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Classification and Tracking Using Local Optimization 
SHMUEL PELEG AND ALLON NATHAN 

Abstract—When a heuristic function is available to evaluate classifica­
tions, a special search procedure is applied to find a classification optimiz­
ing this function. A specific application to image segmentation is presented, 
including several examples. The major difference between this approach 
and previous optimization attempts is the use of deterministic rather than 
probabilistic classifications. The approach is also applied to object tracking 
in image sequences. 
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I. INTRODUCTION 

The classification problem can be described as follows: let 
V = {1, · · · , « } be a set of objects, and let Ω be a set of classes 
(labels). A classification is an assignment of each object to a 
unique class. Given a set of measurements on the objects, a 
classification is sought that will be consistent with the measure­
ments while conforming to some general constraints. 

The probabilistic relaxation approach [1], [2] assigns to every 
object a probability vector over all possible classes. Using an 
expression designed to improve compatibility among objects, the 
probability vectors are updated based on the neighboring vectors. 
The vectors are updated iteratively until satisfactory results are 
obtained. To get a classification from the probability vectors, 
every object is assigned to its most probable class. Relaxation 
methods have been used for various problems, and in some of 
these they present the only known solution [6]. However, they are 
not guaranteed to improve classification, and in many cases, after 
improved classification during the first few iterations, classifica­
tion deteriorates as the iterations continue. An evaluation method 
has been suggested [3] to monitor the relaxation and to determine 
the best classification from all those suggested by the relaxation. 

Probabilistic labeling also has an optimization approach [4], [5] 
which tries to find a probabilistic labeling that maximizes some 
measure. However, a statistical knowledge of the process is 
needed, and the relation between an optimal probabilistic label­
ing and an optimal deterministic classification is not clear. 

This correspondence describes a method for finding a classifi­
cation that optimizes some heuristic merit function. The heuristic 
function is defined over the deterministic classifications and thus 
can be developed and understood better than functions over 
probabilistic classifications. The method has later been success­
fully applied to the substitution cipher problem [11] with very 
fast convergence. The next section will describe the method in 
general, and the following sections will explain its application to 
image segmentation and object tracking. 

II. OPTIMAL DISCRETE CLASSIFICATION 

Let S: V -> Ω be a classification where every object I e Κ is 
assigned to a class λ e Ω. A heuristic function Η assigns a merit 
to every classification, and a classification that optimizes Η is 
sought. 

Given a classification S, we denote by S[i\X] the classification 
in which object i is assigned the label λ, but which is otherwise 
identical to S. Given a global merit function H(S), we seek a 
local merit function h such that given a classification .S, /i(.S[/|X]) 
> Λ(5[/|μ1) probably implies 7/(S[/|X]) > 7/(5[ι|μ]). The func­
tion h should be such that it can be computed on a local 
neighborhood of an object i , and its computation is faster than 
that of H. Sometimes, a strict implication relation can be achieved 
between h and // , but since many decisions are made based on 
that relation, a probable implication can be used since, even if the 
relation holds in most (but not all) cases, the value of Η will still 
be improved. 

The atomic step in the optimization algorithm involves examin­
ing one object, and using the local function h to determine the 
best possible labeling for that object given the current configura­
tion. Namely, the value of Λ(.S[/1λ]) is computed for all labels λ, 
and a label \ m is chosen such that h(S[i\\m]) > h(S[i\p]) for all 
labels μ. The labeling of that object is changed (if necessary) to 

To get global improvement of the merit function H, the local 
atomic step is repeated over all nodes several times. If a parallel 
machine is available, all nodes can choose their best label and 
switch to it simultaneously. In such scheme, when all nodes are 
updated in parallel, a label that seems optimal in the current 
context might not be optimal in the updated context. Even with 
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this effect, however, experiments showed that the overall effect 
still optimizes the global merit H. 

