consists of 5
orientations. Specular highlights were added during rende

Fig. 11. The model shown on the left is made of a constaand a perturbe#. The coarse-grid resolution is 256ells, and the LPM angular
discretization is 5 5 bins. Hygia sculpture courtesy of Image-based 3D Modelsikec Tlcom. The images on the right show smoke that scatters
light and is lit by projectors, computed on a coarse-grid lkeigm of 64° cells and LPM angular discretization 077 orientations.

along the third direction of the coarse-grid and thefactor results from the coupling between the angular véetab
in each coarse-grid and corresponding LPM cells.

While this new approach allows finer ordinates discretizretio be used, light cannot be propagateeMarydirection.
This means that a beam of uniformly oriented light can not twpgrly propagated unless its orientation coincides
with one of the LPMs’. However, in most cases this inheranttition of the DOM does not have any consequential
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implication; scattered light tends to be distributed ovesoatinuous set of directions, which is shown to be well
resolved by the proposed method. And direct light arrivirapt the boundariese(g, infinite light sources) can be
propagated in a single pre-sweep at that light's exact timecSimilar solutions can be practiced to illuminate ss®n
with a point or other types of light sources, adding no magnputational costs.

In the case of highly scattering media, which is also the cdise highly-diffusing heat equation, iterative solvers
require many iterations until they fully converge. The desbf our method does not allow multi-resolution or other
form of a change of basis for accelerating the convergeneg fof the variety of scenes we reported here, three itera-
tions (along each direction) reached a visually satisfyamylt since the amount of light involves decays exponkntia

at each generation.

Iterative distribution of unpropagated light bears sonseneblance to the Progressive Radiosity approach [Cohen
et al. 1988]. As shown in [Gortler et al. 1994], Progressiwligsity is equivalent to an iterative scheme known as
Southwell Relaxatignused for solving linear equations just like Jacobi and G&gidel iterations. Although the
process described here iteratively approximates a saltti@ linear system, it does not correspond to a fixed point
stationary iterative method. In fact, different orderiridghe LPM sweeps result in different solutiong(, differing

from one another by a magnitude that is proportional to thedation errors). Also, this process does not follow the
strategy of distributing energy from the brightest elenterthe rest, according element-pair interactions.

Surfaces interchanging light with the medium can be addele@xisting approach. Since they will be swept by the
LPMs, they must be able to hold a constructed and unpropadjgte across them which can be implemented via a
mechanism similar to texture-mapping. Future steps mtlat¢his method can be to achieve a higher order of formal
accuracy by devising the proper approximation formulasagheliscretization step. The structure of the proposed
algorithm may allow better parallelization than iteratsavers as the LPM sweeps do not dependent on one another.
Also, given nowadays graphics processors supporting 3Dresx, the possibility of a hardware implementation seems
like a promising direction to speed up these calculations.
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