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Abstract

Most image dehazing algorithms require, for their oper-
ation, the atmospheric light vector, A , which describes the
ambient light in the scene. Existing methods either rely on
user input or follow error-prone assumptions such as the
gray-world assumption. In this paper we present a new au-
tomatic method for recovering the atmospheric light vec-
tor in hazy scenes given a single input image. The method
first recovers the vector’s orientation, Â = A/‖A‖, by ex-
ploiting the abundance of small image patches in which the
scene transmission and surface albedo are approximately
constant. We derive a reduced formation model that de-
scribes the distribution of the pixels inside such patches as
lines in RGB space and show how these lines are used for
robustly extracting Â.

We show that the magnitude of the atmospheric light vec-
tor, ‖A‖, cannot be recovered using patches of constant
transmission. We also show that errors in its estimation re-
sults in dehazed images that suffer from brightness biases
that depend on the transmission level. This dependency im-
plies that the biases are highly-correlated with the scene
and are therefore hard to detect via local image analysis.
We address this challenging problem by exploiting a global
regularity which we observe in hazy images where the in-
tensity level of the brightest pixels is approximately inde-
pendent of their transmission value. To exploit this property
we derive an analytic expression for the dependence that a
wrong magnitude introduces and recover ‖A‖ by minimiz-
ing this particular type of dependence.

We validate the assumptions of our method through a
number of experiments as well as evaluate the expected ac-
curacy at which our procedure estimates A as function of
the transmission in the scene. Results show a more suc-
cessful recovery of the atmospheric light vector compared
to existing procedures.

1. Introduction
Haze and other types of atmospheric particles scatter

light and reduce the visibility of the scene in mid- and
long-ranged photography. Multiple events of light scatter-

true airlight wrong orientation

larger magintude smaller magnitude

Figure 1. Dehazed images obtained using the true atmospheric
light vector A, using a vector with a wrong orientation (yet the
correct magnitude ‖A‖), and using vectors with the correct orien-
tation, A/‖A‖, yet magnitudes which are too small and large.

ing in the scene introduce a layer of ambient light, known
as airlight [10]. This layer blocks the direct scene transmis-
sion and reduces the image contrast. Many image dehazing
methods rely on the following image formation model

I(x) = t(x)J(x) +
(
1− t(x)

)
A, (1)

where I(x) is the input hazy image, J(x) is the haze-free
scene radiance image and x = (x, y) denotes pixel coordi-
nates. Assuming that I(x) and J(x) are three color channel
RGB images, Eq. (1) applies to each color channel inde-
pendently. The transmission function, t(x), is assumed by
most methods to be the same in each color channel. Thus,
it corresponds to a scalar function describing the visibility
in the scene with values between zero (no visibility) and
one (clear sight). The atmospheric light color vector A is
an RGB vector that describes the intensity of the scattered
light in the scene at each color channel. The total contri-



bution of the ambient light, the airlight, is described by the
term (1− t(x))A in Eq. (1). Finally, we note that Eq. (1)
applied to radiometrically-linear images I(x).

In order to dehaze a given image I by recovering J , ac-
cording to Eq. (1), both the transmission t and the atmo-
spheric light vector A must be estimated. While significant
progress was made in estimating the transmission from a
single image [21, 2, 4], the atmospheric light vector is ei-
ther selected manually or computed using basic procedures
that follow the gray-world assumption and take the average
value of I or take its brightest pixel as the estimated A. In-
accurate estimation of A undermines the accuracy at which
the transmission is estimated as well as the accuracy of the
recovered image J . Fig. 1, shows the effects of using in-
accurate atmospheric light vector orientation, Â=A/‖A‖,
and magnitude ‖A‖, when recovering J .

In this paper we describe a new method for recovering
the atmospheric light vector A automatically from a sin-
gle input hazy image I . The new method first recovers A’s
orientation, Â, based on a simplified formation model that
describes pixels inside small image patches. This model
assumes that both the transmission and the surface albedo
functions are constant inside each patch. By finding a small
number of patches obeying this model, Â is recovered by
simple geometric operations in the RGB colorspace. In Sec-
tion 3.1 we derive the localized haze model, derive a pro-
cedure for robustly finding image patches that obey it and
explain how it is used for recovering Â.

While patches of constant transmission and albedo are
useful for recovering Â, we show that the magnitude of the
atmospheric light vector, ‖A‖, cannot be recovered from
such patches. A simple analysis shows that the use of wrong
magnitude leads to false variations in the brightness of the
output dehazed image. These multiplicative biases depend
on the transmission level of each pixel. As shown in Fig. 1,
the use of a large ‖A‖ makes the closer regions (of low
transmission) overly bright and the farther ones too dark.
The reverse effect takes place when using ‖A‖ which is
too small. While these biases are visually disturbing, they
are hard to detect by local spatial measurements since the
brightness biases are correlated with the transmission and
the latter is correlated with the image content; the transmis-
sion function t(x) is typically smooth where J(x) is, and it
is discontinuous along the edges in J(x).

