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Abstract

Image sensing is usually done with multiple sensors, like
the RGB sensors in color imaging, the IR and EO sensors
in surveillance and satellite imaging, etc. The resolution
of each sensor can be increased by considering the images
of the other sensors, and using the statistical redundancy
among the sensors. Particularly, we use the fact that most
discontinuities in the image of one sensor correspond to dis-
continuities in the other sensors.
Two applications are presented: Increasing the resolu-

tion of a single color image by using the correlation among
the three color channels, and enhancing noisy IR images.
Keywords: Super-Resolution, Demosaicing, Color,

Multi-Sensor, Restoration.

1 Introduction
Image sensing is usually done with multiple sensors. A

color image, for example, is a combination of three sen-
sors: red, green, and blue. In visual surveillance and satel-
lite imaging, sensors that are even more different are often
used, e.g. some sensors in the visible domain and other sen-
sors in the infra red domain. Combined depth-color cameras
(e.g. [1]) are also becoming available.

In most multi-sensor applications, it is assumed that the
images are aligned. Otherwise the motion between the im-
ages is computed [9, 20, 5], and the images are aligned by
warping. The resampling done for warping degrades the
quality of the combined image.

This paper presents a new way to combine the infor-
mation from different non-registered sensors. Given a set
of images of possibly different sensors viewing the same
scene, the resolution of one image is improved by using
the other images. In color RGB sensors, for example, the
red channel is enhanced using the green and blue channels.
Similarly the green channels are enhanced using the red and
blue channels. The result of combining the enhanced reso-

Figure 1. The Bayer pattern, a common way to organize
the Red, Green and Blue sensors in a grid.

lution channels is a higher resolution color image.
We adapt the super resolution engine [10, 15, 6, 18], de-

veloped for same-sensor images, to combine information
from different sensors. The multi-sensor extension is en-
abled by exploiting statistical redundancy among the sen-
sors. Particularly, we use the fact that most discontinuities
in the image of one sensor correspond to discontinuities in
the other sensors, and find a local affine mapping between
the intensities of different sensors along the edges. We ad-
dress the validity of this model both analytically and experi-
mentally. Clearly, for very different sensors such as medical
modalities [20] this model is less useful.

One application of the multi-sensor super-resolution is
the improvement of resolution in a single multi-sensor im-
age whose channels are not registered. This is the typical
case in 1-CCD color cameras (see Fig. 1), where each pixel
location has a sensor of a single color. It may also occur
in 3-CCD cameras, where each color has a full CCD, and
there is no perfect registration of the three sensors.

1.1 Previous Work
There have been much work on the combination of dif-

ferent sensors, and particularly recovery of color image
values from noisy samples. One approach is color image
restoration ([2, 12, 19, 17]), where the combination is usu-
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ally achieved by a joint-channel regularization term, aiming
mainly to reduce noise. Since super resolution is a gener-
alization of image restoration [6], the adaption of these al-
gorithms to super resolution algorithms is straightforward.
The approach of this paper is inherently different, since
it minimizes a projection error rather than forcing spatial
inter-channel smoothness constraints on the solution. When
prior knowledge of the scene is available [4, 14] regular-
ization terms [2, 12] can be combined in the algorithm. A
comparison of the results of multi-Sensor super resolution
and multi-sensor restoration is shown in the experiments.

Another bulk of related work are demosaicing algo-
rithms [13, 11, 16, 7, 14], aiming in recovery of the missing
samples in a 1-CCD color filter array (Fig. 1). The proposed
approach is more general, allowing an arbitrary transforma-
tion between the different sensors.

It is interesting to compare the presented method to
multi-sensor fusion [3], where the visual information cap-
tured by various sensors is combined into a single image.
This combined image includes the information (i.e. edges)
from all sensors. In the presented method, one of the in-
put images is set as photometric reference image, and the
resulting image contains only the edges which appeared in
this reference image. An edge that is included in another
sensor, but not in the reference image, will not appear in the
enhanced image.

