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1 Convergence Rate Analysis

Here we explain the critical slowing down observed in Section 3.1
of the paper. We perform this analysis under the following con-
ditions: we assume the target density is constant,ρ(x) = ρ, use

Gaussian kernels,Φ(x) = e−‖x‖2 , restrict toγ = 2, i.e.,L2 en-
ergy,

E
(

{xj}nj=1) =

∫

Ω

(A(x)− ρ(x))2 dx, (1)

and assume very small time steps,∆t ≪ 1 in the Langevin update

x
k+1
j = x

k
j − ∆t

2T
∇xj

E(Xk) +
√

∆tjξ
k
j . (2)

We also assume a periodic domain and that the current point con-
figuration already possess blue noise spectrum, i.e., it is near equi-
librium at reasonably low temperature. The analysis is performed
by studying the evolution of the approximation function,

Ak(x) =
n
∑

j=1

1

σd
Φ

(

‖x− xk
j ‖

σ

)

= Φ(x) ∗
n
∑

j=1

δ(x− x
k
j ),

where we abuse notations and use, from now and on,Φ(x) =

σ−dΦ(‖x‖/σ). In Fourier space,A becomes

Âk(ω) = Φ̂(ω)
n
∑

j=1

e−iω·xk
j . (3)

Since we assume∆t is infinitesimally small, we can skip the
Metropolis-Hasting correction step. We also assume that all the
state coordinatesxk

j are updated at every stepk. In this case,

Âk+1(ω) = Φ̂(ω)
n
∑

j=1

e−iω·xk+1

j = Φ̂(ω)
n
∑

j=1

e−iω·(xk
j +z

k
j )

≈ Φ̂(ω)
n
∑

j=1

e−iω·xk
j (1− iω · zkj )

= Âk(ω)− iΦ̂(ω)ω ·
n
∑

j=1

e−iω·xk
j z

k
j

(4)

wherezkj =
√
∆tξk

j − ∆t
2T

∇xj
E(Xk) according to (2). In (4)

we used a first-order Taylor approximation that relies on∆t being
small. The energy gradient inzj is given by

∇xj
E(Xk) = 2

∫

Ω

∇xj
Φ(x− x

k
j )
(

A(x)− ρ)dx, (5)

and becomes in Fourier space, according to Plancherel theorem,

2

∫

(

−iθe−iθ·xk
j Φ̂(θ)

)∗
(

Â(θ)− δρ(θ))dθ,

= 2i

∫

θ
∗eiθ·x

k
j Φ̂(−θ)

(

Â(θ)− δρ(θ))dθ,

(6)
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whereδρ(ω) = δ(ω)ρ. By plugging this in (4), we get

Âk+1(ω) = Âk(ω)− i
√
∆tΦ̂(ω) ω ·

n
∑

j=1

e−iω·xk
j ξ

k
j

−ω · ∆t

T
Φ̂(ω)

n
∑

j=1

e−iω·xk
j

∫

θ
∗eiθ·x

k
j Φ̂(−θ)

(

Â(θ)− δρ(θ))dθ.

(7)

The last term equal to

ω · ∆t

T

∫

θ
∗

n
∑

j=1

e−i(ω−θ)·xk
j Φ̂(ω)Φ̂(−θ)

(

Âk(θ)− δρ(θ))dθ

=ω ·∆t

T

∫

θ
∗Âk(ω − θ)e−σ2(ω·θ∗+ω

∗·θ)/4
(

Âk(θ)− δρ(θ))dθ,

(8)

since

Φ̂(ω)Φ̂(−θ) = e−σ2(‖ω‖2+‖θ‖2)/4 = Φ̂(ω−θ)e−σ2(ω·θ∗+ω
∗·θ)/4.

(9)

AssumingXk is near equilibrium then, at reasonably low tempera-
ture, the power spectrum of the point configuration shows theblue-
noise properties, i.e., has a delta at the origin and vanishes in an
annulus around it. The approximation function̂A(ω) equals to this
function timesΦ̂(ω) which is zero outside the angulus and hence
Â(ω) ≈ δ(ω)Â(0). Therefore, the term in (8) is approximately

‖ω‖2∆t

T
e−σ2‖ω‖2/2

(

Âk(ω)− δρ(ω)
)

Â(0). (10)

For small‖ω‖, the factore−σ2‖ω‖2/2 is close to one and therefore,
the evolution equation ofAk can be modeled by

Â(ω)k+1 = Â(ω)k − ‖ω‖2∆t

T

(

Âk(ω)− δρ(ω)
)

Â(0)

−
√
∆t‖ω‖ξ̂(ω)k,

(11)

where the noise term̂ξ(ω)k = iω/‖ω‖ ·∑n
j=1 e

−iω·xk
j ξk

j is a lin-

ear combination of independent normal random variablesξk
j with

weights of unit amplitudee−iω·xk
j .