In order to cope with the challenging task of recovering
‖A‖, we searched for a global image statistic that shows low
variability over ensembles of natural hazy scenes and, at the
same time, exhibits sensitivity to the dependency between
pixel brightness and transmission. The function describing
the brightest pixel as function of transmission level fits this
bill and allows estimating ‖A‖ more accurately than exist-
ing procedures, which often neglect this aspect when recov-
ering A. In Section 3.2 we derive an analytic expression

for the dependence between the pixel brightness and trans-
mission as function of the error in the estimated ‖A‖. We
then derive a procedure that minimizes this particular type
of dependence for recovering ‖A‖.

We validate the assumptions of our method through a
number of experiments as well as obtain an estimate for the
expected accuracy of this procedure as function of the low-
est transmission in the scene.

Finally, in Section 4 we report the evaluation of our
method both on synthetic images, for which the true atmo-
spheric light vector is known, as well as on real images ac-
quired under hazy conditions. The results show a greater
accuracy in the recovery of A than existing methods.

2. Previous Work
Here we briefly describe how the atmospheric light vec-

tor A is estimated by existing dehazing methods. We start
with methods that use additional scene data beyond the hazy
input image.

Tan and Oakley [20] assume the scene depth is given
at every pixel and recover A according to the image for-
mation model in Eq. (1). Given two images of a scene,
each taken under different weather conditions, Narasimhan
and Nayar [14] estimate the orientation of the atmospheric
light vector, Â, from the difference between the two im-
ages. Given two or more images, taken at different polar-
ization angles, Shwartz et al. [19] obtain scene measure-
ments that differ in the amount of haze. Given several user
selected pixels or regions that correspond to the same sur-
face color at different depths, A is recovered. In a similar
setting of polarized photography, Schechner et al. [18] es-
timate A from user-provided pixels that most resemble the
atmospheric light color, such as the sky.

The following methods estimate A from a single hazy
image. Narasimhan and Nayar [15] describe several user-
interactive algorithms for deweathering images where the
user provides a selection of pixels belonging to the same
surface color at different depths or coarse scene depth infor-
mation. Fattal [2] also describes a user-assisted approach
where the user provides several image patches that corre-
spond to different surface albedos. Given these patches,
Â is estimated by intersecting RGB planes that contain the
patches’ pixels. The success of this approach depends on
the ability to find regions in the image where both the sur-
face shading and transmission vary sufficiently.

In the context of fully-automated single-image proce-
dures, the dark-object subtraction method [1] assumes a
constant transmission in the scene, i.e., t(x) = t, and ex-
tracts the uniform layer of ambient airlight from the darkest
object in the scene. Oakly and Bu [16] also assume a con-
stant transmission and extract the layer of haze based on an
observation that in natural images the local sample mean of
the pixel intensity is proportional to its standard deviation.



Additive shifts from this law provide an estimate for the
airlight in the scene. Both approaches are limited to scenes
where the haze optical depth is constant in which case de-
hazing can be performed by only recovering the airlight
(1− t)A and without the need to explicitly recover A.

Tan [21] assumes that the brightest pixels in the image
are saturated with haze and uses them to estimate A. In the
dark-channel method [4, 24] the airlightA is estimated from
the brightest pixels which are also bright in the dark chan-
nel. Tarel and Hautière [22] first white-balance the image
according to the gray-world assumption and then dehaze the
image using a pure-white airlight vector A = [1, 1, 1].

In hazy scenes most of the surfaces are illuminated by
the ambient light created from light scattering. Hence, es-
timating A corresponds to estimating the dominant illumi-
nant in the scene. A large body of work exists on the re-
covery of the illuminant in non-hazy scenes. We mention
here a few examples. Lee [12], as well as Lehmann and
Palm [13], use specular highlights to estimate the scene il-
luminant. The color coordinates of the specular highlight
fall on the straight line connecting the illuminant color point
and the surface color point. Therefore, in scenes containing
two or more surfaces of different color the illuminant chro-
maticity is recovered by intersecting the lines. Finlayson et
al. [3] find a plausible illuminant by checking whether the
image pixels could be produced by a set of plausible light
sources. This method does not recover the brightness of the
illuminant. Finally, Zhou and Kambhamettu [25] use plastic
spheres that reflect the illumination in their highlights and
find the light sources by stereo vision.

