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vantage is that documents with mixed graphic forms can be
communicated economically to receivers in a current time frame.
Partitioning also enables symbol substitution and communication
of messages with high effectiveness to a broad class of distributed
user terminals. This combination of1) low cost, 2) current and
correct information transport, and 3) distributive capability
offered by a layered terminal architecture, increases the probabil-
ity of the process achieving architectural status.
The principal parameter, in addition to cost, that controls the

consumer acceptance of new communication processes, is opera-
bility. With highly operable and friendly systems and terminals;
new devices, methods, or systems can soon achieve architectural
status. The HIPOUS chart is a powerful design tool in examining
the operability of systems since each step in the process is
critically examined on two scales. The quality scale assists in
overcoming the problem of cost associated with redundancy in
information, it and the quality scale column provide continual
visual feedback. The second scale column, time, reminds the
designer of the time of processing and machine responsiveness to
users. A totaling of the time column for all user steps in system
behavioral studies is also a potent message to designers. Bot-
tlenecks in communication processes are quickly identified with
the new design tool, the HIPOUS chart.

Partitioning of information and services and new design tools
are key to enabling the design of cost effective and operable
systems surrounding integrated communications. All of this as-
sumes1) an appropriate architecture for data structures in logical
and physical form, 2) appropriate semantics for symbol designa-
tion and attributes describing a record, and 3) enforcement
principles. Without enforcement, information hiding, and defini-
tions criteria in these areas, the elements of control and correct-
ness are lost. With control and correctness in language, data
structures, protocols, and design tools, the following goals are
achieved with electrical signal communications:

a current, correct, and controlled information,
* cost effective communications, and
* highly operable systems.
With major goals within view, themissing ingredient to achiev-

ing physical forms using the new process is optimum partitioning
of man- machine tasks. Optimization of new system performance
and operability, using new subsystems, design tools, and com-
mand instructions requires extensive conceptual studies. Since
experience is resident only in man and not in new machines,
over-involvement of the user is initially required. Testing and
evaluation using the HIPOUS chart is required in major applica-
tion environments. There is no alternative to conceptual explora-
tions and studies if architectural status is to be achieved with
these new systems and processes.

VIII. CONCLUDING REMARKS
A new communications process has been described to over-

come the problems and barriers encountered in human communi-
cation of information in media form. The impact of partitioning
a message into basic graphic forms is an immediate reduction in
cost for communicating highly effective graphic messages be-
tween strangers. A series of secondary advantages which accrue
due to partitioning and graphic symbol processing is an enabling
of new and broader distributive forms of message delivery.
The sharing of the intelligence of both man and machine in an

interactive dialog creates an optimum information package, low
cost and current, correct, and controlled information communica-
tions result. With a flexible and adaptable interface via software,
experimentation will also lead to highly optimized methods and
services for communicant groups with beliefs in common.
Advancements in technology and increased learning through
experimentation will also. lead to a minimum of user involvement

in machine operations. Habits once established and remembered
by machines, will only require a user- machine dialog in creation
and addressing of messages.
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A Note on the Evaluation of Probabilistic Labelings

SHMUEL PELEG AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract-In a probabilistic labeling of a graph a probability vector over
the possible labels is assigned to every node. Many algorithms, among them
probabilistic relaxation, attempt to improve a probabilistic labeling based
on some statistical model. In evaluating the new probabilistic labelings
produced by such algorithms, we can use several criteria: entropy, which

represents the ambiguity of the labelings; consistency with the model; and
distance from the original labeling. It is shown that probabilistic labelings
that maximize any of these criteria individually are not desirable. The use
of linear combinations of two criteria is also discussed.

I. INTRODUCTION
In many identification problems, the initial identification is

ambiguous. From the measurements that can be initially used it
may be hard to determine the identification of each object
exactly; instead, probabilities are assigned to the different possi-
ble classifications that an object can have.
Graph labeling provides a convenient representation for such

problems. The nodes in the graph are the objects, arcs represent
relations among objects, and the labels represent classes of ob-
jects. The probabilistic identification of the objects is represented
by probability vectors assigned to the nodes. These probability
vectors associate a probability with each possible label that the
node can have.

Given a probabilistic labeling, it is of interest to find an
ordinary unambiguous labeling, where only one label is assigned
to each node, that is most strongly supported by the probabilistic
labeling and by some probabilistic model for the labeled graph.
When the model is a probabilistic finite state grammar, and the
graph is a string, methods have been developed to find such a
labeling [10]. But in many cases, such as those handled by
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relaxation [I]-[9], finding such a maximal labeling directly does
not seem to be feasible. The approach taken in this case is to try
to use the given model to get a probabilistic labeling which is an
improvement over the initial labeling. Relaxation attempts to
increase the consistency of the labeling.

Several criteria have been used to evaluate relaxation processes
by computing various "goodness" measures on the sequences of
probabilistic labelings that they produce. A measure on a prob-
abilistic labeling will be a function from the probability vectors
into the real numbers. Among the criteria considered are entropy,
which represents the ambiguity of the labeling, consistency with
the model, and distance from the original labeling. We shall show
that probabilistic labelings that maximize any of these criteria
individually are not desirable. The use of linear combinations of
two criteria will also be discussed.

