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Abstract

We estimate illuminant chromaticity from temporal se-
quences, for scenes illuminated by either one or two dom-
inant illuminants. While there are many methods for illu-
minant estimation from a single image, few works so far
have focused on videos, and even fewer on multiple light
sources. Our aim is to leverage information provided by the
temporal acquisition, where either the objects or the cam-
era or the light source are/is in motion in order to estimate
illuminant color without the need for user interaction or us-
ing strong assumptions and heuristics. We introduce a sim-
ple physically-based formulation based on the assumption
that the incident light chromaticity is constant over a short
space-time domain. We show that a deterministic approach
is not sufficient for accurate and robust estimation: how-
ever, a probabilistic formulation makes it possible to implic-
itly integrate away hidden factors that have been ignored by
the physical model. Experimental results are reported on
a dataset of natural video sequences and on the GrayBall
benchmark, indicating that we compare favorably with the
state-of-the-art.

1. Introduction

Although a human observer is typically able to discount
the color of the incident illumination when interpreting col-
ors of objects in the scene (a phenomenon known as color
constancy), the same surface may appear very different in
images captured under illuminants with different colors.

Estimating the colors of illuminants in a scene is thus an
important task in computer vision and computational pho-
tography, making it possible to white-balance an image or
a video sequence, or to apply post-exposure relighting ef-
fects. However, most existing color constancy and white
balance methods assume that the illumination in the scene
is dominated by a single illuminant color.

In practice, a scene is often illuminated by two different
illuminants. For example, in an outdoor scene the illumi-
nant color in the sunlit areas differs significantly from the
the illuminant color in the shade, a difference that becomes
more apparent towards sunset. Similarly, indoor scenes of-

Figure 1. Left: First frame of a sequence recorded under two
light sources and corresponding illuminant colors (ESTimated and
Ground Truth). Middle: Locally estimated incident light color
{Γs}. Right: Light mixture coefficients {αs} (see Section 4).

ten feature a mixture of artificial and natural light. Hsu et
al. [7] propose a method for recovering the linear mixture
coefficients at each pixel of an image, but rely on the user to
provide their method with the colors of the two illuminants.

By using multiple images, we can formulate the problem
of illuminant estimation in a well-constrained form, thus
avoiding the need of any prior or additional information
provided by a user, as most previous work do.

The main contribution of this work is two-fold:

1. We introduce a new physically-based approach to es-
timate illuminant chromaticity from a temporal se-
quence; we show experimentally that the distribution
of the incident light at edge-points, where speculari-
ties may be often encountered, can be modeled by a
Laplace distribution; this enables one to estimate the
global illuminant color robustly and accurately using
the MAP estimation framework.

2. We show that our approach can be extended to scenes
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lit by a spatially varying mixture of two different illu-
minants. Hence, we propose an efficient framework
for estimating the chromaticity vectors of both illu-
minants, as well as recovering their relative mixture
across the scene.

Our framework can be applied to natural images sequences,
indoor or outdoor, as long as specularities are present in the
scene. We validate our illuminant estimation approach on
existing as well as new datasets and demonstrate the ability
to white-balance and relight such images.

The rest of the paper is organized as follows: after a short
review of the state-of-the-art in color constancy, we describe
a new method for estimating the illuminant color from a nat-
ural video sequence, as long as some surfaces in the scene
have a specular reflectance component (Section 3). We then
extend this method for the completely automatic estimation
of two illuminant colors from a sequence, along with the
corresponding mixture coefficients, without requiring any
additional input (Section 4). We present results in Section 5,
including a comparison with the state-of-the art that shows
our approach is competitive.

2. Related work

Color constancy has been extensively studied and we re-
fer the reader to a recent survey [5] for a relatively complete
review of the state-of-the-art in this area. In this section
we briefly review the most relevant methods to our work,
namely those based of the dichromatic model [15, 17, 20],
and methods concerned with multi-illuminant estimation [7,
6]. Note that none of these approaches focus on video or
temporal sequences: to our knowledge, the only work deal-
ing with illuminant estimation in videos is based on averag-
ing results from existing frame-wise methods [14, 19].

