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Abstract

An algorithm is presented for finding the most probable
image motion between two images from fuzzy point corre-
spondences. In fuzzy correspondence a point in one image
is assigned to a region in the other image. Such a region can
be line (aperture effect) or a convex polygon. Noise and out-
liers are always present, and points may belong to different
motions. The presented algorithm, which uses linear pro-
gramming, recovers the motion parameters and performs
outlier rejection and motion-segmentation at the same time.
The linear program computes the global optimum without a
need for initial guess.

1. Introduction

Many methods have been developed for motion recovery,
yet the recovery of motion parameters in the presence of
noise, outliers and multiple-motions remains a challenge.
This paper describes a new approach that overcomes many
of the limitation of existing methods including errors due to
outliers and to multiple motions, and the need for a good
initial guess of the motion model to avoid local minima.
Section 2 describes the new algorithm. Section 3 presents
several test results, and finally, Section 4 summarizes the
advantages of the new algorithm.

1.1. Previous Work

Given a set of matched points between two images (from
an optical flow or from feature matching) a linear paramet-
ric image motion (such as an affine motion) can be recov-
ered using a linear pseudo inverse equation system that min-
imizes the average error (RMS, L� metric). This RMS min-
imization is valid only if the errors have zero mean. It will

fail in the presence of outliers and multiple motions. More-
over, motion computation that uses matched pairs of points
cannot express uncertainty directly. In order to overcome
these drawbacks several methods have been developed that
utilize one or more of the following techniques:

Motion segmentation [1] - Techniques for outlier detec-
tion are used, usually combined with motion recovery
by an iterative algorithm.

Probabilistic algorithm [9] - Algorithms that calculate the
motion parameters from randomly selected pairs of
matched points until they reach the desired accuracy.

Probabilistic matching [7, 8] - A point in one image cor-
responds to a distribution over locations in the sec-
ond image, such distribution can be represented as a
probability matrix over possible displacement. Motion
recovery can be viewed as maximizing the combined
likelihood of many local matches. When the motion
consists of pure translation, the local motion given by
each probability matrix matches the global motion. In
this case the most probable global motion can be re-
covered directly from the local probability matrices.
When the motion is more complex, the other parame-
ters (rotation, scale) are recovered by extensive search
over the parameter space.

Direct computation from grey level [4, 6] - Algorithms
are based on the constant brightness assumption and
the optical flow constraint. They are usually combined
with motion segmentation methods in an iterative man-
ner.

Global alignment of local measures [3] - This algorithm
is a generalization of the direct grey level algorithms
in the sense that it is not restricted to grey level min-
imization. The algorithm defines match-measure sur-
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face over the local match field and uses Newton itera-
tions to maximize (or minimize) the sum of the local
measures.

2. Motion Computation from Fuzzy Corre-
spondence

A point Pi in image I� is fuzzy corresponding to a group
Gi in image I� if the target of Pi, denoted as P �

i , is lo-
cated within an area (or a group) in I� that is designated by
Gi. There are various ways of defining Gi. We start our
discussion with groups that are defined as convex polygons.
Fig.1.a illustrates fuzzy correspondence of four points. Each
group Gi is represented by its vertices G�

i ��G
k
i .

Point Pi is mapped to the (unknown) point P �

i where
P �

i can be expressed as a linear combination of vertices:
G�

i ��G
k
i .

The motion computation problem is defined as:
Given a set of pairs: �Pi� Gi� find the best parametric mo-
tion that maps the source points Pi in image I� into their
target points P �

i in image I� where P �

i is a linear combina-
tion of Gi.

Subproblems are:

1. If the vertices Gk
i have different weights that repre-

sent likelihood, find the best motion that maximizes
the combined likelihood.

2. If the set of pairs contains outliers or multiple motions,
disregard the outliers while finding the parametric mo-
tion (and find the pairs that belong to the recovered mo-
tion). This problem that is called the motion segmenta-
tion problem, has an inherent difficulty: the parametric
motion is easily recovered if the outliers are known and
the outliers are easily found if the the parametric mo-
tion is known - solving for both presents a difficulty.
The problem increases when multiple motion of simi-
lar number of points exists.

