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Determining Compatibility Coefficients for
Curve Enhancement Relaxation Processes

SHMUEL PELEG AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract Relaxation labeling is a process that attempts to
disambiguate probabilistic labelings of objects. Compatibility
coefficients play an important role in the relaxation process. No
explanation exists at present for their exact meaning, and no
algorithm has been proposed to generate them. Some possible
interpretations of these coefficients are presented, and algorithms are
suggested to obtain them from the initial probabilistic labeling.
Examples are given for the case where relaxation is used to
disambiguate the detection of curves in a picture.

I. INTRODUCTION

In many image processing tasks a classification of each point
into one of several classes is desired. For example, in line detec-
tion, points are classified as being on a line having a certain direc-
tion or as not being on a line. However, classification processes
such as this, based on local detection, do not usually give perfect
results. The processes are sensitive to local noise and sometimes
cannot determine the exact classification. A line detector, for

Manuscript received October 7, 1977; revised February 6, 1978. This work was

supported in part by the National Science Foundation under Grant MCS-76-23763.
S. Peleg's studies were supported by the Lady Davis Fellowship Trust.
The authors are with the Computer Saence Center. University of Maryland, Col-

lege Park MD 20742.

example, can often find substantial responses in several directions
at a given point. A method that has been used to improve the
initial classification is relaxation labeling.
To apply relaxation labeling, we initially assign to each point

the probabilities of its possible class memberships, based on local
information. The relaxation labeling process uses knowledge of
how labels interact locally to improve and disambiguate this prior
classification. This process is described in Section 11. This corre-

spondence suggests several automatic methods of determining the
mutual support coefficients used in relaxation according to differ-
ent possible interpretations of these coefficients.

II. THE RELAXATION LABELING PROCESS

In this section we review some of the concepts involved in

relaxation labeling. The subject is discussed in greater detail in

[1]; for further references see [2].
The relaxation process involves a set of objects A - a I, a2,

an} and a set of labels (class names) A = {A', A2, *m} For each
object a, we are given a set of local measurements, which are used
as a basis for estimating the probabilities Pi(A) of object at having
each label i. These probabilities satisfy the condition

(1)Z Pi(A)= 1. for all ai E AI 0 < P,(s.) c 1.
A E A

The relaxation process is a parallel algorithm that updates the
probabilities of labels. The probabilities are updated using a set of
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(a) (b) (c) %%AI

Fig. 1. Images used in experiments. (a), (b) Original images. (c), (d) Edge detector outputs.

given "compatibility coefficients" r1AA, A'), where rnj: A x A
[-1, 1] and:

a) if A and A' are compatible for objects a, and aj, respectively,
then rij(A, A') > 0;

b) if A and A' are incompatible for a, and aj, respectively, then
r1j(A,A') < 0;

c) if neither labeling is constrained by the other, then rgj(A,
A') = O;

d) the magnitude of r,j represents the strength of the
compatibility.

Methods for computing the r,j are suggested in Sections IV and V.
We now discuss the probability updating rule. The updating

factor for the estimate P,k(A) (at the kth iteration) is

q$(A) = 1 E rij(A, A')Pj(A') (2)

where n is the number of objects. The new estimate of the probabi-
Lity of A at a, is

k++l)(A) Pi'(AXI + qt1(A)]
, P; (A')[1 + qk'(A')](

Thus each Pil(A) is multipLed by [1 - qi(A)], and the values are

normaLized at each object to satisfy (1) The relaxation process is
iterated until some termination criterion is met.

III. CURVE ENHANCEMENT USING RELAXATION

Since the domain from which the examples in this report are

drawn is curve enhancement, this application is briefly described
in this section. A detailed discussion appears in [3]. Line detectors
are applied to the picture, and at each point probabiLities are

assigned to nine labels: Lines in eight possible directions and a "no
Line" label.
Two methods of line detection can be used: Linear and nonlin-

ear. The response of a Linear line detector for vertical Lines, given
the configuration of points

a b c

d e f
g h i

will be 2(b + e + h) - (a + c + d +f+ g + i). The response of a

nonlinear detector for vertical Lnes will be

2(b + e + h) - (a + c + d +f+ g +i),

if a<b>c, d <e>f, g<h>i

0,

otherwise.

The initial probabilistic labeling is obtained from the line detector
output by normalization (see [3])
The coefficients used in the probability updating rule will be

discussed below. They are computed only for neighboring pairs of
points; in other words, they are assumed to be zero for nonneigh-
boring point pairs.