Physically-based modeling. Shafer [15] introduced the
physically-based dichromatic reflection model, which de-
composes the observed radiance into diffuse and specu-
lar components. This model has been used by a num-
ber of researchers to estimate illuminant color [10, 9, 3].
More recently, Tan et al. [17] defined an inverse intensity-
chromaticity space, exploiting the different characteristics
of diffuse and specular pixels in this space to estimate the
illuminant’s RGB components. Yang et al. [20] operate on a
pair of images, simultaneously estimating illuminant chro-
maticity, correspondences between pairs of point, and spec-
ularities. While all of these approaches are based on the
physics of reflection, most of them encountered limited suc-
cess outside laboratory experiments (i.e., on complex im-
ages in uncontrolled environment and lighting).

The closest work to our single illuminant estimation
method (described in Section 3) is that of Yang et al. [20],

which is based on a heuristic that votes for discretized val-
ues of the illuminant chromaticity Γ. In contrast to [20],
starting from the same equations, we formulate the problem
of illuminant estimation in a probabilistic manner to implic-
itly integrate hidden factors that have been ignored by the
underlying physical model. This results in a different, sim-
ple yet robust approach, making it possible to reliably esti-
mate the global illuminant chromaticity from natural image
sequences acquired under uncontrolled settings.

Multi-illuminant estimation. The need for multi-
illuminant estimation arises when different regions of a
scene captured by a camera are illuminated by different
light sources [16, 7, 2, 8, 6]. Among these, the most closely
related to our work is the one of Gisenji et al. [6], who
propose estimating the incident light chromaticity locally
in patches around points of interest, before estimating
the two global color illuminants. This method is mainly
practical but not theoretically justified. Conversely, our
approach, which is also based on a local-to-global frame-
work, is mathematically justified and based on inverting
the compositing equation of the illuminant colors. Also
related is the work of Hsu et al. [7], who address a different
but related problem: performing white balance in scenes
lit by two differently colored illuminants. However, this
work operates on a single image assuming that the two
global illuminant chromaticities are known and focuses on
recovering their mixture across the image. In contrast, the
method we describe in Section 4 operates on a temporal
sequence of images, automatically recovering both the
illuminant chromaticities and the illuminant mixtures.

3. Single illuminant chromaticity estimation
3.1. The dichromatic reflection model

The dichromatic model for dielectric materials (such as
plastic, acrylics, hair, etc.) expresses the light reflected from
an object as a linear combination of diffuse (body) and spec-
ular (interface) components [15]. The diffuse component
has the same radiance when viewed from any angle, follow-
ing Lambert’s law, while the specular component captures
the directional reflection of the incident light hitting the ob-
ject’s surface. After tristimulus integration, the color I at
each pixel p may be expressed as:

I(p) = D(p) +m(p) L, (1)

where D = (Dr, Dg, Db) is the diffusely reflected compo-
nent and L = (Lr, Lg, Lb) denotes the global illuminant
color vector, multiplied by a scalar weight function m(p),
which depends on the spatial position and local geometry of
the scene point visible at pixel p. The specular component
m(p) L has the same spectral distribution as the incident
light [15, 10, 3]. In this section we assume that the spectral



distribution of the illuminant is identical everywhere in the
scene, making L independent of the spatial location p.