To ease notations in what follows, we assume thatÂ is normalized
such thatÂ(0) = 1 by redefiningÂk(ω) ≡ Âk(ω)/Âk(0). Note
that this normalization does not intervene with the recursive relation
we investigated so far sincêAk(0) is constant and independent of
k as the number of kernelsn, and their scaleσ do not change with
k. In this case the relation in (11) becomes, for everyω 6= 0,

Â(ω)k+1 = Â(ω)k
(

1− ∆t‖ω‖2
T

)

+
√
∆t‖ω‖ξ̂k, (12)

where we abuse notations again and denote the added noise byξ̂k

(to which we absorb the unit-circle factoriω/‖ω‖), and disregard
the fact that noise is correlated among different frequencies. Un-
folding this recursion yields

Â(ω)k=
√
∆t‖ω‖

k
∑

l=1

ξ̂l
(

1−∆t‖ω‖2
T

)k−l

+
(

1−∆t‖ω‖2
T

)k

Â(ω)0, (13)



Figure 1: (left) Show the effect a displacement of a single point
has on low and high frequency modes. The high-frequency mode
shows a greater change in response than the low-frequency mode.
(right) The effect of low- and high-frequency displacements, of an
equal magnitude, have on the inter-particle distance. Positive val-
ues correspond to right offsets and negative to left ones. The high-
frequency offset has a greater effect over the inter-point distances
and violates more the local point density.

SinceÂ(ω)k is a linear combination of normal random variables,
we conclude that it is itself a normal variable. Therefore, we can
measure the convergence of its distribution by examining its first
two moments. Equation (12) is a discretized stochastic differential
equation, therefore we can consider a ‘physical’ timeτ , such that
k = τ/∆t and by allowing∆t → 0 (and hencek → ∞) we get

E
[

Â(ω)k
]

=
(

1−∆t‖ω‖2
T

)k

Â(ω)0−−−−→
∆t→0

e−τ‖ω‖2/T Â(ω)0,

which results fromE[ξ̂] = 0, and

V
[

Â(ω)k
]

= ∆t‖ω‖2
k
∑

l=1

(

1−∆t‖ω‖2
T

)2(k−l)

V[ξ̂]

≈ ∆t‖ω‖2
k
∑

l=1

(

1−2∆t‖ω‖2
T

)k−l

V[ξ̂]

= ∆t‖ω‖2T 1−
(

1−2∆t‖ω‖2

T

)k

2∆t‖ω‖2 V[ξ̂] −−−−→
∆t→0

T

2
(1− e−τ2‖ω‖2/T )V[ξ̂].

From this analysis we conclude that the moments ofP (Â(ω)) con-
verge to their equilibrium values at rateτ = O(‖ω‖−2). The pre-
dicted number of Markov-chain stepsk, needed to achieve stochas-
tic relaxation, is therefore dictated by the lowest mode,2π/m
(along one axis). Hence, assuming a fixed small time step∆t, the
number of required chain steps

k = τ/∆t = O
(

(2π/m)−2
)

/∆t = O(m2),

or equivalentlyO(n) in two-dimensional space.

This theoretical finding is in agreement with the empirical results
presented in Section 3.1 of the paper. This analysis also offers an
intuitive explanation for this behavior. The product‖ω‖2 = ω∗ ·ω
results from two reasons. In (4) the effect of moving the points inde-
pendently, byzj , affectsÂ like O(‖ω‖). This makes sense because
as the frequency decreases, the response to small point movement
becomes small (e.g., it is not felt at all atω = 0). The second rea-
son follows from the fact that the energy gradient gradient,in (5), is
O(‖ω‖), meaning that the energy is less sensitive to points move-
ments at lower frequencies. These effects are illustrated in Figure1.

2 Refinement Spectral Accuracy

Here we estimate the spectral agreement between the approxima-
tion functionÂC corresponding to{yj}nC

j=1 andÂ that results from
the refined configuration{xj}nj=1 obtained from the refinement
scheme we described in Section 3.2 of the paper. This refinement
consists of splitting every pointyj into2d points, given by2yj+zlj ,
wherezl for 1 ≤ l ≤ 2d, are the offset vectors that sum to zero. In
this derivation we assume smallω and use the Taylor approxima-
tion eω·zj ≈ 1 − iω · zj . We also assume and use the following
admissibility condition on the kernel functions

Φ̂′(0) = 0 ⇒ Φ̂(‖ω‖) = Φ̂(0) +O
(

‖ω‖2
)

, (14)

which is obeyed by any symmetric function that is differentiable
at zero, such the Gaussian kernel function we use. We useσj to
denoteσ(yj) at the coarse scale andσ(2yj + zj) at the fine scale,
assumingσ does not change by much between scales and along
small perturbations. Thus, for smallω we get

Â(ω) =

nC
∑

j=1

2d
∑

l=1

Φ̂
(

‖ω‖σj/2
)

e−iω·(2yj+z
l
j)

=

nC
∑

j=1

2d
∑

l=1

Φ̂(0)e−i2ω·yj (1− iω · zlj) +O(‖ω‖2)

= 2d
nC
∑

j=1

Φ̂(0)e−i2ω·yj − iω ·
2d
∑

l=1

z
l
j

nC
∑

j=1

Φ̂(0) +O(‖ω‖2)

= 2dÂC(2ω) +O(‖ω‖2),

where the second term in the line before the last disappearedsince
∑2d

l=0 z
l
j = 0.


