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Abstract

Images degraded by motion blur can be restored when
several blurred images are given, and the direction of mo-
tion blur in each image is different.

Given two motion blurred images, best restoration is
obtained when the directions of motion blur in the two im-
ages are orthogonal.

Motion blur at different directions is common, for ex-
ample, in the case of small hand-held digital cameras due
to fast hand trembling and the light weight of the camera.

Restoration examples are given on simulated data as
well as on images with real motion blur.

1 Introduction

Blurred images can be restored when the blur function
is known [1]. Restoration of a single motion-blurred im-
age without prior knowledge of the blur function is much
harder. Early deblurring methods treated blurs that can
be characterized by a regular pattern of zeros in the fre-
quency domain such as uniform motion blur [9]. More re-
cent methods deal with a wider range of blurs, but require
strong assumptions on the image model. For example, as-
suming that the image is spatially isotropic [12], or can be
modeled as an autoregressive process [7]. A summary and
analysis of many methods for “blind deconvolution” can be
found at [5]. In case that the image motion is constant for
the entire imaging period, the motion blur can be inferred
from motion analysis and used for restoration [11, 10, 2, 6].

Unfortunately, the assumption of constant motion dur-
ing the entire imaging process does not hold for many cases
of motion blur. For example, analysis of images taken with
small digital cameras shows that consecutive images cov-
ering the same scene have different motion blur. In particu-
lar, the direction of motion blur is different from one image
to another due to trembling of the hand.

In [8] the image restoration algorithm included an esti-

mation of the PSF (Point Spread Function) from two im-
ages. However, it assumes a pure translation between the
images, and uses the location of singularities in the fre-
quency domain which are not stable.

In this paper we describe how different images, each
degraded by a motion blur in a different direction, can be
used to generate a restored image. It is assumed that the
motion blur can be described by a convolution with a one
dimensional kernel. No knowledge is necessary regarding
the actual motion blur other than its direction which is pre-
computed either by one of the existing methods [9, 12], or
using the scheme offered in this paper. The relative image
displacements can be image translations and image rota-
tions.

2 A Model for Motion Blur

Let g denote the observed image, degraded by a motion
blur with a one dimensional kernel m = (my, ..., mg) at
an angle a. Let f be the original image. We assume that f
was degraded in the following way.

« def
g(z,y) =frm=

K—1
- Z my - f(x + kcos (@), y + ksin(a))
k=0

This assumption is valid when the motion blur is uni-
form for the entire image. Otherwise, the image can be
divided into regions having approximately a constant mo-
tion blur. For a discrete image f, interpolation is used to
estimate the gray levels at non-integer locations.

3 Deblurring in the Spatial Domain

Using two images for deblurring requires alignment be-
tween them. However, accurate alignment can be made
only by accounting for the motion blur as seen in Fig. 1.
This section describes the algorithm for deblurring two im-
ages degraded by motion blur in the spatial domain. Both
the alignment between the images, and the deblurring are
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Figure 1. With motion blur the correspon-
dence between images is fuzzy. It can be de-
scribed by the convolution matrix that turns
the left image into the right image.

done simultaneously. In the first sub-section we assume
that one image is not blurred. In practice we do not need to
restore a blurred image when the original image is given.
However, we present this case since it is used as a basis
for the deblurring method described in the following sub-
section. The last sub-section describes a method for the
recovery of the motion blur directions.

3.1 Deblurring an Image Using the Original Image

Let f and g be two input images. g is a motion-blurred
image obtained from f as follows:
(i) f' is a warped version of f

f'(z,y) = fx +plr,y),y + q(z,y)) )

(ii) g is a degradation of f' by a motion blur with kernel m
and direction «,

g = f’ g: m.
It can be shown [4] that the desired displacement

(p(x,y),q(x,y)) between images f and f’ minimizes the
following error function in the region of analysis R.

Err(p,g) = Y. e +afy+ )% @

(z,y)ER

where the partial derivations are as follows:

0 0
[z :Ti;fyza_ia

fi=St=f-f=f-gim™".

We assume that the motion blur operation is invertible,
and can be approximated by a convolution with a discrete
kernel denoted as m™~!. In practice, a one dimensional vec-
tor with 16 to 32 elements was found to be sufficient for
deblurring.