3.2. Illuminant chromaticity from a sequence

Extending the model in eq. (1) to a temporal sequence of
images, assuming that that the illuminant color L does not
change with time, gives:

I(p, t) = D(p, t) +m(p, t) L. (2)

Consider a 3D point P projected to p at time t, and to
p + ∆p at time t+∆t. If the incident illumination at P has
not changed, the diffuse component reflected at that point
also remains the same:

D(p, t) = D(p + ∆p, t+ ∆t). (3)

Thus, the illuminant color L = (Lr, Lg, Lb) can be
derived from equations (2) and (3). For each component
c ∈ {r, g, b}, we have:

Ic(p + ∆p,t+ ∆t)− Ic(p, t) (4)

=
(
m(p + ∆p, t+ ∆t)−m(p, t)

)
Lc,

since the diffuse component in the right-hand side cancels
out due to property (3). Denoting the left hand side of eq. (4)
by ∆Ic(p, t), and normalizing both sides of the equation,
we obtain (whenever ||∆I(p, t)|| 6= 0):

∆Ic(p, t)

||∆I(p, t)||1
=

Lc

||L||1
= Γc, (5)

where ||Y||1 =
∑

c∈{r,g,b} Yc.1

Hence Γ = (Γr,Γg,Γb) is the global incident light chro-
maticity vector, simply obtained by differentiating (and nor-
malizing) the RGB irradiance components of any point p
with a specular component, tracked between two consecu-
tive frames t and t+∆t. Note that this formulation assumes
that the displacement ∆p is known : ∆I(p, t) is the differ-
ence between image I at t+∆t and the wrapped image at t.

So far we implicitly assumed that: (1) a change in the
specular reflection occurs at p from time t to time t + ∆t;
and (2) the displacement ∆p is estimated accurately. These
two factors suggest that reliable sets of points to evalu-
ate eq. (5) accurately are edge-points extracted from each
frame. The rational behind this is that flow/displacement
estimation is usually robust at edges (because edges are
discontinuities that are preserved/invariant over time, un-
less occlusion or shadows appear). More importantly, edge
points delineate local discontinuities or object’s surface
boundaries (with large local curvature) and specularities are
likely to be observed at these points. The counter argument

1By abuse of notation we use || · ||, even though it can take negative
values, and thus is not a norm, strictly speaking.

Figure 2. Top: two successive frames of a video sequence; Bottom:
empirical distributions P (xc) for the Red, Green and Blue chan-
nels and approximations by a Laplace distribution (yellow curve).

to this choice might be that pixel values at edges often con-
tain a mixture of light coming from two different objects;
experimentally, we found that this is not a limiting factor.
In Section 5, we experimentally compare a number of dif-
ferent point choice strategies and their impact on the results.

3.3. Robust probabilistic estimation

Yang et al. [20] already proposed estimating illuminant
chromaticity from a pair of images using eq. (5), demon-
strating their method on certain, suitably constrained image
pairs. In this section, we propose an alternative probabilistic
estimation approach, which is simpler, yet robust enough to
reliably estimate Γ from natural image sequences.

Equation (5) is based on Shafer’s physically-based
dichromatic model [15, 10]. It does not, however, take into
account several factors which also might affect the observed
scene irradiance in a noticeable way: (i) the effect of the in-
cident light direction is neglected; (ii) local inter-reflections
are not taken into account; they can, however, account for a
significant amount of light incident to a given object [13]; as
a result, the assumption of a single and uniform global illu-
minant might not be completely valid everywhere; (iii) the
statistical nature of the image capture process (e.g., camera
noise) is ignored.

We therefore cast the problem of illuminant chromaticity
recovery in a probabilistic framework, where Γ is obtained
using Maximum-a-Posteriori estimation:

Γ̂ = arg max
Γ

P (Γ|x) (6)

where x = {(xr(p), xg(p), xb(p))} is an observation vec-
tor consisting of all the pixels p of a temporal image se-
quence. Applying Bayes’ rule, we express:

P (Γ|x) ∝ P (x|Γ)P (Γ), (7)



and reasonably assuming that all illuminants are equiprob-
able (P (Γ) = const), we rewrite the right-hand side:

P (Γ|x) ∝ P (x|Γ) (8)

∝
∏

c∈{r,g,b}

P (xc|Γ) =
∏

c∈{r,g,b}

P (xc|Γc).