When serial updating is performed, several orderings can be 
used. The simplest is to examine all nodes in some order, and 
iterate the process several times. Alternatively, an ordering func­
tion can be used to focus the effort of the optimization on 
interesting objects and to avoid computation involving objects 
whose classification may not be of great importance. The func­
tion h itself can serve as an ordering function to process at each 
step the object that has maximum improvement potential. Ini­
tially, h should be applied to all objects, and every object i should 
be assigned a potential: the improvement in h if the object i 
changes its label to its optimal label. At each step, only the node 
with maximum potential will be actually updated. After updating, 
the node gets a potential of zero (since it already has the optimal 
label), and all affected neighbors update their potentials. 

III. IMAGE SEGMENTATION 

In this section the optimal classification method is applied to 
image segmentation. Martelli and Montanari [7] and Weszka and 
Rosenfeld [8] discussed the role of "roughness" and discrep­
ancy from the original image in smoothing and thresholding. 
Narayanan et al. [9] applied roughness and discrepancy cost 
measures in gray level smoothing and segmentation using a 
steepest descent method. The steepest descent method proved to 
be computationally expensive. Using the discrete optimization 
with almost the same cost function provides a fast good-quality 
segmentation. Another element that is introduced into the cost 
function is the fit of the segmentation to the gray level edges. 

Let F(x9 y) be the given image. We look for a labeling L(x, y) 
that minimizes the cost 

beled λ: 

x,y x,y 

where R is a roughness measure, D is a discrepancy measure, and 
G is an edge-fit measure. The global measure Η is broken into a 
sum of local measures, h(x, y) = R(x, y) + aD(x, y) + 
fiG(x, y). Minimizing Λ at a pixel will cause a reduction in the 
value of H. 

The roughness measure can be chosen from among many 
existing measures for gray level images, notably the digital Lapla-
cian and the digital gradient magnitude. However, since we 
would like to find the roughness of a labeled image, these were 
not used. Instead, the global roughness measure for a labeled 
image L(JC , v) was defined as the number of neighboring pixel 
pairs (in the four-neighbor sense) that have different labels. If we 
define (α Φ b) to be one ii L(a) Φ L(b) and zero otherwise, then 
the roughness of f ^ *] is (α Φ b) + (c Φ d) + {α Φ c) + (b Φ 
d). When a pixel changes its label, the effect on the global 
measure is only through its relations to the labels of its four 
immediate neighbors. So, in the configuration 

Σ F(x,y) 

where F(x, y) is the gray level in location (JC, y) of the original 
picture. The local discrepancy, assuming the foregoing model, 
will be 

D{x,y) = (F(x,y) - gL{x,y))2. 

This discrepancy function was used in the experiments reported 
in the next section. 

Haralick uses in his facet model [10] the assumption that gray 
levels vary linearly within segments. In that case, the best fitting 
plane Ρλ: I2 -> / can be found by linear regression for all points 
labeled λ to minimize the distance 

Σ ( F ( * , y ) - i > A ( * , y ) ) 2 . 
L(x,y) = \ 

Once this best fitting plane has been found, the local discrepancy 
function is defined by 

D(xyy) - ( F ( x , y) - PL(x,y)(x, y)f. 

The third element used in the cost function is the match 
between segment borders and gray level edges in the original 

b c 
e f 
h i 

R(e) = (εΦ b) +{e Φ d) 
+ {e Φ h) +(βΦ/). 

The global roughness is half the sum of all local pixel roughness. 
Alternatively, the roughness measure can be defined over an 
eight-neighborhood, or over any other neighborhood desired. 

The discrepancy measure D(x, y) needs some assumptions on 
the gray level distribution of the objects. If the gray level is 
assumed to be constant within objects, then all pixels having the 
same label should also have (after segmentation) the same gray 
level. Thus a gray level gx is associated with every label λ, and gx 

will be the average of the original gray levels of all pixels la-

Fig. 1. Segmentation of infrared picture of tank, (a) Original picture (left) 
and gradient picture, (b)-(e) Initial (left), intermediate (center), and final 
(right) segmentations for different initial segmentations and weights (see 
text). 
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Fig. 2. Same as Fig. 1 but for segmentation of white blood cell. 

picture. Let V(*, y) be the digital gradient magnitude value for 
location ( x , y) in the original gray level picture. If segment 
borders fit gray level edges, they should occur in locations having 
high gradient. We define an edge-matching cost component as 

(-V(x,y), if L(x,y) Φ L(x\y') 
I for some neighbor (x\ y'). 