II. MEASURES ON PROBABILISTIC LABELINGS

A. Entropy
The entropy measure is defined on a probability vector; it

assigns a maximal value to ambiguous vectors and has value zero
for a nonambiguous vector. Given a probability vector P=
( ,P,), the usual definition of entropy is

n

( )=2 pilog( Pi) (1
i=1

c( P) is zero when there exists a 1 1j -n such that

Pi =8i.j- i=i ,. ,n.

c(P) is maximal when p= ... =p, = l/n. e(P) is used to
measure the ambiguity of a vector; the greater e(P) the more
ambiguous P is.
An alternative definition of entropy is used in [2]:

n n

E((p)= :: pi(' -pi)= I - ::Pp,
i=l i=1

(la)

This alternative form, which has very similar properties to (1), is
more easily analyzed since the "log" is eliminated. To obtain the
entropy of an entire labeling, the individual entropies for each
probability vector are usually averaged.
For a probabilistic vector, it seems advantageous to be less

ambiguous, since for a less ambiguous vector the certainty in
choosing a final label is increased. Thus it might be desirable to
obtain probability vectors with low entropy. Experiments with
relaxation [8] show that the entropy usually does decrease, often
rapidly at first. But lowering the entropy itself is of no value.
When a probabilistic labeling consists only of probability vectors
such that p I = I and pi =0 for I < i6 n, it has a trivially zero
entropy. But such a labeling does not take into account any
knowledge we might have about the model or the initial probabil-
ity labeling. For this reason the entropy measure is usually used
in conjunction with other measures [2].

B. Distance from Original Labeling
The distance from the original labeling takes into account the

initial probabilistic labeling. Low distance indicates similarity to
the initial labeling. The distance measure is generally computed
using a norm

D(P) 11p -p(O) 11 2 =(Pi _P(O))2 (2)

This is computed separately for each vector in the labeling. A
distance for all the vectors can be obtained by adding all the
individual distances. This is reasonable when (2) involves no
square root (as in Eucidean distance).
The labeling which minimizes the distance is, of course, the

initial labeling, which we want to improve. As in the case of the
entropy, the distance measure is thus used only in conjunction
with other measures to evaluate labelings.

C. Consistency
The consistency measure takes into account the probabilistic

model. This model gives a probability to every labeling or sub-
labeling, and increasing the consistency will increase the proba-
bility under the model. A model can be as complicated as a
probabilistic grammar [10] or as simple as a list of individual
probabilities of labels. The model we will use here is the one most
used in relaxation [1], [2]; it consists of individual probabilities of
labels and joint probabilities of pairs of labels at neighboring
nodes.

Let Pr(l, = a) be the probability that the label 1i (at node vi)
will be a, and let Pr(l, = a, li =18) be the joint probability that
label I. will be a and label 1, will be 13. Also let Pi and PI be the
current probability vectors at v, and vj. [Pr(l, = a) is thus the a
priori probability for 1i to be a, while Pi(li = a) is the probability
in the current labeling for 1i to be a]. It was suggested in [2] that a
labeling will be consistent if

Pi(XA) = 2 Pij(Xk X1)P1(X1). (3)

The above expression looks intuitively reasonable, but the mixing
of a priori probabilities (the Pij) and the current probabilistic
labeling (Pi) is not justified.
An expression for consistency can be derived theoretically

using the methods developed in [1]. Assuming that

Pr(Pi,,jll1 = a,lj =z) = Pr(Pill1 = a)Pr(P,j11 =l),

and given the probabilities Pr(l, =a), Pr(li =a1I = 3), and the
current probability vectors Pi and Pj, the probability of I, being a
(using all the above information) is expressed as follows:

P,(l, a)=Pi(li =a)
I 2 Pr(l, =aFlbJ =3) P-(l=j )

Pr(l, = a) fE

2 Pi (li =X) -Pr( I Pr(l =X ljP=),) (lj =8)XeA PrlX)/eA

(4)
A labeling is consistent when Pij = Pj, which occurs when Pi is
unambiguous (all probability is given to one label only), or when

(5)Pr(li = X) = E Pr(li = XI1 = ,8) *pi (l = B),8EA~~~~
for all A E A. Expression (5) is very similar to expression (3) but
with the distinction between a priori and current probabilities. A
measure for consistency can thus be some distance measure
between the expressions and the actual values over all labels,
averaged for all neighbors, and then averaged for all nodes in the
graph.

It can be seen that when

Pi(1j =A) =Pr(1j =A) = 2Pr(1j = ,1} = ,B),

the labeling is consistent, since both conditions (3) and (5) hold.
The above labeling, where all labels at all nodes have their a
priori probabilities, is the most ambiguous, since no additional
information to the a priori knowledge was used. Such a labeling is
called a "no information" labeling, and it is generally undesirable
to get such a labeling during relaxation.