Above we made the additional assumption that the observed
channels xc are mutually independent, and depend only on
the corresponding illuminant channel Γc.

More specifically, we define the observed features as
xc(p) = ∆Ic(p,t)

||∆I(p,t)|| (the left-hand side of eq. (5)), where the
image points p are a set of edge points extracted from the
image sequence. We estimate the likelihood P (xc|Γc) from
its empirical distribution: we discretize xc in n bins ranging
from ε to 1 (i.e., the set of values that the chromaticities can
take), and compute the histogram of xc. Figure 2 (bottom)
illustrates the empirical distributions for the three channels
xc computed from the video frames (top).

We experimented with estimating Eq. (6) in two differ-
ent ways: (i) in a purely empirical fashion, by setting Γ̂c

to the histogram mode for each channel xc; (ii) by observ-
ing experimentally that the histograms follow a multivariate
Laplace distribution, whose maximum likelihood estimator
is the median of the samples, we set Γ̂c to the median value
of xc, for each channel c independently. Finally, the esti-
mated chromaticity vector is normalized so that

∑
c Γ̂c = 1.

The latter approach proved to be more robust in practice.

4. Two light sources

Until now we assumed a single illuminant whose color is
constant across the image. In this section we extend our ap-
proach to the common scenario where the illuminant color
at each point may be modeled as a spatially varying mixture
of two dominant chromaticities. Examples include: illumi-
nation by a mixture of sunlight and skylight, or a mixture of
artificial illumination and natural daylight.

Our approach is partly motivated by the work of Hsu et
al. [7] who proposed a method for recovering the mixture
coefficients from a single image, when the two global il-
luminant chromaticities are known. In contrast to their ap-
proach, we use a temporal sequence (with as few as 2-3
images) but recover both the two chromaticities and their
spatially varying mixture.

We assume that the mixture is constant across small
space-time patches, and consequently the combined illumi-
nant chromaticity is also constant across each patch. We
further restrict ourselves to cases where the change in the
view/acquisition angle between the first and the last frame
is kept relatively small.

We begin by independently estimating the combined illu-
minant chromaticity over a set of small overlapping patches,

using the method described in the previous section sepa-
rately for each patch. Since some of the patches might
not contain enough edge points with specularities, making
it impossible to obtain an estimate of the illuminant there,
we use linear interpolation from neighboring patches to fill
such holes. We then use the resulting combined illuminant
chromaticity map to estimate the spatially varying mixture
coefficients and the two illuminant chromaticities, as de-
scribed in the remainder of this section.

4.1. Problem statement and solution

Assuming the chromaticities of the two global illumi-
nants in the scene are given by the (unknown) normalized
vectors Γ1 and Γ2, we replace the incident global illumi-
nation vector L in eq. (2) at point (p, t) with a spatially
varying one:

L(p, t) = k1(p, t) Γ1 + k2(p, t) Γ2, (9)

where k1 and k2 are the non-negative intensity coefficients
of Γ1 and Γ2. Assuming that the incident light L(p, t) is
roughly constant across small space-time patches, we write:

Ls = ks1 Γ1 + ks2 Γ2 (10)

for each small space-time patch s. Normalizing both sides
and making use of the fact that Γ1 and Γ2 are normalized,
we express the local combined incident light chromaticity
as a convex combination:

Γs
c =

Ls
c

||Ls||1
=

ks1Γ1,c + ks2Γ2,c

||ks1 Γ1 + ks2 Γ2||1
= αs Γ1,c + (1− αs) Γ2,c, (11)

where αs =
ks
1

ks
1+ks

2
, for c ∈ {r, g, b}. This equation resem-

bles the compositing equation in natural image matting; a
similar observation was made by Hsu et al. [7]. However,
unlike natural image matting where the composited colors
as well as α vary across the image (underconstrained prob-
lem), in our case the composited vectors Γ1 and Γ2 are as-
sumed constant. This enables a more direct solution once
the left-hand side (Γs) has been estimated.