The following simplifications have been made in the relaxation
process described in Section II. The probability of a label whose
current estimate is greater than 0.9 and which gets maximum
support is increased to 1, and that point is never considered again
for updating. Also, the q1(A) of (2) are not divided by n (when this
does not violate the condition q(A) > - 1), in order to increase
the effect of each iteration on the P,(A)

Input images for our curve enhancement experiments were ob-
tained by applying an edge detection operator (based on differ-
ences of two-by-two averages) to the two pictures shown in Fig.
1(a), (b), yielding the outline pictures shown in Fig. 1(c), (d}

IV. CoMPATIBILrry COEFFICIENTS AS CORRELATIONS
For brevity, let p,j denote the compatibility between the points

(x, y) and (x + i, y +j)-e.g., pIo(A, A') is the compatibility be-
tween label A at a point and label A' at its right-hand neighbor.
One possible interpretation of the compatibilities is in terms of

statistical correlation, since correlation has properties a)d) listed
in Section II. Estimates of the correlation coefficients derived from
analyzing the initial labeling are

E [P(x,,)(A) -(A)J[P(X+I,,+,,(A')-P(A')]
Rij(A, A') = (x,y) a(A)a(A') (4)

Here P(.,b)(A) is the initial estimate of the probability of labeling
point (a, b) with A, P(A) is the average of P(X,,)(A) for all points (x,
y), and a(A) is the standard deviation of P(X, )(A)
To test these R,J in a line enhancement relaxation process, non-

linear line detection operators (see Section III) in eight orienta-
tions were applied to the picture in Fig. 1(c), and the response
strengths were used, as in [3], to compute initial estimates of the
probabilities of the nine labels (eight line orientations and "no
line"> Fig. 2(a) is a symbolic representation of the most probable
label at each point; the "no line" labels are represented by solid
3 x 3 squares with gray level proportional to the "no line" prob-
ability (0 = black, 1 = white), while the line labels are represented
by three-point line segments in the appropriate orientations with
gray levels "negatively proportional" to the line probability
(0 = white, 1 = black}, It can be seen that the line detections are
somewhat noisy.
Table I shows correlation coefficients derived from Fig. 2(a)

using (4), and Fig. 2(b)-(d) show iterations 2, 6, and 12 of the
relaxation process using these coefficients, appLied to Fig. 2(a)
The results are very poor. This is because when one label domin-
ates the picture, as the "no line" label does in our case, its correla-
tion coefficients with all other labels are high. Thus in the
relaxation updating, the "no line" label gets most of the support,
and after a few iterations almost all the points have this labeL ,
The effect of dominance among labels can be alleviated by

weighting the R's by the probabilities that the corresponding labels
do not occur. This greatly reduces the values of the coefficients
involving dominant labels, but will only slightly reduce the values
of the coefficients involving rare labels. The new coefficients are

Rt(A, A') = [1 - P(A)][l - P(A')] RiJ(A, A') (5)
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(b)(a)

(c) (d)

Fig 2. Iterations 0, 2, 6, 12 of relaxation proces using unweighted correlation
coefficents derived from Fig. 2(a) (For explanation of symbols in these figures, see
text.)

TABLE I
CORRELATION COEFFICIENTS DERIVED FROM FIG. 2(a)

0o16 -019 0 03 0 04 0 -0 07 -0.06 -010 -0 02
-012 0.26 -0. 02 -0. 02 -0 01 -0 03 -0. 0 0.01 -0. 02
0.03 -0-02 0.00 -0.01 0~00 -0.02 -0.01 -0.01 -0.01

a) 0.04 -0.02 -0.01 -02 0.02 -0.02 -001I -0.01 -0 01a) ~ 0.0 -0.01 -00 -001l -002 -00I0.1-0
-0:09 -003 -00 -002 -0~02 0,21 0-0 -0.0-0.03 0 01 -001 - 001 0.03 -001 019og -&000 -.001
-06 -01 -0.01 -0.01 -0.01 0.00 -0.00 0. 43 -0.01

-0 is 0~19 -0.01 -0 01-01-02-.1 0.1 0 16

0 49 -0. 50 -0. 09 -0. 09 -0.01 -0 09 -0 04 -0. 01 -0. 20
-0.53 0.83 0.03 -_002 -0.02 -0.03 -0.01 -0.01 0.13
-0.16 0.10 0.32 0.07 -0.00 -0.02 -0.01 0.01 0.00
-0.08 -0.02 -0.01 29 0.05 -0.02 -0.01 -0.01 0.02b) 0 02 -0.02 -0.01 -0 01 003 -0 02 -e 01 -0o01 -0o01-0. 11 -003 -0.01 -0.02 -0. 02 025 0.0 -00 -002-0. 03 -0. 01 0.00 0.02 00 7 -0 01 13 -0.00 -001
-0 06 -0 01 -0. 01 -0 01 -0. 01 0.00 -0.00 0. 19 0 13
-0 08 -002 0.00 -0.01 -0,01 -0.02 -0.01 -001 O:35

0 29 -0.13 -0.14 -0.25 -0.13 -0.11 -0.01 0.02 -0.03
-019 0.27 008 -0 02 -0 02 -0.03 -0.02 -0.01 0.08
-0 04 -_002 0.21 00 7 -0.00 -0.02 -0.01 -0.01 -0.01
-0 25 -0.02 0.11 0 78 O003 -0.02 -0.01 -0.01 -0.01

