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This paper presents a new dimensionally-reduced linear image space that allows a number of re-

cent image manipulation techniques to be performed efficiently and robustly. The basis vectors

spanning this space are constructed from a scale-adaptive image decomposition, based on kernels

of the bilateral filter. Each of these vectors locally binds together pixels in smooth regions and

leaves pixels across edges independent. Despite the drastic reduction in the number of degrees of
freedom, this representation can be used to perform a number of recent gradient-based tonemap-

ping techniques. In addition to reducing computation time, this space can prevent the bleeding

artifacts which are common to Poisson-based integration methods. In addition, we show that this

reduced representation is useful for energy-minimization methods in achieving efficient processing

and providing better matrix conditioning at a minimal quality sacrifice.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation,

Display algorithms

General Terms: Algorithms

Additional Key Words and Phrases: image representation, bilateral filtering, gradient domain

techniques

Level 1

Level 2 Level 3

Input

Fig. 1. An input image with three levels of our scale-adaptive coarsened representation. This

representation breaks the image into overlapping kernels that bind together smooth regions but

are also shaped by strong edges. This visualization shows the dominant kernel for each pixel.
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1. INTRODUCTION

Edges and gradients carry most of the visually important information in images. A
wide variety of recent image editing techniques are based on this insight and provide
powerful tools for manipulating images based on their edges and gradients. These
techniques fall into two main classes; bilateral filter based methods and gradient

based manipulation techniques.

The bilateral filter [Tomasi and Manduchi 1998] is a nonlinear filter that locally
gathers information from pixels that are similar to one another (i.e. in intensity,
color, etc.), while excluding pixels that lie across nearby edges. Recently the bilat-
eral filter has become a practical building block [Durand and Dorsey 2002], replacing
earlier PDE-based methods that decomposed images into a piecewise-smooth base
layer and one or more residual detail layers [Tumblin and Turk 1999]. Since edges
are preserved in the base layer, techniques based on the bilateral image decomposi-
tion avoid the haloing artifacts common to linear filter image decomposition tech-
niques [Burt and Adelson 1987]. Moreover, the bilateral filter is robust and efficient
to compute [Chen et al. 2007]. As a result, bilateral image decompositions have
proven useful for many tasks including dynamic range compression [Durand and
Dorsey 2002], flash/no-flash enhancement [Eisemann and Durand 2004; Petschnigg
et al. 2004], tone management [Bae et al. 2006], nonphotorealistic relighting [Fattal
et al. 2007] and operator upsampling [Kopf et al. 2007].

The gradient domain provides a natural setting for image manipulation tech-
niques, including dynamic range compression [Fattal et al. 2002], seamless image
stitching [Levin et al. 2004], image editing [Pérez et al. 2003], alpha matte extrac-
tion [Sun et al. 2004], and shadow removal [Finlayson et al. 2006; Xu et al. 2006].
Solving the Poisson equation amounts to performing an L2 minimization in which
the image gradients are weighted uniformly in space. More recent gradient based
methods such as colorization [Levin et al. 2004], interactive tone mapping [Lischin-
ski et al. 2006] and alpha matting [Levin et al. 2006], propagate local image editing
operations throughout the image according to the underlying gradient field. These
approaches require solving a similar optimization problem, but in this case the
output image gradients are weighted in a spatially-dependent manner.

In this paper we develop a new dimensionally-reduced linear image space that is
based on the bilateral filter and designed to support many of these recent image
manipulation techniques. The key idea of bilateral filter based methods is that
similar pixels should be treated similarly and independently of pixels separated
by a discontinuity. We apply this idea to construct a coarse image representation
consisting of elementary basis functions that are derived from the bilateral filter
kernels, shown in Figure 1. Together these functions act as a spanning basis for the
output image.

Our coarse representation forces pixels that are similar in the input to change
collectively and smoothly, but permits strong modifications along edges. Although
this reduction limits the possibilities for manipulating images, we show that it is
well-suited for many applications. By defining two projection operators onto this
coarse representation, one based on pixel intensities and the other based on pixel
differences, our representation naturally expresses gradient domain techniques and
with a simple change of variables it can express gradient-based energy functionals.
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We show that projection into this space significantly reduces the bleeding artifacts
common to gradient-based operations formulated in the original pixel-based image
space. Also, our coarsened representation allows us to closely approximate the re-
sults obtained via pixel-based optimization formulations while achieving efficient
processing and better matrix conditioning. However, the basis functions we con-
struct are tailored to the edges of the input image and therefore operations that
alter the geometry of the edges, such as seamless pasting, cannot be performed in
this representation.