2 Multi-Sensor Super Resolution
Existing super resolution techniques present the process

in the following way [10, 15, 6, 21, 18]: The low resolu-
tion input images � � � � �� 	 � , all captured by the same sensor,
are the result of imaging some high resolution (unknown)
image  . The imaging model usually includes geometric
warping, camera blur, decimation, and additive noise. The
goal is to find the high resolution image  which, when im-
aged into the lattice of the input images according to the
respective imaging model, predicts well the low resolution
input images. Let � be an estimate of the unknown image . Then the prediction error for � is:� � � � � � � � � � � � �   " (1)

where � � , � � are the geometric warping and blurring opera-
tors respectively, and " is decimation. � � is the combination
of optical blur, sensor blur, and motion blur. � � is based on
on the estimated displacement between the images.

Most super resolution algorithms [10, 15, 6, 21, 18] min-
imize the % & norm of the error (possibly with regularization),
by iteratively simulating the imaging process, and using

� �
to update the solution estimate � .

The proposed multi-sensor super-resolution algorithm
uses the same framework. � is assumed to be a high resolu-
tion version of � ' (w.l.o.g). Since � � ( * + , , were possibly

captured by different sensors than � ' , no imaging process
has created � � from  . Still, aligned images of different
sensors are statistically related. Using a model . relating
the projected image / � � � � � � � � �   " with the input im-
age, a virtual input image �� � and a virtual prediction error
image 2 � can be defined:

�� � � . � / � ( � �  ( 2 � � �� � � / �
The virtual prediction error 2 � replaces the prediction er-

ror
� � in the super resolution algorithm, e.g. [10, 15, 18].
We use an affine relation between the intensities of dif-

ferent sensors in a local neighborhood. We select corre-
sponding neighborhoods in two images / � and � � , possibly
taken by different sensors. For this neighborhood we esti-
mate an affine transformation relating the intensity values of/ � to the intensity values of � � , / � � : ( =  � @ � : ( =  � � � : ( =  DF � : ( =  . This mapping is used to compute the virtual input
image �� � � : ( =  � @ � : ( =  � � � : ( =  D F � : ( =  , and the virtual
prediction error 2 � � : ( =  � �� � � : ( =  � / � � : ( =  . To simplify
notations in the following equations, we will use @ ( F

to rep-
resent @ � : ( =  ( F � : ( =  .

Assuming the image is contaminated with a zero-mean
white noise, the optimal estimator for the affine relation be-
tween a region in the projected image / � and a region in
the input image � � minimizes the following squared error:K * L M N O Q R S T O V � @ � � � W ( 2  D F � / � � W ( 2   & .

In Section 2.1 we discuss the validity of the local affine
model for relating the intensity value of different sensors,
and explain why it can be useful in the context of super res-
olution. Still, this model fails in some cases, and thus it
is important to check its validity before using it. The ab-
solute average-centralized normalized cross correlation is
a good measure for affine similarity. The maximal abso-
lute value of “1” indicates two signals that are related by an
affine transformation.

In summary, the virtual input image �� � � . � / � ( � �  can
be computed for pixel � : ( =  as follows:

[ Estimate the absolute of centralized-normalized cross
correlation in the (weighted) window of size \ ] D _
around � : ( =  :a b c d e f g h i k i b c d e f o h i b c d e f k i b c d e fq b h ri b c d e f o h i b c d e f r f b k ri b c d e f o k i b c d e f r f

(2)

Where / � � : ( =  is a weighted average of / � in a neigh-
borhood around � : ( =  :

/ � � : ( =  � uv w x T O V x w y � W ( 2  / � � : D W ( = D 2  
and similarly for � � ( / � � � ( / &� ( � &� . Weighting the win-
dow by distance-decreasing kernel y reduces spatial
discontinuities in the affine parameters.
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Figure 2. An example of a projection error image � i , as
defined in Eq. 1. The non-zero values concentrate along the
edges of the car.

[ If � � � : ( =  � � � , the correlation is bellow some
threshold, skip the affine estimation and assign

�� � � : ( =  � / � � : ( =  .
[ Otherwise, compute the least-squares estimate for the

affine similarity in the (weighted) window:	
@ F 
 �

	
/ &� � : ( =  / � � : ( =  

/ � � : ( =  _ 
 v � 	
/ � � � � : ( =  

� � � : ( =  
 (3)

[ Use the affine estimate �� � � : ( =  � @ � � � : ( =  D F

�� � is then used for estimating the virtual prediction error
2 � which is reprojected to the solution estimate.

The threshold � expresses the validity of the affine ap-
proximation. It was experimentally checked that modifying� in � ,  , � induces negligible influence on the results.