While all these methods achieve remarkable results over
clear-sighted scenes, they are not adapted to the setting we
are focusing on. Namely, specular highlights are not likely
to appear in hazy scenes where the dominant illuminant is
an ambient light which is spread across the entire scene.
Similarly, in our work we avoid any intervention in the
scene and assume a single given input image.

3. New Method
Our method recovers the atmospheric light vector A in

two stages. At the first step we estimate its orientation,
Â = A/‖A‖, from small patches of I(x) that admit a sim-
plified form of Eq. (1). In Section 3.1 we derive this reduced
model, explain how patches obeying it are found and how
they are used for recovering Â. In the second stage we de-
scribe a global image prior which is sensitive to dependen-
cies created from the use of a wrong ‖A‖ when dehazing an
image. In Section 3.2 we describe a simple procedure for
recovering ‖A‖ by minimizing these dependencies.

3.1. Estimating the Atm. Light Orientation A/‖A‖

The visibility in light-scattering scenes depends mainly
on the distance d(x) between the camera and the surfaces

Figure 2. Pixels from two patches are shown in RGB space (brown
and purple circles). While these lines do not intersect one another,
both intersect the ray passing through the origin in the direction of
Â (dashed line). This geometric constraint provides us a canidi-
date for Â from every pair of patches found.

as well as on the amount of light scattering in the medium,
measured by the scattering coefficient β. Under these con-
siderations, the scene transmission is given by

t(x) = exp
(
−
∫ d(x)

0

β
(
rx(s)

)
ds
)
, (2)

where rx(·) parameterizes the ray projected to the x pixel
and β(·) describes the scattering coefficient in the 3D scene.
Intuitively, Eq. (2) accumulates, in a multiplicative manner,
the amount of visibility along the viewing ray of each pixel
due to light scattering.

Images of natural environments typically capture distinct
objects, each with its own limited range of depth values. In-
deed, studies of range images support a collage model that
describes the world as piecewise smooth regions, see [7].
Furthermore, the density of water droplets, dust and other
aerosols that determine β vary smoothly in the atmosphere
due to the diffusion processes that govern them [5]. Hence,
according to Eq. (2), the transmission t(x) is also expected
to be piecewise smooth. Therefore, it is likely that in many
small image patches the transmission is approximately con-
stant.

The direct scene transmission J(x) can be factored into
the product J(x) = l(x)R(x) where R is an RGB vec-
tor describing the chromaticity of the light reflected from
the surface (hence we assume ‖R‖ = 1), and l is a scalar
describing the intensity of the reflected light. While this
model applies to more general surfaces, in case of diffuse
surfaces R corresponds to the surface reflectance coeffi-
cients, or albedo, and l to the incident light projected on
the surface (up to an arbitrary factor between the two). For
simplicity we refer to R as the surface reflectance or albedo
and to l as the surface shading or brightness.

Similarly to the scene transmission, statistics of natu-
ral images suggest that RGB pixels can be viewed as a
composition of distinct objects according to the dead-leaves
model [11]. See also [8].
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Figure 3. Example patches. Left image shows several patches found to obey our reduced model. The graphs in the middle show the patch
lines visualized by their projection onto a plane perpendicular to the estimated Â. The red dot shows the intersection of the plane with Â.
At the right we see the pixels and the lines found in four patches.

Being a component of I(x), the surface albedo R inher-
its this property (arguably to a greater extent as it lacks the
shading component). Thus, similarly to the scene transmis-
sion, it is likely that the surface albedo is approximately
constant in many small patches of the image. This assump-
tion is successfully used in the context of image dehazing
in [18, 15] and [2].

Altogether, these observations motivate us to derive
the following simplified formation model for small image
patches,

I(x) = til
′(x)Ri + (1− ti)A = l(x)Ri + ciA, (3)

where ti is the transmission at pixels x ∈ Ωi of the i-th
patch Ωi and Ri is the reflectance vector in the patch. We
absorb the patch transmission into the shading function and
denote the latter by l.

We explain below how we find small image patches that
obey Eq. (3) and proceed by explaining how the atmo-
spheric light’s orientation Â is estimated once such patches
are found.

According to Eq. (3) the pixels of such patches lie on a
line in RGB space. Unlike the lines recovered in [12] and
[13] from specular highlights in non-hazy scenes, the patch
lines we recover are not expected to intersect. Nevertheless,
the line of each patch intersects the ray that passes through
the origin and whose orientation is Â, i.e., sÂ, where the
intersection occurs at l = 0 and s = ci‖A‖. Thus, by ex-
tracting the lines in two or more patches and considering
the planes containing the lines and the origin, we obtain an
estimate for Â which is given by the planes’ intersection.
This geometric scenario is illustrated in Fig. 2. Note that
this procedure cannot recover the magnitude of the atmo-
spheric light vector, ‖A‖. This follows from the fact that ci
and A appear in a product form in Eq. (3), allowing them to
exchange a non-zero multiplicative factor and its inverse.