Input Scanline

Grid Kernels

Center Adjustment and Islands

Normalized to C=I 

Fig. 2. 1D kernel construction steps. (top) Input image scanline. (second row) Kernels computed

on regular grid with centers shown as block dots. (third row) Kernel centers are shifted away

from edges (open dot moves to orange dot) and island kernels are added (red dot). (bottom row)

Kernels normalized to input image.

2. IMAGE COARSENING

Our coarsened edge-based image representation is data dependent. Given an input
image we construct a basis derived from bilateral filter kernels. This basis spans
a linear subspace of images in which similar pixels (i.e. pixels in smooth image
regions) are bound together. More formally, given an input image I we construct a
set of kernels whose support is composed of pixels with similar intensity (or color) as
measured by the bilateral [Tomasi and Manduchi 1998] pixel-pair affinity function

S(x,y) = gs(‖x − y‖) · gr(|I(x) − I(y)|),

where gs = exp(−x2/σ2
s) is a spatial weighting function with σs defining a spatial

scale, and gr = exp(−x2/σ2
r) is an edge-stopping function with σr defining a scale

in the intensity range. Other functions can be used for spatial weighting and edge
stopping as discussed by Durand and Dorsey [2002].
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Input KernelsCenters

Fig. 3. Image kernels. (left) Input image, (middle) kernel centers are marked in orange and island

centers in red. (right) Visualization of shape of non-overlapping kernels. Note that kernels do
overlap in our representation but to clarify their shape we are only visualizing a subset of them.

We use this affinity function to define the following set of normalized kernels

Ki(x) =
C(x)S(xi,x)
∑n

j=1 S(xj ,x)
, (1)

where C(x) is a per-pixel normalization factor which we describe shortly, and xi

for i = 1...n are the kernel centers.
To compute the kernel centers we first uniformly downsample the input pixels by

a factor k (in our examples k ranges from 4 to 8 pixels.) Since we are interested in
binding together pixels in homogeneous regions, we locally shift each kernel center
xi to a pixel where the input image has a minimal gradient norm ‖∇I(x)‖ within
a small window of k−2 by k−2 pixels around the original uniformly downsampled
center. This local shift places kernel centers in smooth areas and avoids edge pixels.
By construction these kernels overlap one another in smooth regions but are disjoint
across edges (see figures 2 and 3).

The local shift of the kernel centers can cause some pixels to be far away from any
kernel center. In addition, some pixels may be very different in intensity from any
nearby kernel center. Such pixels may not be well represented by our construction.
Therefore, we add island kernels to ensure adequate coverage of such pixels. We
build these additional kernels by iteratively scanning the image for pixels x where
∑

i S(xi,x) < τ and use this location as the new kernel’s center. In our examples,
we set the island creation threshold, τ , to be 0.3 unless stated otherwise.

We use these kernels to define a set of overlapping basis functions that are smooth
where the input image is smooth and discontinuous along edges. More specifically
the kernels modulate a set of construction polynomials (CPs) given by

Pi(x) = ai0 + ai1(x − xi) + ai2(y − yi) + ai3(x − xi)(y − yi)

+ ai4(x − xi)
2 + ai5(y − yi)

2 + ...

The degree of the polynomial (usually 0, 1 or 2) is chosen depending on the ap-
plication. We call the linear image subspace J spanned by these polynomials the
Bilateral Image Coarsening (BIC) space and it is given by

J =
{

n
∑

i=1

Ki(x)Pi(x) : aij ∈ R

}

.
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The coefficients of these polynomials aij are the degrees of freedom that param-
eterize this space. For example, for first-order CPs every image J ∈ J is given
by

J(x) =
n

∑

i=1

Ki(x)
(

ai0 + (x − xi)ai1 + (y − yi)ai2

)

, (2)

for some choice of aij where j = 0..2.
The normalization function C(x) in equation (1) determines the sum of the ker-

nels at each pixel, i.e.,
∑

i Ki(x) = C(x), and is used to shape J . By setting
ai0 = 1 and aij = 0 for j > 0 we see that J must contain C(x). Intuitively, the
normalization function serves as an “origin” point for J . We show that there are
two useful options for setting C(x) depending on the application. One choice is to
set C(x) = I(x) so that J is a subspace “surrounding” the input image. Another
choice is to set C(x) = 1 so that J becomes a space of piecewise-smooth functions
which is useful for representing the parameters of some image editing operations
such as colorization.