-0 06 -0. 00 -0.01 002 029 -0 02 -0.01 -0.01 -0.01
-0 15 -003 -0.02 -0 02 0 11 0 28 0.06 -0.01 -0.02
-0.00 -0. 00 0.00 0.02 -0.00 0 01 -0.01 -0.00 -0.01
0.01 -0 01 0.03 -0 -0 01 -0 01 -0 00 -0 00 -0 01
0.01 -0.02 0.04 0. 01 -001 - 002 - 001 -0.01 0 00

where Rjj is defined by (4)1 These coefficients have the property
that they support rare labels at points having no evidence from
their neighborhoods, since the self-support coefficients (the Roo)
are the highest for the rare labels. In case this effect is undesirable,
one might ignore the self-support in the relaxation.
The coefficients defined by (5) for the case of Fig. 2(a) are shown

in Table II. Fig. 3 shows iterations 0, 2, 6, and 12 of the relaxation
process using these coefficients, and Fig. 4 is analogous except
that the self-support coefficients are ignored. (Figs. 3(a) and 4(a)
are the same as Fig. 2(a)) The results are extremely similar and
are much better than those in Fig. 2. The ambiguity has been
greatly reduced, and the curves have survived the process. Note
that the surviving curve points are, for the most part, just the
points whose most probable initial label was a line label; the
results do not differ greatly from a maximum-likelihood
classification of the points based on the initial probability
estimates.

It should be noted that the ideal correlation coefficients should
be symmetric, i.e., pairs of neighbors on opposite sides of a point
should yield the same sets of coefficients (transposed) In the
estimated coefficients of Tables I and II, this is almost exactly true.
Any discrepancy is due partly to computational error and partly
to picture border effects. Analogous remarks apply to the tables of
mutual information coefficients (Table III, ff.)

V. COMPATIBILITY COEFFICIENTS AS

"MUTUAL INFORMATION"
A different approach to defining compatibility coefficients is

based on the mutual information of the labels at neighboring
points. This approach too satisfies our intuitive ideas about the
nature of the coefficients: If two labels have a high positive
correlation, we can expect them to have a high mutual informa-
tion, and vice versa.
We estimate the probability of any point having the label A by

PF(A= 1 E P)
(,y)

(6)

The choice of weighting function in (5) was somewhat arbitrary. For example, we

could have chosen to define the weight to be /[1 P(A)][1 P(A')] rather than
[I P(A)][I P(AX)], i.e., the geometric mean rather than the product.

0.40 -0.17 0.02 -0.06 -o.013 -0:43 -0 04 -007 0o00
-0.12 0o26 -0 02 -O 02 -0.02 -0 03 -0 -0. 01 -0 02
-002 -002 -006 -001 0.01 -0.02 -0:01 -0.01-0g06 -0 02 -0.1 0g29 0g00 -0g02 -0g01 -0.010g082
-0.09 -0 02 -.01 -.0 0.36 0.05 -0.01 -01 -0.01

42 -003 -.02 -0.02 0.10 0.81 -00 :-01
-010 -002 -001 003 00 010 036 -0.00 -001
01 -0 01 -0 01 -O 01 -001 0 00 -0 00 05 -001

-0. 11 0 15 -0 01 -0 01 -0 01 -0 02 -0 01 0 25 -0 01

0.99 -0 58 -.26 -29 -026 -0.51 -0.14 -0.14 -0.29
-0:58 0:99 002 -0.092 -0.02 -03-001 -0.01 -0.02

-0 26 0 2 1.0 0.03 -0.00 02 1 -001
e) -0 29 -0 02 0 03 1 00 0 00 -0 02 -0 01 -0 01 0 0

-0.26 -0 02 -0.00 0.00 100 0.04 -0 01 -0.01_001
-_0 51 -0 03 -0g02 -0.02 004 1°00 -0.01 -0 01 -0 02

-0 14 -0 01 -0. 01 -001 -0. 01 -0. I 00 -0 00 -0 01

-0 14 -0.01 -0.01 -0.01 -0.01 -0.00 1.00 -0 0

-0:29 -002 -001 -0g01 -001 -002 -0.01 -0.01 100

0:41 -0: 12 -0 02 -0.06 -009 -0 44 -010 0:01
-017 026 -002 -00 2 -0 02 -003 -002 -001 0150.02 -0 02 0.06 -.01 -001 -0 02 -001 -o0 -0. 01
-0 .06 -001 0.29 -0 01 -0f ) - 16 Jg: 02 0g0lg:008:3 g 1o83 0g: 01~gg13 02 0.01 00 0 36 0 10 -0 01 -0 01 -0.01