While the minimal requirement of this procedure is two
lines, we use multiple patches to recover Â by the follow-
ing robust procedure. We intersect the planes defined by

every pair of patches found and obtain a list of candidate
orientation vectors Âj . We then compute the distances dij
between the i-th patch line and the j-th ray computed as the
Euclidean distance between the nearest points on the line
and the ray. We then select the ray with the lowest median
distance, i.e., argminj

(
mediani{dij}

)
, as the orientation

of the atmospheric light vector that we output.
The line of the i-th patch is defined the line passing

through the centroid of I(x) inside x ∈ Ωi in the direc-
tion defined by the largest principal component (PCA) of
these pixels. In order to avoid outliers, we perform the PCA
twice: we first use all the patch pixels and then recompute
it after discarding the 20% pixels in Ωi which are farthest
from the initial line estimated.

The procedure for recovering Â in [2] requires the user
to identify patches in which both the shading l(x) and the
transmission t(x) functions vary sufficiently (the albedo is
assumed constant). However, the piecewise smoothness of
the scene radiance and transmission, discussed earlier, make
it hard to find patches in which the pixels form well-defined
two-dimensional planes in RGB space. For example, when
examining natural outdoor images, between 80% and 97%
of the patches show a one-dimensional pixel distribution
(defined by λ2 < λ1/10 where λ1 ≥ λ2 are the largest
eigenvalues of the patch PCA). In contrast, our approach
requires only the shading function to vary and hence uses
more patches to estimate Â more accurately.

Finding Patches that Obey Model Eq. (3). Image
patches which are well modeled by Eq. (3) consist of pix-
els that lie on a line in RGB space, whose orientation is the
reflectance vector R. We identify such patches in I(x) by
making sure they meet a list of conditions. It is assumed
here that λ1 ≥ λ2 ≥ λ3 are the three principal eigenvalues
computed by the robust PCA we described above.

1. Positive principal component. The strongest principal
axis should correspond to the line’s orientation, i.e., the
reflected light vector R. The latter is expected to have



non-negative coordinates. Thus, we discard patches in
which the largest principal component has coordinates
with different signs.

2. Single large principal eigenvalue. In order to achieve
a reliable estimation of the patch line orientation we
favor patches with significant largest principle eigen-
value λ1. Hence, we require the patches to have
λ1>τ1 and explain below how the threshold τ1 is set.

3. Rank-one PCA matrix. Since we expect the pixels to
lie on a line, there should be a single significant prin-
cipal component. Hence, we require λ1/λ2 > τ2 and
explain below how τ2 is set.

4. Patch lines must not pass through the origin. Lines that
pass through the origin either intersect sA or describe
patches in which no airlight is present and hence are ir-
relevant to its estimation. In both cases these lines can-
not be used to define planes and are discarded. Specif-
ically, we require the Euclidian distance d between the
origin and the closest point on the patch line to obey
d>τ3 and explain below how τ3 is set.

5. Patches do not contain an edge. Eq. (3) assumes the
patch is composed of pixels with the same reflectance
and transmission values. According to the discussion
above, both these functions are expected to be piece-
wise smooth. Therefore we must avoid considering
patches that contain strong discontinuities. We use a
Canny edge-detector and skip patches containing edge
pixels.

We run this search over the entire image and use small
windows of 10-by-10 pixels as candidate patches. We initi-
ate each of the thresholds τ1, τ2 and τ3 such that 50 patches
exceed it (by sorting the patches according to each condition
independently). We then check how many patches exceed
all three thresholds and if this does not yield 10 patches
we reduce each threshold by 3% in turn until this number
of patches are found. In order to avoid patches with very
similar lines, once a patch is accepted we exclude from this
search all the patches whose lines form less than 15 degrees
with the orientation of the accepted line.

Ultimately, the patches that pass all thresholds are used
for estimating Â as explained above. Fig. 3 shows the
patches found by this procedure and the estimated orien-
tation of the atmospheric light vector.

3.2. Estimating the Atm. Light Magnitude ‖A‖

As we saw above, the magnitude of the atmospheric light
vector cannot be recovered using the patch model in Eq. (3)
since A is defined up to a non-zero multiplicative scalar.
This is not the case in the global image formation model,
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Figure 4. Graphs show the expected bias in pixel brightness, σ,
as function of the transmission level, t, when dehazing an image
using aA.