A well known special case of fuzzy correspondences is the
aperture effect, or the recovery of global motion from nor-
mal flow. Fig.1.b illustrates the aperture effect problem and
the normal flow for a pure translating object. The width of
the groups represents the uncertainty in the magnitude of
the normal flow and the length of the groups is the aperture
effect uncertainty.

The normal flow vector can be derived directly from the
image grey levels using the well known optical flow con-
straint [2]. The target points resides on the perpendicular
line to the normal flow vector in an unknown position.

Motion computation from fuzzy correspondences is
demonstrated in this paper using affine parametric motion.
Fuzzy correspondences are also applicable to the linear
2D-quadratic motion model.

2.1. Implementation

The algorithm is implemented by mapping the motion
computation problem into linear programming [5]. The lin-
ear program itself is solved using a standard linear program-
ming algorithm. The most important features of the algo-
rithm: global optimization and outlier rejection, are induced
by the properties of the linear program and the robustness
on theL� metric (that minimizes the median error and there-
fore is insensitive to extreme points, in contrast to L� metric
that minimizes the average error).

We first describe the mapping of the geometrical motion
into linear programming constraints (Section. 2.2), then we
describe the indexing relation that connects the group in-
terpolation constraints to a selection vector of linear pro-
gramming variables (Section. 2.3), then we describe the
linear programming objective function which optimizes the
selection of the vertices in each group by their weight to get
the maximum likelihood solution (Section. 2.4). Finally
we will refine the program allowing it to reject outliers and
have better control on the requested motion; for example,
allow only rotation, translation, and scale (Section. 2.5)

The input for the mapping is a set of n pairs fPi� G
k
i g.

Each pair represent a mapping from point Pi in image I�

into the group of k�i� vertices Gk�i�
i in image I�. Each group

has its own number of vertices k which is a function of i,
however in order to make the notation more readable we
will just use a uniform k for all groups. When we refer to a
group as a whole - we will use the notation Gi.

An optional weight vector Ci can be assigned to each
group. This weight vector represent preference of the ver-
tices of Gi.

2.2. The Geometrical Motion Constraint

The affine transformation that maps point Pi � �xi� yi�
in image I� to the (unknown) point P �

i � �x�

i� y
�

i� in image
I� is given by the following pair of constraints: x�

i � axi �
byi � e� y�

i � cxi � dyi � f Where: a� b� c� d� e� f are
variables of the linear program that are common to all n
pairs of these geometrical constraints.
The value of P �

i in unknown. However it is known that that
P �

i is a convex combination of the vertices of the group Gi.

2.3. The Indexing relation

The relation between the point P �

i and its group Gi is
given by the convex coefficient vector Si as:

P �

i �
kX

j��

S
j
iG

j
i � � S

j
i � � (1)

Pi can be defined by selection of at most 3 vertices of Gi.
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Figure 1. Fuzzy correspondence. A Point Pi in image I� is mapped to a group Gi in image I�. a) Points
to groups. b) Normal flow as fuzzy data.

These vertices are selected by three corresponding values
of Sj

i that are non zero. The vector Si is called the selec-
tion vector for the pair fPi� Gig and each element Gj

i is the
selection values for vertex j in group Gi.

2.4. The Maximal Selection constraint

Let S � �Sk
n� be the selection matrix of all group

vertices. Sj
i is the selection variable for vertex j in group i,

� � S
j
i � �. Row i of the matrix S is the selection vector

for group Gi.
S satisfies the selection constraint: �i

Pk

j�� S
j
i � �.

Let C � �Ck
n� be the weight matrix for all group vertices.

C
j
i is the predefined weight of vertex j in group i. For

groups that represent convex probability matrices, Ci will
satisfy: � � C

j
i � �, �i

Pk

j��C
j
i � �

Let:

T �
nX

i��

kX

j��

C
j
i S

j
i (2)

Then Max�T � over the selection matrix S satisfies the fol-
lowing properties: (The maximal selection properties).