2.1 Scale-Adaptive Coarsening

Thus far we have only considered binding pixels at a single scale, giving us kernels
of roughly the same size. In this setting large homogeneous regions are covered
by many small kernels (see level 1 in Figure 1). Alternatively, we define a scale-
adaptive coarsening which gives us kernels that vary in size depending on image
content.

To build these scale-adaptive kernels we first compute kernels at a single scale,
which are a combination of kernels centered on a regular grid and island kernels.
The island kernels are added to the list of scale-adaptive island kernels and the grid
kernels Kl at level l are treated analogously to pixels in the single scale construction
and define an affinity function between kernels as

S(Ki,Kj) = gs(‖x̄i − x̄j‖) · gr(|K̄i − K̄j |),

where

x̄i =
∑

x

xKi(x)/
∑

x

Ki(x),

is the kernel centroid, and

K̄i =
∑

x

I(x)Ki(x)/
∑

x

Ki(x),

is the kernel’s average intensity (or color). We then define scale-adaptive kernels as

Kl+1
i =

m
∑

j=1

Kl
j

S(Kl
i ,K

l
j)

∑n

k=1 S(Kl
j ,K

l
k)

, (3)

where Kl+1
i′ is at the same spatial location as Kl

i . Given m grid kernels at level l we
coarsen the grid sampling by a factor k and obtain m/k2 grid kernels at level l +1.
We typically use 4 ≤ k ≤ 8 at the first level and set k = 2 for l > 1. At each level
we increase σs by the grid coarsening factor (we use σs = 2lk in our testing) and
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Poisson

BIC BIC inpainted

Poisson inpaintedInput

Deletion

Fig. 4. Shadow removal. (top-left) Shows the input and below, and below it we see the edges

deleted in red. (top-center) Shows this edge-deleted gradient field after it is integrated using

Poisson and below it we see its projection onto the BIC space. (right) Shows the corresponding

results of performing an additional step of inpainting.

optionally specify a different σr for the higher levels l > 1. As in the first level, we
also construct island kernels at each of the subsequent levels and add them to the
list of scale-adaptive kernels. Thus, the final result is a set of kernels consisting of
those from the coarsest level and the island kernels found at each level. Altogether,
by its construction, this set of kernels covers all of the pixels in the image.

In fact, the list of island kernels, denoted by Ω, can also be adaptively coarsened
in order to avoid the creation of small and similar island kernels. However, unlike
the grid kernels, these kernels do not lie on a rectangular grid and therefore we
cannot use a predetermined subsampling pattern. Instead, we construct a coarser
subset ΩC as following: once the kernels at level l are computed, we run through
the current list of island kernels, Ω, and if we encounter a kernel K that is poorly
covered by ΩC , i.e., as before

∑

j S(Kj ,K) < τ where j ∈ ΩC , then we add it to

ΩC . Thus, each island kernel that is missing from ΩC is close enough to one (or
more) of the kernels in ΩC . Finally, we use this subset of island kernels to define
coarser scale-adaptive island kernels KC

i for i ∈ ΩC by

KC
i =

∑

j∈Ω

Kj

S(Ki,Kj)
∑

k∈Ω S(Kj ,Kk)
.

3. PROJECTION OPERATIONS

We propose the following paradigm for manipulating images in our coarsened rep-
resentation. Given an input image I we build a corresponding BIC space repre-
sentation J . Rather than computing or manipulating aij directly, we apply the
desired operation on the pixels or gradients of the input image to build an interme-
diate image Q. We then project this image or its gradient field onto J to obtain
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the closest image within J . We will show that we can use this new representation
to implement existing gradient-based image manipulation methods with minimal
adaptation.

3.1 Image Projection

In order to project the image Q into J we search for the image within J that best
matches Q as measured by the L2 norm. Thus, we compute the coefficients aij by
solving

min
aij

‖
∑

i

Ki(x)Pi(x) − Q‖2.

The quadratic objective function is optimized by solving a system of linear equa-
tions. This mapping from Q to J =

∑

i Ki(x)Pi(x) defines an orthogonal projection
R

N → J (see [Strang 2003]).
For example, in the case of a zero-order basis, Pi(x) = ai0, this minimization

amounts to solving Aa = r, where the matrix A is given by Aij = 〈Ki,Kj〉, the
vector a is composed of ai0, and the vector r is given by ri = 〈Ki, Q〉. The dot
product 〈·, ·〉 operates on images and is defined by

〈I1, I2〉 =
∑

x

I1(x)I2(x).

Using higher order CPs is equivalent to adding kernels modulated by higher order
monomials, xpyqKi(x). We do not store these kernels but compute them on the
fly when constructing the linear system. The dimension of this system equals the
number of CP coefficients times the number of kernels n.