-0.45 -0 03 -0.02 -0o02 0.05 _0985 0. 10 0.00 -002
-0.04 -001 -0~01 -0~01 -0.01 -001 036 -O000 -0 01

-0g07 -0 0l -0 0l -001 -00l -_0,01 -0:00 0g05 0 25
0o00 -0.02 0.08 002 -0 01 -0.02 -0 01 -0.01 -0.01

0 29 -0.1 -0 04 -0.25 -0.06 -0o14 -0.00 0.01 0.01
-0.13 027 -0 02 -002 -0.00 -0 03 -0.00 -0.01 -0.02
-0214 0.08 02 0.11 -0 01-0g02 0g00 0.03 0.04

-0.25 -0.02 0-07 07 002 -002 002 -0 01 0 01

g -013 -002 _0.00 0.03 0229 0 -000 -g00 -0
-0.109 0.03 002 -0.02 -O 02 0. 0.01 -001 -0 02
-0.01 -0 02 -001 -00 -00 0.06 -00 -000 -0.01
002 -0.01 -001 -001 -001-'001 -000 -000 -0.01

-0.03 008 001 -0.01 -o001 -002 -0 01 -0 01 0 00

0o4 -0o52 -0. -0.08 0.02 -0911 -0o03 -0.06 -00
-0 49 0 2 0.0 -0.002 -02 -003 -0.01 -0.01 -0.02

: g43 :0.030g32 -00 2 0.00 -01 0 00

-0 .01 -0.02 0.02 -0.

h) 0.02001-0 00 O.02- . 03 -0. 02 _0.07 -0.01 -0.01o
-00 -0 03 -0 02 -g02 -g02 025 -001 -02

-0:049 -0.001 -0:1 -001 -001 0 06 0.13 -0 00 -0011
-0 01 -001 001 -001 -001 -001 -0. 00 019 -0. 1

-0 20 0 130 00 -0 02 -0. 01 -0. 02 -0 01 0. 13 03

-0116 -0:12 _003 -004 0.03 -0.09 -0.03 -0 06 -019

025 -002 -002 -02 -0:03 0.01 -0.01 0:19
003 .0 01_ 0 0 - 0 - 0

0 04 -0.02 -0 01 -00 -001 -0 -001 -0 001 -00
0

2 -001 00
-002 -.1 -0 02 -003 -0.01 -001

il -~0 0.01 0:0 -0.0

-00
0 -.0 -001 -0~01 009 019 -000 -0.01

-0.10 -0.0 001 -0 .0001-0
0

0 -0 -0.01 -0 00 0 403 .0

-002 -0 02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 0. 16,

The nine parts (a-i) correspond to the nine
neighbors of point (e) in the following order:

a b c
d e f
g h i

In each part, the first row and first column
correspond to no-line probabilities; the remain-
ing rows and columns correspond to slopes measured
clockwise from the vertical in steps of 221°F'
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(b)

(d)

ig, 3. Analogous to Fig. 2, but using weighted correlation coefficients.

(b)

(d)

Fig. 4. Same as Fig. 3. but ignoring the self-support coefficients.

TABLE II
WEIGHTED CORRELATION COEFFICIENTS DERIVED FROM FIG. 2(a)

0. 00 -0.01 -0. o0 0.o0 o 00 -o00 -0.00 -0.01 -0. 00
-0.01 0. 25 -0. 02 -0. 02 -001 -O 03 -.00 -0. 01 -0 02

a) Q O2 O.000-0.01 000 -O 2 -O 01 -0.01 -0 01a, O. 00-O. 02 -O. 01 - 002 O 02 -O 2 -0 01 -0. 01 -0 01
O 00 -0 01 -. 01 -0 01 -0 1 - 2 -o.00 -o.00 -0 01

-0.01 -0. 03 -0. 01 -0.02 -002O 20 0.08 -0.01 -002
-0. 00 0 01 -0 01 -0.01 0 03 -O 01 0 19 -0 00 -0 01
-O 00 -0.01 -0.01 -O 01 -O 01 0 00-000 0.42 -001
-001 0.19 -0.01 -0.01 -0 01 -02 -01. 01. 0O 16

0.00 -0.03 -0.01 -0.01 -000 -001 -0.00 -0O00 -0.01
-0.04 0.79 0.03 -0.02 -0.02 -003 -0.01 -0.01 0.12
-001 0.10 0.32 0.07 -0.00 -0.02 -0.01 0.01 0.00

b) -0. 01 -0.02 -0.01 0.29 0. 05 -0.02 -0.01 -0. 01 0.02
0. 00 -0.02 -O 01 -O. 01 0.03 -0.02 -0.01 -0. 01 -0.01
-0 01 -0.03 -0.01 -0.02 -0.02 0.24 O.06 -0.01 -0.02
-0.00 -0.01 0.00 0 02 07 -001 13 -0.00 -0.01
-0 00 -001 - 01 -O.01 -.01 00 -. 00 0. 19 013
-0.01 -002 0 00 -0.01 -0.01 -002O -0 01 -0. 01 0 34