2.1 Discussion: Local Affine Model for Inter-
sensor Prediction.

The use of local affine model for estimating 2 � from the
input image � � is based on two simple observations: First,
most of the information used by the super resolution algo-
rithms is concentrated along the edges. Second, in many
practical cases, images of different sensors have edges at
corresponding locations.

Fig. 2 shows a typical prediction error image
� � of a

single-sensor super resolution algorithm. Most of the de-
tails for resolution enhancement are concentrated along the
edges. Therefore, the most important regions to estimate in
the virtual prediction image 2 � , are along the edges.

Local affine relation between the intensity values of dif-
ferent sensors has been used by Irani and Anandan as a dis-
tance measure for image alignment [9]. While this assump-
tion does not hold for general sensors, it is useful in several
practical cases, e.g. for different color sensors (neglecting
minor misalignments due to color aberration [8]).

To test the validity of the model between different color
sensors, we have computed statistics over various images
of different types (natural, urban, faces etc.). The results,
presented in Fig. 4, show that typically more than 90% of

a) b) c)

Figure 3. The correlation values between different sen-
sors. a) The Red channel. b) The Green channel. c) The
absolute of local correlation between the two colors. Most
regions have large correlation, except regions containing
more than two colors (corners) and uniform regions were
most intensity variations are due to noise.

the edges follow the affine model (correlation � 0.8). This
is translated to a low model prediction error (Fig. 4-b).

The model validity can be also shown analytically.
Looking on small neighborhoods, most edges can be mod-
eled as abrupt transitions between two relatively homoge-
neous regions. Using a simplifying assumption that these
regions are homogeneous, it can be easily shown that the
linearity of the blurring operator � � implies an affine trans-
formation between the intensity values of different sensors
near an edge. The full proof is omitted due to space limita-
tions.

The affine approximation fails in some cases, for exam-
ple when the imaged region contains more than two ho-
mogeneous colors, or when the variations in intensity are
mainly due to noise, as demonstrated in Fig 3. It is there-
fore important to test the validity of the model using the
correlation measure (Eq. 2) before using it.

3 Experiments
We first tested the algorithm on color samples organized

in a Bayer pattern, as presented in Fig. 1. The algorithm
was applied to each of the sensors, improving for example
the red image using the blue and green images, etc. For
the local photometric affine alignment stage we used in all
our experiments a window weighted by a Gaussian kernel
with standard deviation _  \ \ � , and a correlation threshold� � ,  � . The algorithm was not sensitive to changes in
these values. For the blurring operator we have used an
isotropic Gaussian with standard deviation _  , pixels.

We examined whether adding information from other
sensors increases the quality of the image. The algorithm
was applied to the red image, using the green and blue chan-
nels as input, and the result was compared to single-image
super resolution on the red channel image, which is equiv-
alent to a high pass filter on the image. The experiment
results are presented in Fig. 7.

To demonstrate the quality of the combination of the
three super-resolved channels, we compared it with three
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Figure 4. Measuring the validity of the local photometric affine model between different sensors. Fig.4-a Shows a typical cumu-
lative histogram of normalized crossed correlation in regions where the gradient is larger than 10 values (for 8-bit images). Fig.4-b
Show the cumulative histogram of prediction error of the local affine model. Fig.4-c Shows the image on which these statistics were
computed. These results repeated on different images and among all pairs of RGB sensors.

a)

b)

Figure 5. Results of multi-sensor super resolution on IR
images of different spectral sensitivity. Fig. 5-a shows the
input image (bilinearly interpolated), and Fig. 5-b shows the
result of the multi-sensor super resolution.

demosaicing methods: Bilinear interpolation, Freeman’s
method [7] and color restoration [12]. The results are pre-
sented in Fig. 6. It can be seen that the presented method
eliminates the zipper artifacts along the edges without over-
smoothing the image. Note that most of the intensity in-
formation is captured by the green channel, for which the
resolution enhancement is minor. Thus the process serves
mainly as an anti-aliasing filter.

In a second experiment, we have enhanced a 2-5um
IR image using 8-12um IR images of higher-resolution
(Fig. 5). Due to the low SNR in the input images, we have
used a larger neighborhood for the local affine model, with
standard deviation 5.2.

4 Summary
This paper has introduced a new way to combine infor-

mation from different image sensors. Given non-registered
images captured by different sensors, the algorithm im-
proves their resolution, using a local photometric affine
alignment along the edges.
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