G(x, y) = < 
V ( - * , J ) , ifL(x,y) = L{x\yf) 

^ for all neighbors (χ ' , y'). 

This component will decrease the total cost when segment borders 
also have high gradient value and increase the cost when interior 
pixels have high gradient value. In our experiments, the Robert's 

operator was used _(L> + | '* " J j, but if necessary, the 
direction of the gradient can also be compared with the class 
boundary direction to get an even better figure of merit. 

IV. SEGMENTATION EXAMPLES 

The local measure h(x, y\\) for the label λ at the pixel (JC, v) 
had the following three components in our experiments: 

A ( J C , . V | X ) = R2 + a D 2 + 0 G , 

where 

R roughness measure, the number of neighboring pixels hav­
ing labels different than λ, 

Fig. 3. Same as Fig. 1 but for segmentation of automobile parts. 

D discrepancy measure, the difference between the original 
gray level at (x, y) and the gray level associated with the 
label λ, 

G edge-matching component as described in the previous 
section. 

The weights α and β were used to emphasize different compo­
nents. 

The initial segmentation is the result of thresholding. To show 
that the optimization process is independent of the initial seg­
mentation, each image was processed twice, starting from two 
drastically different segmentations, one obtained from a very low 
threshold, the other from a very high threshold. In practice, we 
should ordinarily get better initial segmentations than the ones in 
our examples, and the optimization process will then converge 
faster. 

Fig. 1 shows the process applied to an infrared image of a tank. 
The first row shows (from left to right) the initial image and the 
gradient image. Fig. 1(b) and (d) show initial, intermediate, and 
final segmentations with a = 0.5, β = 0, but with different initial 
segmentations. Fig. 1(c) and (e) show the same stages for α = 0.2, 
β = 0. The gradient data were not used since the image is very 
noisy, and high gradient values do not correspond to object 
boundaries. These figures also show that even with drastically 
different initial segmentations, the final segmentation is nearly 
the same. 

Fig. 2 shows a white blood cell which is to be segmented into 
three classes. The first row is the same as in Fig. 1, while Fig. 2(b) 
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Fig. 4. Segmentation of signature, (a) Initial picture, (b) Gradient picture, (c), (f) Two different initial segmentations, (d), (g) 
Intermediate segmentations corresponding to (c) and (f). (e), (h) Final segmentations. 

(a) (b) (c) 
Fig. 5. Sequence of three frames, first frame on right. 

(a) (b) 
Fig. 6. (a) Initial segmentation of first frame, (b) Final segmentation of this 

frame after 12 iterations. 

and (d) are with a = 1 and β = 0.2. Fig. 2(c) and (e) are for 
α = 1 and β = 1. 

Fig. 3 shows some automobile parts. This picture is hard to 
segment by thresholding because of the global shading of the 
parts and the background. Fig. 3(b) and (d) show the segmenta­
tion results with α = 1, β = 20. Fig. 3(c) and (e) display the 
results with α = 1, β = 0. 

(a) (b) (c) (d) 
Fig. 7. Segmentation of second (upper row) and third (lower row) frames, (a) 

Initial segmentation, (b) After two ordinary iterations, (c) After two itera­
tions using second tracking scheme (computing displacement between 
frames), (d) After two iterations using first tracking scheme (preceeding 
frame as initial segmentation). 

Fig. 4 shows a signature. From top to bottom, we have the 
original image, the gradient, the initial segmentation, and inter­
mediate and final results of the segmentation with α = 1, β = 1. 

In Figs. 1-4 updating was done in parallel at every iteration. 
This was done to demonstrate that the process improves segmen­
tation even though the parallel updating does not guarantee 
reduction of cost. The process is relatively fast (faster than 
relaxation or steepest descent optimization), and final results 
were obtained after 10-20 iterations, when no more change is 
introduced into the labeling. 
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V. OBJECT TRACKING 

The optimal segmentation scheme leads to simple object track­
ing methods by deriving the segmentation of a frame in a 
sequence from the final segmentation of the preceding frame. 
This introduces additional knowledge into the procedure, and 
only a few iterations are needed to reach final segmentation at 
each frame. Two tracking methods were tested and are described 
in this section. 