000 -O 001 -0 01 -0.02 -0.01 -0.01 -0000 00 -0.00
-0 01 0.26 0.08 -0.02 -0.02 -0.03 -0.02 -0.01 0.08
-0.00 02 0.21 00 -000 -0.02 -001 -0.01 -.01

cl -°0.02 -.02 0. 10 0 76 003 -0o02 _0.01 -0. 01 -0 01-O.00 -0.00 -0.01 0.020o29 -002 -01 -0.01 0-.01-0.01 -0.03 -0.02 -O 02o 11 0.27 0. 0 -0 0 -0 02
-0. 00 -0.00 0.00 0.02 -O. 00 0.00 -0. Ol -O. 00 -0. 1

0. 00 -0.01 0.03 -0.01 -0.01 -0.01 -0.00 -0.00 -0.01
0 00 -002 0.04 001 -001 -0.02 -0.01 -0.01 000

0.00 -0.01O 0 00 -0.00 -0.01 -0.03 -0.00 -0 01 000
-0.01 0.25 -002 -0.02 -0.02 -0.03 -001 -O01O -0.02
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-O000--0.02 -001 029 0 00 -0.02 -0.01 -0. 01 002
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f) -0.01 -0.02 0.01 0.00 0.35 0.09 -0.01 -0.01 -0.01
-0.03 -0.03 -0.02 -0.02 0.04 0.02 0.10 0.00 -0.02
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-0.01 0.26 -0 02 -0.02 -00 -003 -000 -001 -002
0 01 0 08 021 010 001 -02 0 00 0 03 0 04
-0.02 -0.02 0.06 -0O002 02 -0 01 0.01

g) -0°01 -0.02O 0 00 0 03 0 29 0. 11 -0.00 -0.01 -0.01
-0.01 -003 -002 02 -002 0 28 0 00 -0 01 -0.02
-0.00 -0 02 -0.01 -0.01 0.01 006 001 -000 -0 01
0.00 -0 01 -0.01 -0.01 -0.01 -0.01 -0. 00 -0 00 -01
-0.00 0.08 -0.01 -0.01 -0.01 -0.02 -001 -001 0.00

and the joint probability of a pair of points having labels A and A'
by

PipA, A') E (7)
n (,.y)

where n is the number of points and P(,y)(A) is the initial estimate
of the probability of point (x, y) having the label A. We can now

estimate the conditional probability that (x, y) is labeled A given
that (x + i, y + j) is labeled A' by

P IAl (8)P(A') (i)(xX
(a.y)

For any event A whose probability of occurrence is P(A), the
amount of information we receive as a result of being told that A
has occurred is defined by

I(A)= -log P(A). (9)
This information is zero when P(A) = 1, since we knew already
that A will occur, and approaches infinity when P(A) approaches
zero. In the same manner, the conditional information that we

0.00 -0.04 -0.01 -0.01 0.00 -0o01 -0.00 -0.00 -0.01
-0.03 0.78 0 10 -. 02 -0 02 -0 03 -0 01 -0 o -0. 02
-0.01 0.03 0.32 -O 01 -001 -0:01 0.OO -0.01 0.00
-0.01 -0.02 0.07 0.29 -0.01 -0. 02 0. 02 -0.0 -0. 01
,O 00 -0.02 -0.00 0. 05 0.03 -0. 02 00 7 -0 01 -0. ol
-0. 01 -0.03 -0.02 -0.02 -0.02 0. 24 -0.010l00 -0. 02
-0 00 -0.01 -001 -001 -0.01 0.08 0.13 -00. 0 -0. O

-0 00 -o 01 ol0 -0.01 -ol -O 01 -0. 00 0 19 -0.01
-0 01 0 12 0.00 0 02 -0 01 -0.02 -0.01 0 13 0.34

000 -0 01 O0 00 O0.00 0 00 -001 -000 -0.00 -001
-0 01 0 24 -0 02 -0. 02 -o 01 -0 03 0 01 -0.01 0 19

0. 0 -0.02 0.00 -0.01 -0o01 -0 01 -0.01 -0.01 -0.01
0 00 -002 -0.01 -0.02 -0.01 -0o02 -0.01 -0.01 -001
0.00 -0.01 0.00 0.02 -0.0 -0 02 0.03 -o001 -0.01

i) -0.01 -0.03 -0. 02 -02 -0.02 0. 21 -0.01 0.00 -02
-0.00 -0.00 -0. 01 -0.0 -0 0.19 -0.00 -001
-001 -0.01 -0

O
-001 -00 -0 O -000 0.42 0 15

-0.00 -0.02 -00.o -0.01 -001 -0o02 -0.01 -0.01 0,16

receive if we already know that B has occurred and are told that A
has occurred is