2-D parametric transformations are used as an approxi-
mation for the image motion. This approximation is valid
when the differences in depth are small relative to the dis-
tances from the camera. Since the direction a of the motion
blur is pre-computed, the resulting minimization equations

3

are linear, and minimization is performed over the deblur-
ring kernel (m ') and the image displacement parameters.
We used one of the following models for image displace-
ment:

1. Translation: 2 motion parameters, p(z,y) = a,
g(z,y) = b. In order to minimize Err(p,q), its
derivatives with respect to a and b are set to zero. This
yields two linear equations for each image point in the
K + 2 unknowns: K is the size of the deblurring ker-
nel, and the two additional parameters represents the
translation.

2. Translation & Rotation: This model of motion is
described by the following equations.

p(z,y) = (cos(8) — 1)z —sin(B)y +a
q(z,y) = sin(B)z + (cos(B) — L)y +b

for small rotations we use the approximations
cos() ~ 1 and sin(f) = (3, to obtain linear equa-
tions with 3 parameters. p(z,y) = a— By, q(z,y) =
b+ Bx. For each image point we get three linear equa-
tions with K + 3 unknowns.

3. More complicated models for image displacement can
be used, e.g. an Affine motion or an Homography.

The computation framework is based on multiresolution
and iterations, using a Gaussian pyramid, similar to the
framework described in [3], with some main differences:

e The deblurring kernel is computed as well as the mo-
tion parameters.

e The number of parameters varies throughout the dif-
ferent levels of the pyramid, since the deblurring of
upper levels of the Gaussian pyramid can be repre-
sented by smaller kernels.

e Different kernels, related by a convolution with a
shifted delta-impulse are equivalent in the above
framework. Therefore, the motion component paral-
lel to the motion-blur direction can not converge. In
order to handle this variant, the iterations are repeated
until convergence only in the motion component per-
pendicular to the direction of the motion blur.

3.2 Deblurring Two Blurred Images

Let g; and g» be two images degraded by motion blur in
different directions. The following steps are done in order
to restore the original image.

1. The blur directions are calculated as described in the
next sub-section, or alternatively, using one of the ex-
isting methods (for example [9, 12]).
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2. Deblur g; using the method of 3.1, the known di-
rection of blur, and using g, as the original image.
The deblurring is done with a one dimensional kernel
at the same direction as the direction of motion blur.
Call the deblurred image gil).

3. Deblur g5 using gil)

i

as the original image, giving

4. Repeat steps 2 and 3, always using the latest version
of ggi) and géi), until convergence.

The principle ensuring the convergence of the images
to the original image is that 1-D blurs in different direc-
tions are independent, with the exception of degenerate
cases. Two images having motion blur in different direc-
tions preserve the information of the original image. A
more theoretical approach towards the convergence prop-
erties is given in the next section.

3.3 Recovery of Motion Blur Directions

Most existing methods cope with the problem of recov-
ering the motion blur directions either by assuming a con-
stant velocity during the entire imaging process, or assum-
ing certain properties of the image model or of the mo-
tion blur operator. For example, assuming that the image
is spatially isotropic [12] or that the motion blur kernel is
uniform [9]. Our aim is to recover the directions of the mo-
tion blur using information from two images, while avoid-
ing the constant velocity assumption.

Each iteration of the algorithm described in the previous
sub-sections deblurres the original image. An error in the
estimation of the direction of the motion blur reduces the
deblurring effect. In the extreme case, using the direction
of the motion blur of the second image as an estimator for
the motion blur direction of the first one will cause the op-
posite effect, i.e, will blur the image with the motion blur
kernel of the second image. One can use this phenomenon
to recover the motion blur direction by enumerating over
the angles of the motion blur. For each angle, a single it-
eration of the method described in the first sub-section can
be applied, and the angle which gives the strongest deblur-
ring effect is the angle of the motion blur.

‘We propose to use this strategy with two exceptions:

e It is preferred to work on the lower resolution levels
of the Gaussian pyramids of the images. The accu-
racy achieved in this way is high enough to obtain the
direction of the motion blur, and the computation is
faster.

o The sharpness of the recovered image as a function of
the estimated direction is approximately monotonic.
Thus, partial search can be used.