Eq. (1), and as shown in Fig. 1, ‖A‖ is a meaningful quan-
tity with a major impact over the resulting dehazed image.
Let us proceed by investigating the effect of multiplying the
correct A by a factor a > 0 in Eq. (1). By keeping J(x)
decomposed to the shading-albedo product, we obtain the
following equation

I(x) = ta(x)la(x)Ra(x) +
(
1− ta(x)

)
aA, (4)

where ta, la and Ra correspond to the transmission, shad-
ing and albedo functions obtained for every value of a re-
spectively. Eq. (4) does not have a unique solution, how-
ever there is one property that successful image dehazing
should achieve and that can guide our analysis. Namely,
the airlight component

(
1−ta(x)

)
aA should match the true

airlight
(
1− t(x)

)
A, even when a 6= 1. For example, this

is the solution which will be obtained in [2] at regions of
constant albedo and independent variation in t(x) and l(x)
for the following reason. In order to fully satisfy Eq. (4)
(as most methods do) the recovered R and A must span
the correct two-dimensional subspace. Hence, any devia-
tion from the correct airlight,

(
1−t(x)

)
A, must be balanced

by the coefficients l(x) and t(x) which will become depen-
dent. This solution cannot be reached by [2] which imposes
no-correlation between the two variables. Another example
is the method in [4] which also recovers the airlight term
at regions where the dark-channel prior is met (despite not
knowing ‖A‖).

Assuming this is indeed the case, the use of a wrong
magnitude (a 6= 1) leads to the following transformed trans-
mission estimate(
1−ta(x)

)
aA=

(
1−t(x)

)
A ⇒ ta(x) =

(
t(x)−1

)
/a+1.

(5)
Equating the airlight terms means that the direct transmis-
sion terms must also balance, i.e., ta(x)la(x)Ra(x) =
t(x)l(x)R(x). The latter implies that Ra(x) = R(x) since
these are the only terms defining the linear subspace in



0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

s
0 0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

l (s)

s

*l (s)
_
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32 images.

which the balance holds (recall that ‖R‖= ‖Ra‖= 1). As
a consequence we get the following transformation in the
shading function

la(x) = σa
(
t(x)

)
l(x), where σa(t) =

ta

t+a−1
. (6)

Thus, the use of aA results in the dehazed image Ja(x) =
la(x)R(x) = σa(t(x))l(x)R(x) that differs from J(x) =
l(x)R(x) by a scalar factor σa(t(x)), i.e., in its brightness.
Moreover, this bias depends on the transmission level t(x)
at each pixel. As shown in Fig. 4, an underestimated mag-
nitude, a<1, causes the output image to become brighter at
regions of low transmission (yet t>1−a, otherwise σa<0),
and an overestimated magnitude, a > 1, makes the low-
transmission pixels appear darker. Please note that these
expected results are confirmed with the experiment shown
in Fig. 1.

These biases in the image brightness are hard to detect
locally since they depend on the transmission and the latter
correlates with the content of J(x); pixels of distinct ob-
jects typically correspond the same surface color and depth
range and hence transmission values and, on the other hand,
boundaries between objects correspond to edges in J and
discontinuities in t due to jumps in depth. In order to cope
with this difficulty, we introduce a new regularity that we
observe in natural hazy images. Consider the following
function that outputs the top 1% brightness value found at
each transmission level s

l∗(s) =percentile{l(x) | t(x) = s}. (7)

In Fig. 5 we plot the average and standard-deviation of l∗(s)
at each transmission value. These statistics where gath-
ered from an ensemble of 32 images in which the trans-
mission is known1. For reference we also plot the average

1Due to the lack of such ground-truth data (hazy images I and their
A), we conducted this test on natural outdoor scenes in which the disparity
d(x) is known (computed from stereo image pairs using [6]). The trans-
mission used for this purpose was computed by t(x) = e−βd(x) with β
set such that the most distant object receives t = 0.01. We also normalized
the overall brightness of each image such that the average of l∗(s) will be
the same for all the images. The same was done for l̄(s).
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Figure 6. Graphs show the upper (blue) and lower (red) bounds
within which we expect to estimate a assuming variablilty bounds
of ±10% in l∗(s) = k for an image containing the lowest trans-
mission level t (horizonal axis of this plot). The expected accuracy
is approximately the difference between these graphs. In this case
a=1 is the correct solution.

and standard-deviation of the brightness at each transmis-
sion value, l̄(s) = average{l(x)|t(x) = s}.

The graphs indicate that l̄(s) exhibits a greater depen-
dence on the transmission level s than l∗(s) and the lower
standard-deviation of the latter implies that its invariance is
more consistent across the different images. We attribute
this experimental result to the presence of large objects in
the image which occupy a narrow range of transmission val-
ues (or depths) and bias the corresponding transmission bins
of l̄(s). The extremal events that determine l∗(s) are equally
affected by all the objects in a particular transmission range,
regardless of their size.