I(AIB)= -log P(A I B (10)

The contribution of B to the information about A is expressed by
the mutual information

I(A; B) = I(A) - I(A B) = log P(A B) (11)

Note that if A is highly correlated with B, P(A B) should be close
to one, so that I(A B) is close to zero, making l(A; B) high (close

(a)

(c)

Fi

(a)

(c)
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TABLE III
MUTUAL INFORMATION COEFFICENTS DERIVED FROM FIG. 2(a)

0.00 -0.05 0.01 0.01 0.01 -0.02 -0.03 -0.09 -0.01
-0.03 _043 -1.00-°l: 00 -0.32 -0.85 -0.06 -1.00 -1.00
0.01 -1.00 _008 -1 00 0 01 -1 00 -1.00 -1.00 -1.00

a) B1 -.00 -100 1.00 0.17 -1.00 -1,0-I8 1.00 -1. 00a . 0 -0. 35 -1. 00 -1. 00 -1. 00 -1.0 -1. 00 -. 00 -. 00
-0.02 -0.61 -0.21 -0.29 -1.00 0.40 O. 36 -1. 00 -1. 00
-0. 01 0. -1. 00 -.00 0. 30 -1.00 -1.00 -.00
-0.05 -1.00 -.00 -1.00 -1.00 0.07 -1.00 0.9 -1. 00-0.06 0.47 -1.00 -1.00 -1.00 -1.00 1.00 0.65 0.53

0.00 -0. 1 -0.04 -0.03 -0.00 -0.02 -0.02 -0.01 -0. 10
-0.18 0.84 0.18 -1.00 -0.44 -0.74 -0.42 -100 0.39-0.07 0.36 0.69 0.37 -0.09 -1.00 -1.00 0.22 0.02
-0 03 -1.00 -0.15 0.80 0.32 -1.00 -1.00 -1.00 0.15b) 0.01 -0.71 -1.00 -1.00 0.29 -1O00 -1.00 -1.00 -042
-0.03 -0.52 -0.23 -1.00 -1.00 0.44 0.34 -1.00 -1.00
-0.02 -0.23 0.09 0.19 0.44 -0.09 0.59 -1.00 -1.00
0-005 -1.00 -1.00 -1.00 -1.00 0.04 -1.00 0.82 0.82
-0.03 -1.00 0.08 -1.00 -1.00 -1.00 -1.00 -1.00 0.88

0.00 -0.03 -0.07 -0.10 -0.06 -0.03 -0.01 0.01 -0.01
-0.05 0.44 0.33 -1.00 -1.00 -0.49 -1.00 -1.00 0.32
-0.02 -1.00 0.60 0.38 -0,07 -1.00 -1.00 -1.00 -1 00
-0.10 -1.00 0.44 0.78 0.28 -1.00 -1.00 -1.00 -1.00

c) -0.03 -0.00 -0.23 0.21 0.89 -1.00 -1.00 -1.00 -1.0000-04 -0.53 -0.48 -1.00 0.39 0.48 0.32 -1o00 -1.00
-0.00 -0.08 0.01 0.23 -0.10 0.08 -1.00 -1.00 -1.00
0. 01 -1. 00 0.39 -1. 00 -1. 00 -1. 00 -1.00 -1.00 -1. 00
0.01 -1.00 0.29 0.10 -0.14 -1.00 -1.00 -1.00 0.08

0. 00 -0. 04 0. 01 -0.02 -0. 08 -0. 14 -0. 02 -O. 06 0 00
-0.03 0.43 -1.00 -1.00 -0.49 -0.90 -0.09 -1. 00 -1. 00
-0.01 -1.00 0.38 -1.00 0. 14 -0.82 -1.00 -1.00 0.42
-0.02 -1.00 -1.00 0.59 0.02 -1.00 -1.00 -1.00 0.18
-0.04 -1.00 -1.00 -1.00 0.73 0.28 -0.39 -1.00 -027
-0.13 -0.73 -0.46 -1.00 0.38 0.86 -1.00 -1.00 -1.00
-0.08 -1.00 -1.00 0.25 -1.00 0.41 0.79 -1.00 -1.00
0.00 -1.00 -1.00 -1.00 -1.00 0.01 -1.00 0.58 -1.00
-0.04 0.42 -1.00 -1.00 -0.17 -1.00 -1.00 0.75 -019

0.01 -0.21 -0.15 -0.13 -0.16 -0.18 -0.08 -014 -016
-0.21 0.68 0. 16 -1.00 -0.51 -0.99 -0.43 -1 00 -1 00
-0. 15 0. 16 0. 91 0.26 -0.08 -0.71 -1. 00 -1.00 -1.00

e) -0.13 -1.00 0. 28 0.83 0. 01 -1. 00 -1.00 -100 -1.00
-0.18 -0.51 -0.08 0.01 0.93 0.22 -0.40 -1o00 -0.23
-0.18 -0.99 -0.71 -1.00 0.22 0.70 -1.00 -1.00 -100
-0.08 -0.43 -1.00 -1.00 -0.40 -1.000o99 -1.00 -I 00
-0.14 -1.00 -1.00 -1.00 -1. 00 -1. 00 -1. 00 1.00 -1.00
-0. 18 -1. 00 -1.00 -1. 00 -0.23 -1.00 -1. 00 -1.00 .e88