1. If the assignment of S is constrained only by the the
selection constraint and �i� C

j
i �� Cl

i� j �� l then
the assignment S that maximizes T will be an integral
f0,1.0g matrix containing exactly n instances of the
value ���. Each selection vector Si will have a single
instance of the value ��� corresponding to the maximal
member of Ci. This is true since the maximum of Ci

is larger than the average of any subset of Ci (that has
more than one member).

2. If S is constrained by the selection constraint and by
the geometrical constraint (via the indexing relation)
than each row Si will have at most 3 non-zero values,
where one of the values corresponds to the maximum
member Ci. (Si will have at most two non-zero values
if Gi is located on a line). This is true since P �

i , that is
located within the convex-hull of Gi is located in one
of the two convex partitions created by the line that is
defined by the maximal point and any other point of
Gi.

Notes:

1. If some of the values ofC are equal then there could be
more non-zero values - but the objective function value
and the recovered motion will not change (since the
geometrical constraints can be satisfied with no impact
on the objective function). equal

2. If the algorithm is forced to select more points than the
maximum point m of some group (due to the geomet-
rical constraint) - it will tend to select the other point
w geometrically far from m since this will maximize
the weight of m itself. This behavior only increases
the selection of the maximal likelihood provided that
the groups are convex shaped.

3. The Selection matrix S plays two roles - It is the geo-
metrical interpolation values and it is also the weight
selection values. S actually selects at most three ver-
tices and interpolate only these weights. (This stands
in contrast to to interpolation of all points by their dis-
tance which leads to L� metric that we wish to avoid).

4. In groups having convex shapes, the triangle defined
by the three selected points (one of which has the max-
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imum weight) is a continuous linear approximation to
the surface near the maximum point - this property en-
ables efficient and robust solution of surface like opti-
mization using linear programming.

5. Non-convex shape groups are dealt with by splitting
them into convex shaped groups. The outlier rejection
will dispose of the wrong partitions. In extreme cases
(checker-board) each group will be of size one and the
algorithm will have no geometrical interpolation - it
will be reduced to an L� selection of points (which
is still much better that L� due to its outlier rejection
property).

2.5. Outliers Rejection and Transformation Control

In order to be able to reject outliers (points that do not
agree with the global motion that maximizes T ). Free vari-
ables Zi were added to each geometrical constraint. The
variable Zi corresponds to the geometrical error of the
group Gi. The total number of Z variables is �n (one for
the X axis constraint and one for the Y axis constraint).
In order to limit the error we subtract �

P�n

i�� �ijZij from
T , where � is a parameter used to adjust the units and met-
ric weights between the selection vector units (0..1, L�)
and the Z error units (0..image-radius, L�), and � is an op-
tional preference parameter for the whole group.
When T reaches its maximal value the Z variables contains
match information and therefore can be used for segmenta-
tion purposes as feedback weights for iterative application
of the algorithm (eliminating the need for threshold select-
ing).

2.6. The Linear Program

In order to get a linear program, the only changes re-
quired are the reshaping the C and S matrices into one di-
mensional vector.
In order to make the naming convention of the vectors C

and S compatible with the matrix naming convention, dou-
ble vector index is used: Sj

i � Sij .
The final linear program is given by:

max � CtS � �

�nX

i��

�ijZij s�t� (3)

�i

Sij � �Pk

j�� Sij � �Pk

i��
SijGij�x � axi � byi � e � ZiPk

i��
SijGij�y � cxi � dyi � e � Zn�i

The affine transformation can be limited, for example, to
rotation + scale + translation only (no affine distortion) by
adding the constraints: a � d� c � �b. (The conversion
of the linear program into standard form is simple and re-
quires two variables for each Z variable and two variables
for each motion parameter).

3. Experiments

All tests have used a uniform C � �, � � �����, � �

� which gives equal preferences to all vertices. (This is a
worst case scenario - no preference information exists).

3.1. Synthetic Test Results

3.1.1. Outlier Rejection Test

In this test selected 59 pairs of points were selected ran-
domly (group size = 1) in the range (-100, 100), belonging
to the affine model-1 and 41 points belonging to the affine
model-2 (� �� � �� ratio). The accuracy of the input was
up to 0.5 pixels, as only integer locations were used. The re-
sults are summarized in Table 1. Errors were calculated as
Euclidean distances in the image plane between the ground
truth and the image of the recovered affine transformation.