In the first tracking scheme, the final segmentation of a frame 
is used as the initial segmentation for the following frame. This 
approach is appropriate when the movement of the objects from 
frame to frame is small relative to their size and is simple to 
implement. 

The second tracking method compares the initial segmentation 
of a new frame to the final segmentation of the preceding frame. 
After computing the center of gravity for each label, a correspon­
dence is established between labels in the two frames to minimize 
size and location differences. After the correspondence has been 
established, an estimate is available for the displacement of each 
object. In updating the labels of each frame, a weight is given to 
the labeling of the preceeding frame, shifted by the computed 
displacement estimate. 

Fig. 5 shows a sequence of three frames. The initial and final 
segmentation of the first frame, after 12 iterations of ordinary 
optimization, are displayed in Fig. 6. Segmentation of the second 
and third frames with two iterations only, for different methods, 
is displayed in Fig. 7. The two tracking algorithms show much 
improved results compared with ordinary optimization. 

VI. CONCLUDING REMARKS 

An optimization method has been presented that can perform 
classification based on optimization of a cost function. Experi­
ments were performed for image segmentation with cost func­
tions that include roughness, discrepancy from original image, 
and fitting the gray level gradient. The general method is not 
limited to this class of functions only; any function appropriate 
to the problem can be used. This method can also be used for 
simple tracking algorithms in sequences of frames. It has also 
been applied to solve substitution ciphers [11], resulting in fast 
and accurate solutions. 
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Information Structures in Deterministic 
Decentralized Control Problems 

R. H. LI AND MADAN G. SINGH 

Abstract—The information structures associated with deterministic de­
centralized control are examined. Conditions are derived under which such 
structures are partially nested. The tuning regulator approach and the 
sequential optimization approach are used as examples to examine these 
conditions in the context of concrete decentralized controller design philos­
ophies. 

I. INTRODUCTION 

Since the publication of Witsenhausen's paper in 1968 [22] 
major interest has arisen in the information structures associated 
with decentralized decisionmaking under uncertainty (cf. [1]—[13]). 
Although the optimal solution to Witsenhausen's problem has 
not so far been found, much insight has been gained. For 
example, although in the general case of nonclassical information 
patterns, we know that separation results do not apply so that the 
optimal solution may be nonlinear and based on an infinite 
dimensional record of the measurements, certain special cases 
exist where simple solutions do apply. The most significant of 
these special cases is the one where the information structure is 
partially nested [3], since here linear solutions are possible. 

In parallel with the developments on stochastic decentralized 
control, a significant amount of work has been done on de­
centralized deterministic problems [14]-[21], [23], Here, condi­
tions have been derived for stabilization for decentralized control 
[14], and design techniques have been developed [15]-[20], [24]. 
As Bismut [2] points out, the deterministic decentralized control 
problem can be viewed as a degenerate case for the more general 
stochastic formulation. However, aside from the paper of Bismust 
[2], no attempt has been made to establish the links, if any, 
between the two fields. The aim of the present correspondence is 
to examine the links. 

One useful way of examining the links between the stochastic 
and the deterministic decentralized control problems is through 
the information structures. We examine some particular ap­
proaches in deterministic decentralized control and see under 
what conditions we can have a partially nested information 
structure. It should be noted that most of the work on determinis­
tic decentralized controller design has used a stabilization as 
opposed to an optimization framework. However, since many 
stable decentralized controls may be possible [24], designers often 
also use some optimization criteria (e.g., speed of response, etc.). 
In order to do out comparison, we will consider deterministic 
decentralized control from an optimization point of view. 

The rest of the correspondence is divided into three parts. In 
Section II we review briefly the notion of information structures 
in decentralized stochastic control. In Section III, we consider a 
deterministic decentralized control approach and examine its 
information structure. We state the conditions under which its 
information structure is partially nested. In Section IV we con­
clude by examining the tuning regulators approach of Davison as 
well as the sequential optimization approach of Davison and 
Gesing [20] from the point of view of information structures. 
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