0.00 -0.03 -0.01 -0.02 -0.04 -014 -0.06 0.00 -004
-0.04 0.43 -1.00 -1.00 -1.00 -0.73 -1.00 -1.00 0o42
0.01 -1.00 0.38 -1.00 -1.00 -0.46 -1.00 -1.00 -1.00

f) :0.02 -1.00 -1.00 0. 59 -1. 00 -I 00 o 25 -1o00 -100-O.06 -0. 49 0. 14 0.02 0. 73 0.38 -1.00 -1.00 -0.17
-0.15 -0.90 -0.62 -1.00 0.26 0866 0.41 0.01 -1.00
-0.02 -0.09 -1.00 -1.00 -039 -I o00 079 -1.00 -100
-0.06 -1. 00 -1.00 -1. 00 -1. 00 -1.00 -1. 00 0 58 0o75
0. 00 -1.00 0.42 0. 18 -0.27 -1.00 -1.00 -1. 00 -0.19

0.00 -0.05 -0.02 -0.10 -0.03 -004 -0.00 0.01 0o01
-0.03 0.43 -1.00 -1.00 -0.00 -0.53 -0.06 -1.00 -1.00
-00.7 0.33 0.80 0.44 -0.23 -0.48 0.01 0.39 0.29
-O. 10 -1. 00 0.36 0.78 0. 21 -1. 00 0.23 -1 00 0 10

g) -0. 0 -1. 00 -0. 07 0.28 0.69 0.39 -0o10 -1. 00 -014
-0.03 -0.49 -1.00 -1.00 -1.00 0.45 0.06 -100 -1.00
-0. 01 -1. 00 -1. 00 -1. 00 -1.00 0 32 -1. 00 -1. 0o -1 00
0. 01 -1. 00 -1. 00 -1. 00 -1.00 -1. 00 -1 00 -1 00 -1 00

-0. 01 0 32 -1. 00 -1. 00 -1. 00 -1. 00 -1. 00 -1. 00 0.06

o.0o -0.18 -0.07 -0.03 0.01 -0.03 -0.02 -0.03 -0.03
-0.18 0.64 0.38 -1.00 -0. 71 -0.52 -0.23 -1. 00 -1. 00
-0.04 0.18 0.69 -0.13 -1.00 -0.23 0.09 -1.00 0 08

-0.03 -1.00 0.37 0. 0 -1. 00 -100 0. 19 -1. 00 -1 00
h) -0.00 -0.44 -0°09 0.32 0.29 -1.00 0.44 -100 -1. 00

-0.02 -0.74 -1 00 -1. 00 -1.00 0.44 -0.09 0.04 -1.00
-0.02 -0.42 -1. 00 -1. 00 -1 00 0°34 0.59 -1.00-1°00
-0.01 -1. 00 0.22 -1. 00 -1.00 -1 00 -1 00 0.82 -1.00
-0.10 0. 39 0.02 0. 15 -0.42 -1.00 -1.00 0.82 0.68

0.00 -0.02 0.01 0.01 0.01 -002 -0.01 -0.03 -0.08
-00.3 0.42 -1.00 -1.00 -0.35 -0.61 0.10 -1.00 0.47
0. 01 -1.00 0.08 -1.00 -1. 00 -0.21 -1.00 -1 00 -1.00
0.01 -1.00 -1.00 -1.00 -1.00 -0.29 -1.00 -1.00 -1.00
0. 01 -0.32 0. 01 0. 17 -1.00 - o00 0.30 -1 00 -1 00

, -0.02 -0. 65 -1.00 -1. 00 -1.00 0.41 -1 00 0 07 -1 00

-0.03 -0.06 -1.00 -1.00 -1.00 0.36 0.67 -1.00 -1.00
-0.09 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0o98 0865
-0. 01 -1.00 -1.00 -1. 00 -1. 00 -1 00 -1. 00 -1. 00 0 53

to I(A)); while if A is negatively correlated with B, P(A B) will be
close to zero, so that I(A; B) will be very small.
An estimate of I(A; B) for the labels in the relaxation process

can be derived from (11) using (6) and (8):

n E P(x,jyA)(X )
I1AA; A')= log (X) E

(X.Y) (xjY)

The Ij can be used as estimates for the Pij if we can insure that the

(a)

(c)

Fig. 5. Analogous to Fig. 2, but using mutual information coeficients.