In practice we compute the percentile statistics from the
image which we dehazed with a wrong ‖A‖, i.e., Ja(x).
This provides us with

l∗a(s) =percentile{la(x) | ta(x) = s}, (8)

since we do not know the correct pixel transmission level
t(x), but recover ta(x). However, according to Eq. (5)
and Eq. (6), l∗a and l∗ are related by

l∗a
(
(s− 1)/a+ 1

)
= σa(s)l∗(s). (9)

While the relations also hold in case of the average statis-
tic l̄(s), given l∗(s)’s higher consistency and invariance to s
we use the latter for recovering σa(s) through what we call
max-brightness transmission invariance image prior that as-
sumes l∗(s) = k for some constant k. Thus, according
to Eq. (8), we attribute variations of the form of σa(s) in
the observed l∗a to errors in the estimated magnitude of the
atmospheric light vector.

Thus, we recover a by the following procedure. We de-
haze the image I(x) by some dehazing method using the
atmospheric light vector Â computed at the first stage of
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our method. Since Â is a unit vector, ‖Â‖ = 1, it is likely
that a 6= 1. We then compute l∗a from the resulting image
and estimate a by ã obtained by solving

min
ã,k

∑
s

(
l∗a
(
(s− 1)/ã+ 1

)
− σã(s)k

)2
. (10)

Finally, we take Â/ã as our output atmospheric light vec-
tor magnitude. In order to avoid the excessively-large (and
small) values seen in Fig. 4 for the cases of a < 1, we in-
crease the norm of Â, which we use when computing l∗a
in Eq. (10), by steps of 0.2 until no negative values are
found (and hence no excessively large values as well). We
solve Eq. (10) using Matlab’s fminsearch starting from the
initial guess ã=1 and k=1.

Accuracy. Despite the relatively low variability seen in
Fig. 5, individual images can exhibit a considerable depen-
dence between l and t. In such cases our max-brightness
transmission invariance will not be valid and will lead to a
wrong estimation of ‖A‖—one that will lower the depen-
dence of l on t. Thus, for example, if low-transmission (far)
regions of the scene should be brighter than the rest of the
scene, the use of our A will lower the intensity of these
regions. In other words, the error we produce in the esti-
mation of ‖A‖ tends to compress the intensity levels in the
image. As demonstrated in Fig. 1, this dynamic-range com-
pression of the image may be preferable over the opposite
scenario. We shall see more such examples in Section 4.

Finally, in order to assess the expected accuracy of the
estimated magnitude ‖A‖, under the assumption of ±10%
variability in l∗(s), we compute the maximal and minimal
values of a(t) that can be obtained within the observed the
envelope of l∗(s) shown in Fig. 5. However, since the ef-
fect of a wrong ‖A‖ leads to larger biases in pixels of low
transmission values, as seen in Fig. (4), this analysis greatly
depends on the minimal t value found in an image. There-
fore, we compute the maximal and minimal a(t) allowed
by solving Eq. (6) for σa(t) = 0.9 and σa(t) = 1.1 respec-
tively for every value of t. As shown in Fig. 6, the accuracy
of a increases as t decreases, and in case of of an image con-
taining pixels with at most t = 0.5, we expect an accuracy
of about ±10% in ‖A‖.

4. Results
We conducted two types of experiments in order to eval-

uate the accuracy of our method: we applied it on images
with known ground-truth A and on real-world hazy images
which serve as benchmark for dehazing. As our method
does not require any user input, we applied the automatic
procedures described in [21, 4] and [22] for comparison. As
part of this evaluation we used the A estimated by the dif-
ferent method to dehaze images and used the method of [4]
for this purpose. Please note however that the goal of this
paper is the recovery of A and not the image dehazing (i.e.,
transmission estimation) hence the results should be judged



Orientation Magnitude l∞ Endpoint Error
He Tan Tarel Our He Tan Tarel Our He Tan Tarel Our

Mansion
6.092 6.419 5.344 0.148 0.433 0.458 0.696 0.196 0.304 0.325 0.427 0.131
4.059 4.397 2.180 0.083 0.079 0.105 0.082 0.068 0.127 0.149 0.088 0.043
3.134 2.831 3.145 0.193 0.318 0.344 0.592 0.115 0.224 0.235 0.380 0.068

Church
3.647 6.073 3.490 0.028 0.147 0.208 0.292 0.094 0.149 0.232 0.220 0.060
5.862 7.402 5.228 0.142 0.352 0.476 0.628 0.111 0.250 0.357 0.396 0.077
2.051 2.472 1.389 0.182 0.204 0.266 0.393 0.194 0.144 0.187 0.237 0.120