Fig. 2 shows the error of all the point sorted by distance.
The points that belong to the recovered model are the first
59 points. The rest of the points are considered outliers.
The segmentation into model and outliers is very clear.

Affine Model-1 Affine Model-2
Original 1.055 -0.598 2.593 0.031 -0.199 -3.760

0.598 1.055 3.222 0.199 0.031 -1.951
Recovered 1.048 -0.597 2.806 (Outliers)

0.597 1.048 3.175
Points 59 41
Mean(Error) 0.823 10.77
Var(Error) 0.036 3.3
min(Error) 0.371 6.49
max(Error) 1.189 13.79

Table 1. Outliers Rejection. (Units: Pixels).

3.1.2. Polygon Uncertainty and Outlier Rejection

In this test we used the same original data as in the pre-
vious test. This time we gave the algorithm groups of four
points which are bounding rectangles of the real destination.
The bounding rectangle vertices were selected randomly us-
ing uniform distribution in the range (-3..+3) pixels. All
vertices had equal weight of one. (The real location of each
point can be anywhere within the bounding rectangle).
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Figure 2. Outliers.

The results of this scenario is presented in Table 2 and Fig.
3. The segmentation is clear but the mean error of 1.9 pix-
els is still to large. To solve this, a second iteration was
made giving weight of 0 to the outliers that were discovered
by the segmentation at first iteration. The results of second
iteration results are presented in Table 3 and Fig. 4.

Affine Model-1 Affine Model-2
Original 1.055 -0.598 2.593 0.031 -0.199 -3.760

0.598 1.055 3.222 0.199 0.031 -1.951
Recovered 1.018 -0.587 3.082 (Outliers)

0.587 1.018 2.815
Points 59 41
Mean(Error) 1.90 10.60
Var(Error) 0.15 3.25
min(Error) 0.96 6.34
max(Error) 2.58 13.59

Table 2. Outliers and uncertainty. (Units: Pix-
els).

3.2 Images test results

Two images with large displacement were selected form
the “Puma” robot sequence. 14 points were manually se-
lected from several locations in the image that have clear 3D
structure (therefore they do not agree with any single affine
transformation). The affine transformation was recovered
using a pseudo-inverse (with the exact displacements) and
by the linear programming algorithm (using group of un-
certainty of one pixel at each direction). The results are
shown in Fig. 5. We can see that the pseudo-inverse algo-
rithm reduced the average error but couldn' t fully register
anything at the scene while the linear programming algo-
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Figure 3. Outliers and uncertainty.

Affine Model-1 Affine Model-2
Original 1.055 -0.598 2.593 N/A

0.598 1.055 3.222 N/A
Recovered 1.056 -0.598 2.654 N/A

0.598 1.056 3.343
Points 59 N/A
Mean(Error) 0.47 N/A
Var(Error) 0.01 N/A
min(Error) 0.19 N/A
max(Error) 0.66 N/A

Table 3. 2nd iteration. (Units: Pixels).
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Figure 4. 2nd iteration.

rithm have fully registered half of the points after a single
iteration (Z = 0) resulting in a much better registration.
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a) b)

c) d) e)

Figure 5. a) First frame. b) Second frame. c) Frames before registration. d) Pseudo-inverse registra-
tion. e) Linear programming registration.

4. Concluding Remarks

A linear programming algorithm for the recovery of
parametric motion has been introduced. This algorithm has
the following advantaged over conventional methods:

1. The algorithm utilizes fuzzy input data that can span
over large displacements usingL� metric for optimiza-
tion.

2. The recovery of the motion parameters as well as the
outlier rejection and motion segmentation is done si-
multaneously.

3. The algorithm does not require an a-priori initial guess
of the transformation

4. The algorithm provides global optimization of the ob-
jective function which is maximal probability.

5. The algorithm solution can be controlled by adding
more constraints (such as: pure scale, rotation and
scale, rotation scale and translation).
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