Manipulating eq. (11) we derive a linear relationship be-
tween αs and each channel of Γs:

Γs
c = αs(Γ1,c − Γ2,c) + Γ2,c

αs =
Γs
c − Γ2,c

Γ1,c − Γ2,c

αs = acΓ
s
c − bc (12)

where ac = 1
Γ1,c−Γ2,c

and bc =
Γ2,c

Γ1,c−Γ2,c
when Γ1,c 6= Γ2,c

and a = {ac}. To recover the mixture coefficients αs we
minimize the following quadratic cost function:∑

s,c

(αs − acΓs
c + bc)

2
+ ε||a||2 (13)



Figure 3. Video dataset recorded under normal lighting conditions
using a single illuminant: the first frames of six of the sequences.

by solving for the smallest eigenvector of the associated
symmetric homogeneous linear system [11]. The vector of
αs values is then obtained by shifting and scaling the result-
ing eigenvector’s entries to [0, 1] (assuming that each of the
illuminants is exclusive in at least one patch in the image).

Having obtained the mixing coefficients αs, we recover
Γ1 and Γ2 by solving equation (11) using least squares min-
imization.

5. Experimental evaluation
5.1. Implementation details

Our method is implemented in Matlab (code is available
online). We used some off-the-shelf functions with the fol-
lowing settings:

• Illuminant chromaticity estimation is performed in lin-
ear RGB, assuming gamma of 2.2.

• Edge detection is performed using the standard Canny
operator in Matlab with the default threshold of 0. For
the estimation we only use edge points p for which
|
∑

c ∆Ic(p, t)| > T .

• Point correspondences between frames are computed
using Liu et al.’s SIFTFlow algorithm [12].

• Empirical distributions P (xc|Γc), are quantized to
2000 bins for single illumimant estimation, and to 500
bins for two illuminants, in the range [0.001, 1]. Note
that the quantization imposes an upper bound on the
estimation accuracy (on the order of 10−4 per chan-
nel). Finer quantization leads to overfitting, while
coarser reduces the accuracy.

• We use 100×100 pixel tiles for two-illuminant estima-
tion. The tiles are overlapping, with a spacing of 10
pixels. Note that this defines a sub-sampling of the
original space/time domain.

5.2. Datasets and experimental settings

We evaluate the performance of single illuminant estima-
tion on two datasets: a newly created dataset of 13 video se-
quences and the GrayBall database [1]. To validate the two-
illuminant estimation approach, we recorded three video se-
quences of scenes lit by two light sources.

Figure 4. Video dataset simulating extreme lighting conditions:
reddish ΓR = (0.54695, 0.1779, 0.27515), and bluish ΓB =
(0.35132, 0.12528, 0.52339). Shown are the first frames from
two sequences (out of four).

The single-illuminant dataset we created consists of
video sequences captured with a high definition video cam-
era (Panasonic HD-TM 700), at 60 fps and 1920×1080 pix-
els per frame. The set includes three outdoor scenes and
six indoor scenes. The videos were recorded with a mov-
ing camera. A flat grey card with spectrally uniform re-
flectance was placed in each scene, appearing in each video
sequence for a few seconds. We supplemented this dataset
with two additional publicly available sequences2. The re-
maining four sequences of this set were taken using red or
blue filters (Fig. (4)), in order to simulate “extreme” lighting
conditions.

The ground truth illuminant was estimated, for each se-
quence individually, using the grey card. We extracted pix-
els on the grey card over 5 consecutive frames, and com-
puted their normalized average RGB value. For each se-
quence, we also computed the variance σc and mean angu-
lar variation β of the grey card RGB vectors to ensure that
the scene complies with a constant illumination assumption
(0.1◦ < β ≤ 0.5◦ and 1.e− 7 < σ2 ≤ 1.e− 5).