4 Frequency-Domain Algorithm
4.1 Direct Motion-Blur Reconstruction

In this section we prove the convergence of the deblur-
ring algorithm in the frequency domain. This algorithm
is equivalent to the spatial domain algorithm described in
the previous section. For simplicity, we deal only with the
case of two input images in which the two directions of the
motion blur are perpendicular, and the motion between the
two images is a pure translation.

In this case, the two input images g; and g, are observed
by two systems modeled as:

g =my*f “)

g2 =mz x f (5)

Where g; and g5 are images degraded by horizontal and
vertical motion blur respectively. The displacement be-
tween the two images is already expressed by the convolu-
tions, which represent both the motion blur and the image
displacement.

Let F' be the Discrete Fourier Transform (DFT) of the
original image f. Let G; and G be the DFT of the input
images g; and g» respectively, and let M; and M> be the
DFT of the motion-blur kernels m; and m, respectively.
Relations 4 and 5 are equivalent to:

Gi =M -F (6)
GQZMQ'F (7)

All the Fourier Transforms described in this section are
two-dimensional. However, since each motion blur kernel
(m1 or me) is one-dimensional by definition, it has a uni-
form frequency response along the direction perpendicular
to the direction of the kernel. In other words, M is uni-
form along the y coordinate, and M, is uniform along the
x coordinate.

The method described in Sect. 3 finds an horizontal blur
kernel h that minimizes the l2-norm error function ||g; *
h — ga||2. Since minimizing the /5-norm error function in
the spatial and frequency domains are equivalent, we wish
to find a horizontal blur kernel h whose Fourier transform
H minimizes the error function

[|H - G1 — Gal|2 (8)

Since H is uniform along the y coordinate, we will refer
to it as a one-dimensional vector, i.e: H (i) = H(i,j) for
all 1 < 5 < N, where ¢ and j stand for the z and y co-
ordinates respectively. For each column we minimize the
expression

N
Z |H(i) - G1(i,§) — G2 (i, 5)|” ©)
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When Zjvzl |G1(4,7)|* # O this minimum is achieved for:

XL Gali,d) Gy d)
Y GG, )2

With X denoting the complex conjugate of X . This blur is
a weighted average of the it row in G5, which minimizes
its [y distance to the respective row in GG;. The reconstruc-
tion of the second image using the first one is symmetrical
up to changes in the = and y directions.

H{(i)

(10)

4.2 Iterative Reconstruction

Similarly to the spatial-domain approach, the algorithm
can be enhanced by iteratively updating the first image us-
ing the second one and vice versa. Each iteration reduces
the motion blur effect upon the images, which in turn en-
ables better results when applying the iteration. The itera-
tive algorithm is derived from Eq. 10, and can be summa-
rized using the following equations:

¢\ =g, (11)
" =a, (12)
Gy (i, k) - G (i, k)
SR 1G G, )2

(13)

. GV (R, 5) - GV (K, )
> 1GSY (K, )12

Gt 6, 5) = GV G, g)

Gyt 6, 5) = GV (G, )
(14)

4.3 A Convergence Proof Sketch

It can be shown that the transformation relating the DFT
of the blur kernels in two consecutive steps is linear. More-
over, it can be described by a stochastic matrix A, with
non-negative elements:

A B Y 1 4 (%) | T A U
A = TFEE 2 s rtmE - Y

Where A(i, j) is the element in the i*" column and the
§t" row of A.

A is a probability matrix thus describing a contraction
mapping. One can conclude, that the all-ones vector is an
eigen-vector of A with eigen-value 1, and there is no vector
with a bigger eigen-value.

If deg(A — I) > N — 1, there is no other eigen-vector

with eigen-value 1, and we receive that

lim M = lim A" M =T

n—o0 n—oo

and equivalently,

lim G < lim M{" . F=F
n—o00

n—o0

With an exponential convergence. The convergence of

G%”) to I follows immediately the convergence of ng)
to F.

4.4 Failure points

As shown in the previous sub-section, the condition for
convergence is that deg(A — I) > N — 1, where A is the
matrix relating the DFT of the blur kernels in two consec-
utive steps. A simple case where this condition does not
hold is when A = I. This happens when the image in-
cludes only parallel diagonal lines. In this case, applying
motion blur in the x and y directions yield the same de-
graded images, and thus there is no information for recov-
ery.