Bikes
1.071 1.212 0.899 0.102 0.113 0.212 0.513 0.116 0.080 0.133 0.299 0.072
2.177 2.642 2.308 0.129 0.100 0.202 0.484 0.156 0.091 0.153 0.295 0.098
3.246 4.536 3.642 0.114 0.085 0.239 0.548 0.181 0.094 0.193 0.329 0.117

Dolls
1.295 2.318 1.010 0.229 0.217 0.287 0.663 0.382 0.139 0.196 0.389 0.233
3.318 3.745 2.561 0.283 0.037 0.101 0.127 0.011 0.073 0.101 0.116 0.009
3.912 3.289 4.941 0.729 0.210 0.276 0.615 0.191 0.176 0.197 0.421 0.124

Moebius
4.231 4.231 2.221 0.443 0.141 0.141 0.390 0.131 0.150 0.150 0.236 0.080
3.316 3.316 8.486 0.288 0.031 0.031 0.230 0.082 0.087 0.087 0.306 0.057
3.139 3.139 3.847 0.932 0.071 0.071 0.295 0.003 0.100 0.100 0.221 0.019

Reindeer
0.536 1.454 0.752 0.041 0.079 0.004 0.029 0.049 0.057 0.028 0.027 0.032
0.470 2.587 0.689 0.156 0.010 0.163 0.306 0.103 0.013 0.132 0.191 0.066
0.825 1.023 1.055 0.045 0.039 0.089 0.311 0.000 0.039 0.072 0.190 0.001

Trees
2.858 2.099 3.615 0.785 0.027 0.055 0.291 0.066 0.071 0.066 0.224 0.049
3.884 2.241 3.475 0.220 0.034 0.063 0.330 0.043 0.086 0.065 0.232 0.027
4.231 4.644 4.215 1.060 0.091 0.080 0.095 0.051 0.148 0.148 0.148 0.043

Village
3.915 4.629 3.708 0.142 0.228 0.271 0.440 0.351 0.183 0.220 0.286 0.231
1.747 2.028 1.879 0.519 0.243 0.291 0.531 0.281 0.168 0.201 0.336 0.179
3.726 3.538 4.184 3.549 0.360 0.444 0.818 0.399 0.243 0.281 0.510 0.258

Roofs
5.092 5.056 4.790 3.239 0.151 0.154 0.163 0.126 0.173 0.178 0.170 0.115
4.521 4.709 4.377 0.783 0.384 0.387 0.582 0.245 0.285 0.291 0.390 0.156
4.545 4.535 4.405 1.129 0.458 0.461 0.677 0.507 0.314 0.314 0.437 0.318

Mean 3.218 3.576 3.253 0.581 0.172 0.218 0.412 0.158 0.147 0.178 0.278 0.103
Median 3.318 3.316 3.490 0.220 0.141 0.208 0.393 0.116 0.144 0.178 0.286 0.077

Table 1. Estimation error of Â (left four columns), the magnitude ‖A‖ (middle four rows), and the endpoint error ofA (eight columns on the
right). Every test contains four columns reporting the error produced by the methods of He et al. [4] (labeled He), Tan [21] (labeled Tan),
Tarel [22] (labeled Tarel) and our method. In each cell we report the results obtained on the same image using three different A vectors
which were sampled randomly. The lowest error obtained in each category is emphasized in boldface.
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Figure 8. Comparison over natural images. The images shown were dehazed using the atmospheric light vectors estimated by the methods
of He et al. [4] (labeled He), Tan [21] (labeled Tan), Tarel [22] (labeled Tarel), and our method.

also by the authenticity of the colors in the recovered scene
and the plausibility of its brightness.

Our Matlab implantation takes around 10 seconds to re-
cover the orientation of the atmospheric light vector from a

640-by-480 pixels image. The magnitude requires another
3 seconds and the time to compute t(x) using the dark-
channel method [4]. Recent implementation of this method
requires a fraction of a second to process a one-megapixel



image.
Before we go into the details of the evaluation let us note

that at the supplemental material, accompanying the paper,
we provide additional results and comparisons. The code
and all the data used and created in the evaluation will be
available online once the paper is published.