As for the two-illuminant dataset, it consists of videos
acquired under complex lighting conditions (Fig. 5): two
incandescent lamps (blue and red), sun and skylight, incan-
descent lamp and natural daylight. Two grey cards were
placed in the scene during acquisition, ensuring that each
grey card is illuminated by only one of the illuminants. The
ground truth values were computed as explained earlier.

We also used the GrayBall database of Ciurea and
Funt [1]. This dataset is composed of frames extracted from
several video clips taken at different locations. The tempo-
ral ordering of the frames had been preserved, resulting in
a time lapse of about 1/3 second between consecutive im-
ages [19]. The entire database contains over 11,000 images,
of both indoor and outdoor scenes. A small grey sphere was
mounted onto the video camera, appearing in all the images,
and used to estimate a per-frame ground truth illuminant
chromaticity. This ground truth is given in the camera refer-
ence system (i.e. RGB domain) [1]. Note that, in the Gray-
Ball database, the illuminant varies slightly from frame to
frame and therefore violates our assumption of uniform illu-

2http://www.cs.huji.ac.il/labs/cglab/projects/tonestab/



Edges Near edges Entire image
Laplace 5.389 5.429 5.450

Gaussian 6.462 6.486 6.487

Table 1. Comparison of different strategies for point selection
(columns) and between Laplace and Gaussian distribution mod-
eling (rows) (see Section 3.3), T = 10.−1. The reported angu-
lar error (in degrees) is averaged over the nine video sequences
recorded with normal lighting conditions.

Average Best 1/3 Worst 1/3
GE-1 [18] 6.572 2.1787 11.271
GE-2 [18] 7.150 2.958 11.723
GGM [4] 7.013 6.208 9.166
IIC [17] 8.303 3.984 12.540

Our approach 5.389 2.402 8.784

Table 2. Angular errors (in degrees) for video sequences recorded
under normal lighting conditions.

mination over time. We use this dataset because it is, to our
knowledge, the only publicly available temporal sequence
data for which both ground truth and results of previously
published methods are available.

Results are reported in terms of the angular deviation β
between the ground truth Γg and the estimated illuminant
Γ̂, in camera sensor basis: β = arccos( Γ̂·Γg

||Γg|| ||Γ̂|| ).

5.3. Single illuminant estimation

We begin with an experimental validation of the claims
made in Section 3.2 regarding the choice to use edge points
for illuminant estimation and the use of the Laplace dis-
tribution to model P (xc|Γc). Table 1 compares between
three different strategies for choosing the specular points:
choosing from points detected by the Canny edge detector,
choosing from points next to edges, and choosing from the
entire image. Note that we do not attempt here to compare
between different edge detectors, but only to validate that
edges are a good source of points for our estimator. We also
compare between using the Laplace model and a Gaussian
model (i.e. using the mean of x , instead of the median, as
the estimated illuminant). As can be seen from the table,
smaller errors are obtained when using edge points and the
Laplace model.

Video dataset. Tables 2 and 3 report illuminant esti-
mation accuracy for the sequences recorded under normal
illumination conditions (Fig. 3) and under extreme light-
ing (Fig. 4). We used a temporal window of 3 frames for the
former, of 5 for the latter (to account for the noise in data
acquisition due to the relatively dark environment), with a
time step between consecutive frames of 3ms for both (ex-
cept for the two downloaded sequences2 for wich we set a
time step of 1ms). To estimate the illuminant we exclude

Reddish Bluish
GE-1 [18] 8.907 13.052
GE-2 [18] 10.246 13.657
GGM [4] 15.544 25.505
IIC [17] — 19.675

Our approach 7.708 6.236

Table 3. Average angular errors (in degrees) for video sequences
recorded with red and blue filters, with T = 10−1.