Example Application: Shadow Removal. Finlayson et al. [2006] and Xu
et al. [2006] remove shadows from an image by deleting gradients from the log
intensity image along the shadow edges and then integrating this modified gradient
field using a Poisson equation. In Figure 4 we see that the image resulting from
the Poisson integration is blurry along the deleted strips of shadow edge, and there
are spurious dark regions at the intersections of the shadow edges and the gaps in
the deck. These artifacts are known as bleeding artifacts [Pérez et al. 2003].

We can reduce these artifacts by taking an additional step of projecting the
resulting image onto J , which is constructed based on the original image I using
zero-order construction polynomials and the normalization factor C set to I. As
shown in Figure 4, we recover most of the details along the deleted strips and
eliminate most of the bleeding artifacts. This successful restoration results from the
fact that J consists only of images that are locally brightened and darkened versions
of the original image, and hence J is unable to produce blurriness or bleeding
effects. As we are primarily concerned with the ability to reconstruct an image given
a modified field, we deleted the shadow edges manually in this example. Figure 4
also shows that we can go further and use texture-synthesis based inpainting [Efros
and Leung 1999] after the shadow removal to reduce remaining artifacts. However,
as shown in the example, inpainting alone does not fully eliminate the artifacts
when using a Poisson-based integration.
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3.2 Gradient Projection

Many recent image manipulation methods operate on image gradients rather than
pixels [Finlayson et al. 2002; Fattal et al. 2002; Pérez et al. 2003; Levin et al. 2004;
Sun et al. 2004; Xu et al. 2006]. These methods manipulate the gradient field of
an input image and try to solve for the corresponding image, but in general this
manipulated gradient field does not correspond to an image. Like the inconsistency
illustrated in Escher’s Waterfall, the manipulated gradient field does not integrate
to zero along closed loops and hence does not correspond to a potential function –
an image. Instead, these methods search for an image whose gradients are closest
to the manipulated gradient field under the L2 norm by solving a Poisson equation.
As we saw in the shadow removal example in the previous section, this minimization
under the L2 norm tends to spread errors, resulting as bleeding artifacts.

The BIC image space is designed to avoid such artifacts because similar pixels are
bound together so that flat regions remain flat and edge contours remain unaltered.
Thus, we formulate the gradient integration procedure over the BIC space as

min
aij

‖∇
∑

i

Ki(x)Pi(x) −
(

Qx(x), Qy(x)
)

‖2,

where ∇ = (Dx, Dy), Dx and Dy denote the forward (or backward) pixel differ-
ence operators along the two axes, and (Qx, Qy) denotes the manipulated gradient
field. In the case of zero-order CPs we minimize this equation by solving La = r,
where the Laplacian matrix L is given by

Lij = 〈Kx
i ,Kx

j 〉 + 〈Ky
i ,Ky

j 〉,

with

Kx
i = DxKi, and Ky

i = DyKi,

a is the ai0 vector, and the right hand side divergence vector r is given by

ri = 〈Kx
i , Qx〉 + 〈Ky

i , Qy〉.

Connection to the Finite Element Method. Our coarsened BIC image
space with these projection operations bears some resemblance to the Finite El-

ement Method (FEM) [Zienkiewicz and Taylor 2000]. In its traditional form the
FEM consists of decomposing the domain into localized sets and defining smooth
functions (usually polynomial-based) over them. When solving linear boundary
problems using the FEM, the right-hand-side function is also projected onto the
discrete space and the solution is obtained by solving a linear system based on an
element-to-element dot product matrix known as the stiffness matrix. While our
construction similarly breaks an image into localized kernels on which we define
polynomial basis functions, we use our prior knowledge about the solution to con-
struct our space. Since we expect the solution to have the same smooth regions
and edges as the input image, we shape the support of the basis functions in a
data-dependent manner based on the input image.