5 Examples

We have implemented both the spatial-domain and the
frequency-domain methods, and tested them on simulated
and real cases of motion blur. The images with real motion
blur were restored in the spatial-domain using a 2-D image
displacement model describing rotations and translations.
The iterations described in Sect. 3 converged after a few
steps.

5.1 Restoration from Synthetic Blur

The images in Fig. 2(a)-(c) were obtained by blurring
the original image of Fig. 2(d) using a Gaussian-like mo-
tion blur. The direction of the motion blur is vertical in
Fig. 2(a), horizontal in Fig. 2(b) and diagonal in Fig. 2(c).
From comparison of Fig. 2(e) and 2(f) it is clear that the
images are better recovered when the directions of motion
blur in the two images are orthogonal. The frequency-
domain method enables the recovery of images degraded
by a wide blur kernel, but limits the motion between the
two images to pure translation.

5.2 Restoration from Real Motion Blur

The images shown in Fig. 3 were taken by a camera
moving relative to a flat poster. The motion blur in Fig. 3(a)
and Fig. 3(b) were obtained by vertical and horizontal mo-
tions respectively.

Fig. 3(c) and Fig. 3(d) show a clear enhancement of
each of the images. Due to the small rotation between
the images, any method assuming only a pure translation
would have failed for this sequence.

Fig. 4 shows how using different estimations for the
angle of the motion blur direction for images 3(a) and
Fig. 3(b) affects the enhancement of the images. These di-
agrams can be used to recover the directions of the motion
blur from two images. For practical reasons the 3" level
of the Gaussian pyramid was used instead of the original
images. As can be seen from 4(a) and 4(b), the horizon-
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Figure 3. Restoration from two “real” blurred images, related by a translation and a small rotation.
(a) and (b) are the input images, degraded by horizontal and vertical motion blur respectively. (c)
and (d) are the resulting images after the 4¢" iteration.

tal and vertical directions yielded the strongest deblurring
effect on the first and second image respectively.

Fig. 5 shows a frontal view of a hotel wall. Fig. 5(a) and
Fig. 5(b) were taken with fast pan and tilt of the camera.
The motion blur induced from the pan or tilt can fit our
motion blur model (uniform blur) since the focal length
was large.

The restored image after the iteration is shown in
Fig. 5(c). The deblurring achieved by applying our method
is emphasized by the enlarged Fig. 5(d-e-f). Note also the
hotel name, blurred in Fig. 5(a), and the bricks blurred in
Fig. 5(b). They are both sharper in the restored image. This
demonstrates the use of combined information from both
of the images.

4th

6 Concluding Remarks

Two images of the same scene, having motion blur in
different directions prove to preserve large amount of in-
formation of the original scene. A simple and yet effective
method for recovering this information is presented. This
method does not require the knowledge of the blur kernel,
and does not assume any relation between the image dis-
placement and the motion blur.

Recovering the parameters of image displacement is
done simultaneously with the deblurring of the image,
which enables an accurate computation of the displace-
ment parameters, and a better restoration of real blurred
images.

This method can be used, for example, for images
blurred due to hand tremble, where most assumptions
about the relations between motion and motion blur fail.

More investigations are needed regarding a possible use
of more than two images. For example, it is logical to as-
sume that three images of the same scene, blurred in di-
rections that are in 60° one from another, can be better en-
hanced together.
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Figure 5. An example of recovering two out-doors blurred images. (a) and (b) were degraded by
horizontal and vertical motion blur due to the fast panning and tilting of the hand. (c) is the resulting
image after the 4/" iteration. (d)-(f) show a zoom view of (a)-(c) respectively.
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a)

b)

¢ 9]
Figure 2. Restoration from simulated motion
blur using the frequency-domain approach.
The direction of motion blur is vertical in (a),
horizontal in (b), and diagonal in (c).

(d) The original image.

(e) The image recovered from (a) and (b).

(f) The image recovered from (b) and (c).
Better restoration is obtained when the di-
rections of motion blur are perpendicular.
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Figure 4. The effect of an error in the estima-
tion of motion blur direction on the sharp-
ness of the resulting image.

(a) and (b) are diagrams relating the esti-
mated direction of the motion blur to the
achieved sharpness of the image after one it-
eration of the spatial-domain algorithm. The
input images for both diagrams are shown in
3(a) and Fig. 3(b).

YFF.F.

COMPUTER

SOCIETY