the region of the frames that contains the grey card.
We compare our approach to several state-of-the-art

methods: the Grey-Edge algorithm [18], Generalized
Gamut Mapping (GGM) [4], and Inverse Intensity Chro-
maticity method (IIC) [17]. For Grey-Edge, we use first
order and second order derivatives (GE-1 and GE-2, respec-
tively), with L1 norm and a Gaussian filter σ = 1 [18]. For
GGM we use the intersection 1-jet criteria (i.e. based on first
order derivatives), because it was reported to give the best
results on several databases [4]. The IIC method was chosen
because it is a popular reference among color constancy ap-
proaches based on a physical model. We used the authors’
implementation of these algorithms. All these approaches
estimate a per-frame illuminant; we average the illuminant
chromaticity vector computed for each frame, and report the
angular error between the mean chromaticity vector and the
ground truth [19]. We report the overall mean angular error,
as well as the average angular errors over the best and the
worst thirds of the results of each method.

Tables 2 and 3 show that IIC performs poorly on this
dataset. This can be attributed to the fact that images in
uncontrolled environments contain a large amount of satu-
rated pixels or noise, factors which are ignored by purely
deterministic models. GGM does not perform well in ex-
treme light conditions, because the very limited range of
color visible in the input frames does not enable a good
matching with the prior gamut used by this algorithm. On
the other hand, GGM, GE-1, and GE-2, all give reasonably
good results under normal lighting conditions (6.5◦, 7.1◦,
7.0◦). Note the large variance between the best and worst
thirds for the GE methods, indicating a relatively unstable
behavior. Our approach outperforms all of these methods
on average for both normal and extreme lighting (5.3◦ and
6.9◦), and exhibits stable performance. Note that the advan-
tage of our approach can be attributed to the fact that it uses
the temporal sequence, while other methods reported here
work on each individual frame separately.

GrayBall dataset. In Table 4, we compare the perfor-
mance of our approach on the GrayBall database to two
state-of-the-art methods [4, 19], as well as to the classical
GrayWorld method for reference. Reported values for these
methods are taken from the original papers. For our method,
we used pairs of consecutive frames and T = 0.1. We did



GrayWorld GGM [4] GE-2 [19] Ours
Mean 7.9 6.9 5.4 5.4

Median 7.0 5.8 4.1 4.6

Table 4. Angular errors (in degrees) for images from the GrayBall
database.

(a) (b) (c)

Figure 5. First frames of three sequences captured with two lights.
(a) Two incandescent lamps (Γ1 red, Γ2 blue). (b) Outdoor scene
lit by sunlight (Γ1) and skylight (Γ2). (c) Incandescent lamp (Γ1

green) and natural daylight (Γ2).

not attempt to apply IIC to this dataset, since it seems irrel-
evant to use this method for natural images, which contain
saturated pixels and are acquired under uncontrolled light-
ing conditions. We refer the reader to [5] for an extended
comparison of methods on this dataset, among which we
include here only the best ones.

On this dataset the results obtained by Wang et al. [19]
are equivalent to ours in term of average error (5.4◦).
Wang’s method uses several parameters (three to five
threshold values), which have been tuned specifically on
the GrayBall database (no results on other datasets are pro-
vided); we believe that the accuracy reported by the au-
thors [19] is in part due to this parameter tuning.

5.4. Two illuminant estimation

Figure 1 shows the estimated incident light color map
{Γs}Ss=1, the light mixture coefficients {αs}Ss=1, and the
estimated light chromaticity, computed from sequence (a).
During recording, the scene was illuminated by a red light
from the back on the right side and a blue light from the
front on the left side. The incident color map (middle)
clearly captures the pattern of these two dominant light
sources. The mixture coefficients map (right) indicates the
relative contribution of one illuminant with respect to the
other, interpolated across the image.