4. RESULTS

Our BIC space is a general representation of images useful for a variety of image
manipulations. We demonstrate here how our approach improves the efficiency and
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Input

Poisson 

Poisson

BIC

BICDilated edges

Finlayson et al. 2002

Shadow edge

Finlayson et al. 2002

Fig. 5. Gradient based shadow removal. (left) Input image, (top, left to right) we show the

shadow edges deletion map (taken from Finlayson et al. 2002) and the results of integrating this

shadow-free gradient field via Poisson and over the BIC space. (bottom row) Shows the same

operations performed after a 5 pixel dilation of the original shadow edge map.

quality of several applications.
Shadow Removal. We begin with the shadow removal problem. In Section 3.1

we integrated the deleted shadow-edge gradient field using Poisson integration fol-
lowed by an image projection onto the BIC space. Here we reconstruct an image
directly from the gradient field using the BIC gradient projection operator. We
formulate the problem as

min
a

‖∇ log I(x) + ∇
∑

i

Ki(x)ai − (Qx, Qy)‖2

where (Qx, Qy) is the gradient field of the log image intensities with the shadow
edges deleted. In this case the output image is given by exp

(

log I(x)+∇
∑

i Ki(x)ai

)

where exp
(

∇
∑

i Ki(x)ai

)

represents the multiplicative change in illumination.
Shadows consist of a constant change in illumination and therefore a natural choice
is to compute the kernels based on log I, set C ≡ 1, and use first-order construction
polynomials which can better capture (and eliminate) gradual change illumination
than zero-order representation.

In Figure 5 we apply this to an example gradient field taken from Finlayson
et al. [2002]. Note that we pick this specific example, because Finlayson in his
original paper did not completely delete all the shadow edges in the modified gra-
dient field, and therefore this example tests how well our approach can prevent
bleeding artifacts. As we already saw in Section 3.1, the Poisson-based integration
produces blurriness along the deleted shadow edges and bleeding artifacts wherever
the shadow edges are not completely deleted. When we integrate the same gradient
field using the BIC we preserve more detail along the deleted edge. While there are
newer and better methods for removing shadows, such as [Finlayson et al. 2006],
here we show that by simply switching to the BIC space we can improve the results
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Input Poisson L BIC0.8(L ) 2

Fig. 6. Integration using L2, L0.8, and the BIC.

obtained by a given gradient-domain method. In fact, we can further exploit the
robustness of the BIC representation and reduce the artifacts even more by naively
dilating the original shadow edge map. We dilate the map by 5 pixels and delete
all gradients in this extra band of pixels. This approach is likely to eliminate any
remaining shadow edges in the modified gradient field and as shown in Figure 5
the bleeding artifacts are significantly reduced in both the Poisson-integration and
BIC results. However, the Poisson-integration result contains more blurriness than
before while no blurriness is added to the BIC result.

Sparse-Error Norms. Unlike the L2 norm, when minimizing under Lα for α <
1, errors tend to localize rather than spread. In this norm, when edge gradients are
deleted a new relatively sharp edge is formed, hence reducing the bleeding artifacts.
Setting α = 1 gives the regularization term in the Total Variation Method [Rudin
et al. 1992] commonly used in the context of edges preserving noise removal. Lower
values of α (such as ≈ 0.8) are used in several image restoration techniques [Mallat
1989; Tappen et al. 2001; Levin et al. 2007] as an image prior probability model that
favors images with sparsely distributed derivatives. In Figure 6 we test these image
integration alternatives on an edge where some portion of its gradients are deleted.
As expected, Poisson-integration yields bleeding artifacts, while integration under
the L0.8 norm reconstructs a sharper edge, which is a straight line. In the BIC
space edges cannot be blurred or change their shape, hence the edge contour is more
accurately reconstructed. This result is not surprising because the BIC kernels are
built using the input image which contains the edge we wish to maintain. The BIC
formulation is designed to exploit information in the original image to avoid bleeding
artifact, while the pixel-based integration does not use information in the original
image and works only with the modified gradient field. Thus, in cases where the
input image is given and the desired image manipulation does not involve altering
edge contours, the BIC space outperforms integration under non-quadratic norms in
its ability to produce faithful results. Working in the BIC space also avoids the need
to solve non-linear equations, involved in non-quadratic optimization problems.

Preconditioning Energy Functionals. Some recent image editing problems
such as colorization [Levin et al. 2004], guided tone mapping [Lischinski et al. 2006],
and alpha matting [Levin et al. 2006] are formulated using the following weighted
derivatives least-squares optimization problem

min
J

∑

x

wx(x)
(

DxJ(x)
)2

+ wy(x)
(

DyJ(x)
)2

, (4)

where the weights wx(x) and wy(x) are related inversely to the magnitude of the
input image gradient vectors. The solution to this quadratic optimization problem
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BIC

Kernels

BIC

Kernels

Levin et al.

