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1 Convergence Rate Analysis

Here we explain the critical slowing down observed in Sec8dl
of the paper. We perform this analysis under the following-co
ditions: we assume the target density is constaft,) = p, use

Gaussian kernelsp(x) = e~ I1¥I* | restrict toy = 2, i.e., L en-
ergy,

B{x)) = [ (A6) = p60)° dx, @
and assume very small time steps, < 1 in the Langevin update

At .
xht=xb ﬁvij(xk) + VAtE.

We also assume a periodic domain and that the current paimt co
figuration already possess blue noise spectrum, i.e., &as equi-
librium at reasonably low temperature. The analysis isquaréd

by studying the evolution of the approximation function,
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where we abuse notations and use, from now anddgix) =
o~ %®(||x||/o). In Fourier spaced becomes
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Since we assum@\t is infinitesimally small, we can skip the
Metropolis-Hasting correction step. We also assume tHahal
state coordinates? are updated at every stépIn this case,

Ak+1 Zeﬂw x5t w) Zeﬂ'u-(x;wrzf)
j=1
~ d(w) Zeﬂ“’ x; (1 —iw - z}) 4)
j=1
_ Ak( _ Z‘P Z —iw- x
wherez! = VAl — 21V, E(X") according to 2). In (4)

we used a flrst order Taylor approxmatlon that reliesXanbeing
small. The energy gradient iy is given by

Vo, E(X") = 2/Q Ve, b(x — x5)(A(x) - p)dx,  (5)
and becomes in Fourier space, according to Planchereleimeor

2 / (—we*i‘""? é(e))* (A(8) — 5,(6))de,
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whered, (w) = d(w)p. By plugging this in 4), we get

A (w) = A (w) — iV AED (w Ze*“”]

)
Z i x/ 070 B(—0)(A(0) — 6,(6))de.
The last term equal to
/e z 0 (1) b(—-0) (A%(6) — 6,(6))d6
8
:w~% 0" AF(w — §)e " (@O T O/ (iR () _ 5,(6))de,
since

@(w—0)67“2(“‘9*+“%9)/4.
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AssumingX?* is near equilibrium then, at reasonably low tempera-

ture, the power spectrum of the point configuration show$the-
noise properties, i.e., has a delta at the origin and vasishan

annulus around it. The approximation functiél(lw) equals to this
function times®(w) which is zero outside the angulus and hence
A(w) =~ §(w)A(0). Therefore, the term irB] is approximately

Cﬁ(w)i‘(—@) _ 6*02(\\W\\2+I|9H2)/4 _

ol 2L 12 (A ) — 5, (w) A@).  (10)
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For small||w||, the factore =" 1’lI"/2 is close to one and therefore,

the evolution equation oft* can be modeled by
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A@)™ = Aw)" - ol (Aw) = 5,@)A0) )
—\/_IIwHS(w),

where the noise terg(w)* = iw/||w|| DI e*i“"x?g’j isalin-

ear combination of independent normal random variablbwith
weights of unit amplitude = ,

To ease notations in what follows, we assume thig normalized
such thatd(0) = 1 by redefiningA* (w) = A*(w)/A*(0). Note
that this normalization does not intervene with the resersélation
we investigated so far sincé® (0) is constant and independent of
k as the number of kernets, and their scale- do not change with
k. In this case the relation irl{) becomes, for every # 0,
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Ayt = Ay (1 - 29Dy VR, a2)
where we abuse notations again and denote the added nogse by
(to which we absorb the unit-circle factap /||w||), and disregard

the fact that noise is correlated among different frequesaciun-
folding this recursion yields
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Figure 1. (left) Show the effect a displacement of a single point
has on low and high frequency modes. The high-frequency mode
shows a greater change in response than the low-frequency mode.
(right) The effect of low- and high-frequency displacements, of an
equal magnitude, have on the inter-particle distance. Positive val-
ues correspond to right offsets and negative to left ones. The high-
frequency offset has a greater effect over the inter-point distances
and violates more the local point density.

Since A(w)" is a linear combination of normal random variables,
we conclude that it is itself a normal variable. Therefore, van
measure the convergence of its distribution by examinigdiiist
two moments. Equatiorlp) is a discretized stochastic differential
equation, therefore we can consider a ‘physical’ timesuch that

= 7/At and by allowingAt — 0 (and hencé: — o) we get
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which results fronE[£] = 0, and
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From this analysis we conclude that the momenté’gﬁ ) con-
verge to their equilibrium values at rate= O(||w || The pre-
dicted number of Markov-chain stepsneeded to achleve stochas-
tic relaxation, is therefore dictated by the lowest mode/m
(along one axis). Hence, assuming a fixed small time ategghe
number of required chain steps

o((2r/m)~? o(m?),

or equivalentlyO(n) in two-dimensional space.

k=71/At= )/At =

This theoretical finding is in agreement with the empiriegults
presented in Section 3.1 of the paper. This analysis alsvsoén
intuitive explanation for this behavior. The prodije||* = w* - w
results from two reasons. 14)the effect of moving the points inde-
pendently, by, affectsA like O(||w||). This makes sense because
as the frequency decreases, the response to small pointmaate
becomes small (e.g., it is not felt at all@t= 0). The second rea-
son follows from the fact that the energy gradient gradient), is
O(|lw||), meaning that the energy is less sensitive to points move-
ments at lower frequencies. These effects are illustrateejurel.

2 Refinement Spectral Accuracy

Here we estimate the spectral agreement between the aparoxi
tion function A¢ corresponding tdy;}i< , and A that results from
the refined configuratiox; }7_, obtalned from the refinement
scheme we described in Section 3.2 of the paper. This refimeme
consists of splitting every poiryt; into 2¢ points, given bRy ; +z",
wherez! for 1 < 1 < 2¢, are the offset vectors that sum to zero. In
this derivation we assume small and use the Taylor approxima-
tion e ~ 1 — iw - z;. We also assume and use the following
admissibility condition on the kernel functions

®(0) + O(|lwl),

which is obeyed by any symmetric function that is differahte

at zero, such the Gaussian kernel function we use. Werpde
denotes (y;) at the coarse scale and2y; + z;) at the fine scale,
assumingos does not change by much between scales and along
small perturbations. Thus, for smallwe get
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where the second term in the line before the last disappesaned

2d 1
Zl:o z; = 0.