Table 5 reports quantitative results obtained from se-
quences recorded with two lights sources (Figure 5). We
compare with the state-of-the-art, namely local GE-1, lo-
cal GE-2, and local GrayWorld (GW) (see [6] for details).
We apply local GE-1 and GE-2 using L1 norm and Gaus-
sian σ = 2. Results were computed using 3–5 frames from
each sequence, with a time step of 2–4ms between frames.

Ours Local GE [6] Local GW
Γ1 Γ2 Γ1 Γ2 Γ1 Γ2

Seq. (a) 9.65 5.14 31.69 4.8 12.94 10.49
Seq. (b) 5.74 4.76 9.69 9.82 5.89 8.81
Seq. (c) 7.35 6.49 17.9 5.65 7.63 5.74

Table 5. Two illuminant estimation. Angular errors (in degrees)
for the estimation of Γ1,Γ2 on the sequences shown in Figure 5.

Figure 6. First frames of three video sequences (top) and estimated
illuminant colors (bottom).

Patch/tiles size is set to 50 × 50 pixels in sequences (a)
and (c) of our dataset, to 100 × 100 otherwise. From [6],
we report the best result among local GE-1 and local GE-2,
averaged over frames of the sequence. Overall, our method
provides more accurate estimates than those obtained with
the other methods. We have observed that both GE and GW
tend to produce estimates biased towards gray. This makes
the estimation of strongly colored illuminants (e.g., the red
light Γ1 in sequence (a)) difficult.

Figure 6 shows additional results obtained on sequences
for which the ground truth was not available. Motion be-
tween frames originates from camera displacement (right),
object/human motion (middle), or light source motion (left).
Color patches in the bottom row show the two estimated il-
luminant colors for each sequence. Note that the dominant
tone is correctly retrieved (blue or gray mixed with yellow-
orange in these three cases).

5.5. Application to white balance correction

The aim of white balance correction is to remove the
color cast introduced by a non-white illuminant: i.e., to
generate a new image/sequence that renders the scene as
if it had been captured under a white illuminant. Figure 7
demonstrates the result of applying white balance to a scene
illuminated by a mixture of (warmer colored) late afternoon
sunlight and (cooler colored) skylight. (Additional results,
including scenes with a single illuminant, are provided in
the supplementary material). Having estimated the inci-
dent light color Γs across the image, we simply perform
the white balance separately at each pixel, instead of glob-
ally for the entire image, producing the result shown in Fig-



Figure 7. White balance with two illuminants. (a) Input frame of
a scene illuminated by afternoon sunlight and skylight. (b) Result
of spatially variant white balance correction after two illuminant
estimation. (c) “Relighting” by changing the chromaticity of one
of the illuminants. (d) For comparison: uniform white balance
correction using a single estimated illuminant.

ure 7(b). A global white balance correction (using a sin-
gle estimated illuminant) is shown in Figure 7(d) for com-
parison, suffering from a stronger remaining greenish color
cast. The availability of the mixture coefficient map makes
it possible to simulate changes in the colors of one or both
illuminants. This is demonstrated in Figure 7(c), where the
illuminant corresponding to the sunlight was changed to a
more reddish color.

6. Conclusion
The ease with which one can acquire temporal sequences

using commercial cameras and the ubiquity of videos on
the web, makes natural the exploitation of temporal infor-
mation for various image processing tasks. In this work,
we presented an effective way to leverage temporal depen-
dencies between frames to tackle the problem of illuminant
estimation from a video sequence. By using multiple im-
ages, we can formulate the problem of illuminant(s) estima-
tion as a well constrained problem, thus avoiding the need
of prior knowledge or additional information provided by
a user. Our physically-based model, embedded in a proba-
bilistic framework (via MAP estimation), applies to natural
images of indoor or outdoor scenes. Our approach is simply
extended to scenes lit by two global illuminants, whenever
the incident light chromaticity at each point of the scene can
be modeled by a mixture of the two illuminant colors. We
show that on several datasets, our results in general are com-
parable or improve upon the state-of-the-art both for single
illuminant estimation and for two-illuminant estimation.
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