2004

Szeliski

2004

Input

(Gili)

Input

(Stephen)

Fig. 7. Image colorization. (first and third rows) Input image, to its right we visualize the BIC

kernels. (second and fourth rows) We see the result obtained over the image pixels and the BIC

space. Images taken from Szeliski 2007 and Levin et al. 2004.

is computed by solving a spatially-inhomogeneous Laplace equation whose condi-
tion number greatly depends on the ratios between these weights. Solving such
linear systems is a well-studied topic in numerical computing [Chen 2005] and
more recently in computer graphics [Grady et al. 2005; Szeliski 2006]. For exam-
ple, Szeliski [2006] builds a hierarchical preconditioning basis based on the algebraic
structure of the Laplacian matrix, effectively collapsing smooth regions into a single
variable.

The functions spanning the BIC space bind together similar pixels and allow
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Image Num. Dofs Cond. Num. SSOR ILU

Stephen 289 66752 73 93543 32 3112 3.2 3628

Gili 158 84800 14 19114 2.6 4772 1.3 470

Fig. 8. Plot shows the RMS error at each conjugate gradient iteration using ILU [Saad 2003],

LAHBF [Szeliski 2006], and over the BIC using SSOR and ILU [Hackbusch 1994]. The table

shows the number of kernels and pixels, following by the condition numbers of the linear systems

resulting from the BIC (left) and regular pixel formulations (right).

independence across edges. Thus, these function are analogous to Szeliski’s hier-
archal preconditioning basis. We solve the optimization problem in the BIC space
by substituting J with

∑

i Ki(x)Pi(x) in (4). The advantage of this formulation is
that there are far fewer kernels than pixels, resulting in linear systems that have
fewer variables and belong to different scales from the BIC space. For these reasons
we expect a well-conditioned system when solving in the BIC space. By working in
the BIC space we first reduce the model and then solve the optimization whereas
preconditioning operates on the full linear system. Thus, we inherently obtain a
small well-conditioned system and do not have to rely on the performance of a
preconditioning scheme to detect independent components. However this approach
does not prevent us from using simple preconditioners, such as symmetric succes-
sive overrelaxation (SOR) or incomplete LU (ILU) factorization [Hackbusch 1994;
Saad 2003], when solving the small linear system resulting in the BIC space.

In Figure 7 we show the results produced using the BIC space for image coloriza-
tion [Levin et al. 2004]. For this example we constructed the kernels based on the
gray-scale input image. For images with pixel values ranging between zero and one,
we set σr = 0.1 and use a sampling rate k = 4. Since we expect the image colors
to be almost piecewise constant, we use a constant normalization factor C ≡ 1 and
zero-order CPs. Our scale-adaptive coarsening produced only 158 kernels in order
to represent the Gili image (bottom example in Figure 7), which is made of 84800
pixels. The resulting small linear system converged after 7 iterations of successive
overrelaxation to a root mean squared error of 10−7. In the table given in Figure 8
we compare the condition number of the systems resulting from using standard
preconditioners and formulating the colorization in the BIC space. The plot in this
figure shows the root mean squared error progression and compares between the
BIC and Szeliski’s hierarchal preconditioning basis. The error values are computed
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against an exact solution in the original pixel-space image representation. The
initial errors of the different methods are identical since they use the same initial
guesses, a zero image.

We used LASPack [Skalicky 1995] as our iterative linear solver; however, the
matrices resulting from the BIC space formulation, including the matrices for the
examples given here, are small enough as to be solved efficiently using a direct
solver. In terms of visual accuracy, the result produced by the BIC on the Stephen
image is nearly identical to [Levin et al. 2004]. In the Gili example, this drastic
level of coarsening generates kernels that over-cluster pixels matching regions of
different color, such as at the right cheek and the yellow shirt. It should be noted
that Szeliski’s preconditioning applies to any Laplacian matrix resulting from any
image manipulation, including ones that alter the edges geometry.

Input Kernels

BICLevin et al.

2007

Fig. 9. Alpha matting. (top-left) Shows the input image including a minimal user input speci-

fying the foreground (white circles) and background (blue circles). (top-right) Shows the kernels
generated on this image and (bottom-left) shows the result by Levin et al. [2007]. (bottom-right)

Shows the resulting matte obtained by the Min-Cut algorithm applied to the BIC kernels rather

than image pixels.

Alpha Matting. Levin et al. [2006] use a functional of the form of (4) to ex-
tract alpha mattes that separate a foreground object from the background. This
quadratic cost function attributes variations in the image to the alpha channel.
Hence the alpha matte derivatives are weighted inversely to the magnitude of the
input image gradient vectors. In Levin et al. [2007] this cost function is not mini-
mized directly, but rather the alpha mattes are computed based on the few eigenvec-
tors that correspond to the lowest eigenvalues of the minimizing Laplacian matrix.
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The coefficients of these eigenvectors are made positive by rotating them within
the linear sub-space they define to obtain valid fuzzy matting components. These
components are then used to construct mattes either as building blocks for user
construction or in an unsupervised fashion. Our scale-adaptive basis functions cap-
ture smooth image regions and therefore produce low scores for the matting cost
functional. Hence our basis functions reside in the lower part of the Laplacian
spectrum of the matting Laplacian and also correspond to linear combinations of
the lowest eigenvectors.