It should be noted that another type of consistent labeling
exists for (4), namely a consistent unambiguous labeling. In such
a labeling, at each node the entire probability is given to one
label only. To be consistent, an unambiguous labeling should
have the property that P,(lj = a) = Pj(lj =1,) = I only when
Pr(li =a, I= 1)>0.
The relaxation scheme described in [1] has as fixed points both

the "no information" and the unambiguous labelings. The more
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traditional relaxation of [3] does not have this property. More on
the advantages of the new relaxation can be found in [6].
The measure (5), and also the very similar measure (3), give the

minimum value to the "no information" labeling, while much
more desirable labelings like the consistent unambiguous labeling
have a high level of "inconsistency." Thus, to get a good measure,
the consistency measures (3) or (5) have to be combined with
other measures.
Another measure of consistency was used in [4]. Given any

iterative algorithm that increases consistency (as relaxation at-
tempts to do), the rate of change between iterations can serve as
an indicator of the consistency of the labeling. Experiments with
relaxation [8] have shown that the rate of change is greatest at the
first iteration and often drops rapidly at later iterations. In [4] it
was proposed to stop iterating the relaxation process when the
rate of change becomes smaller by an order of magnitude than
the rate of change at the first iteration.

III. COMBINING MEASURES
It was shown in Section II that minimizing any measure by

itself does not yield a satisfactory probabilistic labeling. In this
section we will study the effect of combining any two measures
out of the three described in the previous section.

A. Entropy and Distance
Both the entropy measure (1) and the distance measure (2) are

defined on individual nodes, so minimizing these measures at
each node separately will minimize the measure for the entire
graph.

Let c(P) and D(P) be the entropy and the distance measures
of the probability vector P. They can be combined by

Dc=ac+,BD (6)

where a and [8 are weights. We will analyze the behavior of DC by
using the modified definition of entropy in (la) and breaking it
into two parts:

N N

C(P) pi(i-p1)= I- Ip2

N 2

The distance from the initial labeling P(O), as in (2), is

N

D(p)= (p()_ )2
i=lI

Combining both gives us

D(P)= [-
I

- 2 (Pi N
+
X2 (Pilo -Pi)2]

(C N) -# (Pto _pi)2 -a 2 I

N-Pi) (7)

The first term in (7) is constant, the second measures the
distance from the initial labeling, and the third measures the
distance from the labeling with all probabilities equal, PF =
(1/N, I/N,- **,1/N). Overall to minimize (7) we should get
closer to P(O) and further from PE. In RN we can go as far as we
want from P,, so (7) does not have a minimum when a ,/. But
within the probability space, the unambiguous labelings, which
are the vertices of the probability space, are the furthest from PF
Hence the vertex closest to P(O) will minimize (7). Let us denote
this vertex by P*; in it, the label having maximal probability in
P(O) gets probability one, and all other labels get probability zero.
When , > a, the minimum occurs on a path between P(O) and

P*, depending on a and ft. Any point on this path, however, is

closer to P* than to any other vertex. Since in most uses of
relaxation the final step involves choosing the maximal label for
each node, such optimization does not affect the final labeling
(namely P*), and there is no need for the optimization.

B. Consistency and Entropy
Since both consistency and entropy are optimized for labelings

that are independent of the initial labeling, any linear combina-
tion of both is guaranteed to have the same property. In [2]
experiments were conducted using such combinations. In these
experiments a steepest descent algorithm was used, starting from
the initial labeling. It was justified by the claim that the combina-
tion of entropy and consistency has many local optima, and the
algorithm will yield an optimum which is closest to the initial
labeling. Unfortunately the many strong assumptions used (the
presence of many optima, convergence into the closest one, etc.)
are not explained or justified in [2]. The virtue of the approach
used in [2] is that it specifically designed an algorithm to mini-
mize ambiguity and inconsistency, unlike other approaches, in
which the algorithms were designed independently of such criteria.

C. Consistency and Distance
The combination of consistency and distance measures seems

to be the best choice, since these really represent two desirable
properties: closeness to the initial labeling and consistency. It
was suggested in [4] that the rate of change of the relaxation can
be used to measure the consistency. In this case the higher the
inconsistency found at the first iteration, the farther away from
the initial labeling the inconsistency will be minimized. The
expression used was

CDksa-I p(O) _.p(k ))1( 1 p(k-1)_Ip()
where the first term measures difference from the initial labeling,
and the second term measures consistency. Since convergence can
occur only when 11p(k -) -p(k)11 goes to 0, the point was made
that it is natural to use a small a.

IV. CONCLUDING REMARKS
None of the measures discussed in this report seem to be

clearly superior. All three measures are reasonable, but optimiz-
ing each of them separately, or even some combinations of them,
seems to yield uninteresting results.
A study of relaxation and its applications shows that in most

cases a maximal unambiguous labeling is determined from the
last probabilistic labeling [5]. This suggests that it might make
better sense to evaluate these unambiguous labelings rather than
the probabilistic labelings. This approach was taken in [10] where
a single unambiguous labeling was chosen for a probabilistic
string and a probabilistic grammar. A similar approach can be
taken for given a priori probabilities and initial probabilistic
labelings of general graphs. Future research is planned in this
direction.
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