Evaluation over images with known A. Databases of
images I(x) and their ground-truth A are unfortunately
unavailable to us and acquiring such data is quite chal-
lenging. As an alternative to the use of purely computer-
generated low-resolution dataset, used in [23], we simu-
lated hazy images from pairs of hazy-free RGB images,
which we consider as J(x), and their corresponding dis-
parity maps d(x). Assuming a constant scattering coeffi-
cient β in space, we computed a spatially-varying trans-
mission maps by t(x) = e−βd(x) and set β such that the
most distant object in the scene receives t= 0.1. We gath-
ered 9 pairs of images and disparity maps from three differ-
ent sources: the high resolution scene reconstruction from
lightfields of [9], the Middlebury database [17], as well as
by collecting high-resolution stereo image pairs and recov-
ering the disparities using [6]. Each of these pairs was used
to produce three hazy images according to Eq. (3) using
three randomly-sampled atmospheric light vectors. The ori-
entation of these vectors is sampled uniformly from the 10◦

cone around [1, 1, 1], and their magnitude is sampled uni-
formly from the interval [0.8, 1.8].

Table 1 reports the errors produced by the different meth-
ods when estimating Â (in absolute angles), ‖A‖ (absolute
value) andA (endpoint l∞ norm). The data shows a consid-
erable improvement by our method in estimating Â, where
the average error is about fifth of the error produced by
the competing method’. The low median error indicates a
high success rate. The accuracy improvement in estimat-
ing ‖A‖ is less dramatic where the average error is lower
than the competitors’ and this improvement is somewhat
higher for the median error. In less than 30% of the images
the method of He et al. achieves a more accurate estima-
tion of ‖A‖. Finally, our method achieves the most accu-
rate estimates of A(in l∞ norm) in two thirds of the images
which boils down to a %30 reduction on average next to the
method of He et al. and almost %50 reduction in the median
error.

Fig. 7 shows the results obtained on two images partici-
pating in this test. Wrong estimations of ‖A‖ are identified
by the blue and purple color-shifts. In these examples, it ap-
pears that errors in A also lead to lower haze removal, i.e.,
over estimations of the transmission. Additional examples
from this test set are available at the supplemental material.

Evaluation over real-world hazy images. In the second
experiment we applied and compared our method on a set of
real images acquired under hazy conditions. In this experi-
ment there is no firm ground-truth criterion and the results

should be judged by the authenticity of the colors in the
scene and the plausibility of its brightness. Fig. 8 shows the
resulting dehazed images produced by the different methods
on two benchmark images. In case of the Highway Image
our method achieves a more accurate Â which makes the
distant building appear more neutral. However, it also ap-
pears as if it underestimated ‖A‖ and therefore this distance
regions appears brighter. As we mentioned in Section 3.2,
the type of error produced by our in ‖A‖ tends to compress
the dynamic range of the image. For some applications this
outcome can be beneficial as it tends to emphasize the de-
tails of the scene and increase its visibility. In case of the
Aerial Image the green fields appear more uniform in our
result, suggesting a more accurate ‖A‖.

Failure cases. Fig. 9 shows several cases in which our
method fails. The Wheat Image contains a single surface
albedo and hence our method cannot obtain enough con-
straints over Â. The New York Image is rich in detail and
its resolution does not provide us with a sufficient of num-
ber of mono-albedo patches. In case of Village 1 and Roofs
3 our method produces relatively high l∞ (beyond 0.3, see
Table 1). This error, again, leads to a more dynamically-
compressed output compared to the ground-truth solution.

5. Conclusions
We presented an automatic method to recover the at-

mospheric light vector given a single hazy image. The
method recovers the vector’s orientation based on a simpli-
fied model that describes simple geometric configurations
of pixels inside small mono-albedo patches. We described
a robust procedure for finding patches that obey this model
as well as explained how they are used for recovering the
atmospheric light’s orientation.

We showed how errors in the magnitude of the atmo-
spheric light leads to biases in the pixels’ brightness which
depend on the transmission level. We explained the diffi-
culties this dependency creates when trying to detect these
biases via localized analysis. To overcome this issue, we
introduced a global image regularity, the max-brightness
transmission invariance, which is sensitive to dependence
between the pixel brightness and the transmission. We de-
scribed a simple procedure for estimating magnitude of the
atmospheric light using this new image prior. Our study
is accompanied with a statistical analysis of the regularity
which estimates its consistency and the expected accuracy
at which ‖A‖ can be estimated given the amount of trans-
mission in the scene.

Limitations. While we presented many evidences for
the accuracy improvement our method achieves, there are
many cases in which its underlining assumptions do not
hold. As we showed in the previous section, the lack of
sufficient patches obeying our simplifies model, in Eq. (3),
prevents us from obtaining an estimate for Â. Moreover,
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Figure 9. Failure cases of our method. Wrong Â in the Wheat and New York images leads to severe color-shifts. In both the Village and
Roofs images, ‖A‖ is inaccurate and leads to a more dynamically-compressed dehazed image.

in images where l∗(s) varies significantly, the accuracy at
which we estimate ‖A‖ is compromised. We expect that
both these scenarios become less likely as the image reso-
lution increases.
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