In Figure 9 we show the results obtained using the BIC kernels to produce an
alpha matte. Given a minimal user input defining the foreground and the back-
ground, we propagate this selection using the Min-Cut algorithm of Boykov et
al. [2001]. We set the inter-kernel graph weights to 〈Ki,Kj〉

2, which measures the
overlap between the two kernels. In this comparison we see that our results less
accurately capture some of the fine details, e.g., the woman’s hair. However, our
approach is much faster than Levin et al.’s [2007] approach which computes eigen-
vectors and solves non-linear system of equation. In our approach, the BIC kernels
are computed explicitly and it takes about three seconds to compute the BIC rep-
resentation for the 200 by 200 pixel image shown in Figure 9. Additional running
times for computing the BIC representation are given at the end of this section.
The parameters we used to generate this example are k = 8, σr = 0.1 at the first
scale and σr = 0.05 for the adaptive coarsening.

Joint Bilateral Upsampling. Kopf et al. [2007] use bilateral kernels to up-
sample image operations performed at a low-resolution. While our construction
resembles this approach, it can better handle data at multiple scales. When com-
puting the scale-adaptive coarsening, we form large kernels as well as small islands,
depending on the image contents. Bilateral upsampling fails when the sampling rate
exceeds the minimum size of features in the input image. In these cases the bilateral
kernels consist of pixels that differ considerably from the pixel to be interpolated.

In Figure 10 we show this deficiency when colorizing an image that contains small
features and compare the results to the ones obtained in the BIC space. We perform
colorization using bilateral upsampling as follows. We first downsample the image
by a factor of 8 to 4096 pixels, then colorize this smaller image and finally apply the
joint bilateral upsampling to produce the result. In this figure, we also show the
result obtained by colorizing this image using the BIC formulation as we described
earlier. Our scale-adaptive kernel construction generated, on this quarter-megapixel
image, 957 kernels. In Figure 10 we see that the results generated by joint bilateral
upsampling show some prominent colorization artifacts compared to ones obtained
from the BIC. These errors occur despite the fact that the optimization problem it
used consists of four times as many variables as in the BIC.

Kopf et al.[2007] show that joint bilateral upsampling can be used for panoramic
image stitching [Agarwala et al. 2004]. By treating weights in the bilateral kernels
as votes for a labeling in the high resolution, they propagate a Min-Cut labeling
computed at a coarse resolution to the full resolution. We use the BIC kernels for
stitching in a similar way. We compute a labeling on kernels, produced with C ≡ 1,
k = 8, σr = 0.4 and σr = 0.05 at higher levels, and use their weights in the voting
mechanism. Since the labeling assigns each kernel to one of the two input images,
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Input

Low. res. sol.

Kernels BIC

Levin et al. 2004

Kopf et al. 2007

Fig. 10. Colorization using Bilateral Upsampling, Kopf et al. [2007].

we construct a single set of kernels based on the two images by changing the pixel
affinity to

S(x,y) = gs(|x − y|) · gr(|I1(x) − I1(y)|) · gr(|I2(x) − I2(y)|).

The resulting kernels are shaped by edges from both I1 and I2. We construct the
labeling graph with a node for each kernel and define the cost along the graph edges
as

C(Ki,Kj) = (〈Ki, Idif 〉 + 〈Kj , Idif 〉) · 〈Ki ⋆ g,Kj ⋆ g〉

where Idif (x) = |I1(x)−J2(x)|, g is a 2D gaussian, and 〈Ki ⋆g,Kj ⋆g〉 is a measure
of the shared boundary between two kernels. This graph has many fewer nodes
than pixels, yet the edge weights it uses take into account mismatches between the
registered images at the fine-resolution. In Figure 11 we show the results obtained
by using the BIC for image stitching.

In [Li et al. 2004] image coarsening combined with a Graph-Cut labeling is used
to provide an interactive cutout tool. While our kernels fade gradually and overlap

ACM Transactions on Computational Logic, Vol. V, No. N, July 2009.



16 · ...

Kopf et al. 2007 BIC

Fig. 11. Stitching using Min-Cut. Image taken from Kopf et al. 2007

at smooth regions, the Lazy Snapping tool results in a hard segmentation. Lazy
Snapping is inadequate for operations that require smooth transitions such as alpha
matting and image colorization.

Running Times. Constructing 4169 kernels computed at a single scale from a
512-by-512 pixel image (with k = 8) takes less than two seconds on a 3GHz Intel
Xeon Pentium machine. Constructing the linear system for gradient projection
and solving it takes another 2.7 seconds. A four level scale-adaptive construction
yielding 162 kernels takes 2.3 seconds to compute, and only half a second for the
gradient projection.

Studying the Parameters Effect. Our construction involves several parame-
ters which affect the resulting set of scale adaptive kernels. Here we demonstrate
the effects of these parameters on several examples by reporting the number of
BIC kernels our construction produces and by evaluating the effectiveness of our
representation for image colorization. In Figure 12 we see the outcomes of set-
ting σr = 0.2 and σr = 0.05 (while in both cases the colorization equations are
constructed with σr = 0.07). The figure shows that this parameter controls the
kernels separation given the dissimilarity in the grayscale image. Using σr = 0.2
produces only 206 kernels, but it is too high as there is strong color bleeding along
some of the edges, such as the edges around the silhouettes of the the pyramid and
the camel. The stricter construction, with σr = 0.05, results in 664 kernels and
produces a much better result which is comparable and even superior in certain
regions to solving the full linear system of Levin et al. [2004]. We also compare
two different values of τ , the island-construction threshold. The permissive value
τ = 0.05 produces only 274 kernels but shows some artifacts such as the blue sky
color penetrating the tip of the pyramid and the camel’s nose. At coarse enough
scales, these convex regions are not surrounded by enough kernels of a similar color,
thus allowing the sky kernels to have a significant contribution when kernels are
merged in further coarsening. The stricter value of τ = 0.3 disconnects these kernels
before reaching these coarse grid resolutions.

In Figure 13 we see the effect of choosing different values for the sampling factor
k. The value k = 6 resulted in 121 kernels, k = 7 in 96 kernels, and k = 8 in
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Input Levin et al. 2004

BIC with σ =0.05, τ=0.3 BIC with σ =0.2, τ=0.3rr

Kernels with σ =0.05, τ=0.3 Kernels with σ =0.2, τ=0.3rr

Scribbles

Kernels with σ =0.05, τ=0.05

BIC with σ =0.05, τ=0.05

r

r

Fig. 12. Varying the threshold for island kernels creation τ and the rage scale, σr.

187 kernels. These numbers of kernels are somewhat arbitrary as our construction
procedure continues until the multi-scale termination criterion is met. Note that
for the quarter megapixel image shown, these numbers correspond to less than
1% of the original number of degrees of freedom. The spatial scale parameter,
σs, determines the overlap of neighboring kernels (in smooth regions). The value
σs = 2lk allows the kernel to cover their surrounding and decay before reaching the
centers of adjacent kernels. We use this value in all our testing and it appears to
be application independent.

Limitations. The bilateral image coarsening space is not well-suited to image
processing that consists of scale separations. The kernels we produce either fully
contain the image data (when C ≡ I), or lack the fine scale detail (when C ≡ 1).
Thus our method is inappropriate for tasks such as detail enhancement and dynamic
range compression. Much like image segmentation algorithms, our scale-adaptive
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Input Levin et al. 2004Scribbles

Kernels with k=6 Kernels with k=7 Kernels with k=8

BIC with k=6 BIC with k=8BIC with k=7

Fig. 13. Varying the sampling rate k from 6 on the left to 8 on the right.

kernel construction may often over or under cluster pixels, depending on the values
chosen values for the parameters σr and τ . The choice of these parameters usually
boils down to a tradeoff between undesirable kernel bindings and the efficiency gain
by variable reduction. We intend to improve this binding strategy, as future work,
using high-order visual cues to better meet user intentions.

5. CONCLUSIONS

We presented an efficient scheme for constructing a new dimensionally-reduced im-
age space which is data-dependent. In this linear space, pixels are bound together
according to the edge contents of the image using bilateral filter kernels. We showed
that this reduced representation is useful for many gradient-based image applica-
tions where it avoids artifacts, lessens computation, and yields systems that are
better conditioned.
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Throughout the paper we gave several example applications that benefit from the
BIC representation. We believe that this image coarsening can be better tailored
to specific applications and achieve better results. For example, we would like to
find a pixel-pair affinity function that better matches the one described in Levin et
al. [2006] in order to better capture fine details in alpha matting.
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