(b)

(d)

updated probabilities of (3) will not be negative.2 Extreme values
of IiAA; A') result only when one of the events involved is ex-
tremely rare. We shall assume here that events that cause
P(A IB)IP(A) to be outside the range [e-5, e5] can be ignored,
since either P(A B) is less than e-5 or P(A) is less than e 5. Thus
values of log [P(A B)/P(A)] can be considered to lie in the range
[-5, 5], and we can divide them by five to obtain coefficients in
the range [- 1, 1].
Table III shows the coefficients derived in this way from Fig.

2(a), and Fig. 5 shows iterations 0 (= same as Fig. 2(a)) 2, 6, and
12 of the relaxation process using these coefficients. The results
are quite good; few noise points have survived, but the curves are
generally well preserved.
The similar results obtained using weighted correlation and

mutual information can be explained by noting that formulas (5)
and (12) are related to one another, at least approximately. In fact,
from (5) we can derive

R (A, l')= [1-P(A)][1 - P(A')]
- a(A) - a(A')n n

[n(y_ P(xy)(i)Px+i,y+2 -)-F(A')]. (13)

On the other hand, by using a first-order approximation to log x,
namely x - 1 (using the series log x = (x - 1)- l(x - 1)2 ),
we can derive from (12)

lIjjA; A,)
n
I'()FA) -

A) Pl(A)P( -y)p(1+i-y+(')-F(A)F(A/)=PGA)P(A') [n P(x,y)P+.+B'-
(14)

In both (13) and (14) the expression

[n Y P(x,yP()P(x+i,y+AA())- (A)FP(A )I
(12)

2 The discussion of the relaxation process by Hummel [4] views the expression
(I + q,(A)] in (3) as a first approximation to exp [q,(A)]. If we used exp, the problem
of negative values in (3) would not exist.
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CORRESPONDENCE

(b)

TABLE IV
MUTUAL INFORMATION COEFFICIENIS DERIVED FROM FIG. 6(a)

0.00 -0 03 0.00 0.01 -0.04 -0.02 -0.07 -0.08 -0.05
-0.01 0.52 -1.00 -1. 00 0.46 -1.00 0.31 0.36 0.02
-0.03 0.25 0.37 -1.00 0.67 0.29 -1.00 -1.00 0.45

a) 0. 01 -1.00 -1.00 -1. 00 -1. 00 -1. 00 -1 00 -1 00 -1. 00
0.0 -100 -100 -100 0.09 -1.00 -1.00 -1.00 -1.00

-0. 03 -1.00 -100 -100 -1.00 0.53 0.46 -1.00 0.20
-0.03 -1.00 -100 -1.00 0.39 -1.00 0.80 0.57 -1.00
-0. 05 0.36 -1 00 -1.00 -1.00 -1.00 0.66 0.9E4 -1.00
-0. 07 -1.00 -1 00 -1.00 -1 00 0.24 -1.00 0.94 0.87

0.00 -0.10 -0.07 -0.03 -0.03 -0.03 -0.02 -0.01 -0.07-0.08 0.73 0.46 -1.00 -1.00 -0.09 -1.00 -1.00 0.47
-0.10 0.52 0.83 0.65 0.66 0.01 -1.00 -1.00 -1.00

b) -0.02 -1.00 -1.00 0.93 0.65 -1.00 -1.00 -1.00 -1.00
0.01 -1.00 -1.00 -1.00 0.11 -1.00 -1.00 -1.00 -1.00

-0.04 -012-1. 0 -10 0-- 1.0008 560842 0.14 -1, 00-0.01 -1 00 -1.00 -1 00 0.52 -1.00 0.62 -1.00 -1 00

-0.02 -1.00 -1.00 -1.00 -1.00 -. 00 -1.00 0 60 0.75

-0.04 -1.00 0.36 -1.00 -1.00 0.37 -1.00 -1.00 0.93

Fig. 6. Analogous to Fig. 5, for the image in Fig. 1(d}

(d)

(b)

(d)

Fig 7. Same as Fig. 6, but using coefficients derived from Fig. 5(a) rather than from
Fig. 6(a4

appears, multiplied by positive expressions that depend similarly
on P(A) and P(A')
Mutual information is, of course, not the only possible choice;

many other functions meet the criteria for compatibility functions.
However, mutual information is certainly a very simple choice,
since it is simply the log of the ratio of conditional frequency to
unconditional frequency.

VI. THE GENERALITY OF THE COEFFICIENTS

The methods described in Sections IV and V indicate that
useful compatibility coefficients for relaxation curve enhancement
of a given picture can be derived by analyzing the initial curve

probabilities for that picture. We shall now demonstrate that
these coefficients can also be used to perform the same relaxation
process on other pictures. The experiments described in this sec-
tion use the mutual information coefficients defined in Section V.

Initial line and "no line" probabilities were derived from the
image in Fig. l(d) by applying nonlinear line detectors; the high-
est probability at each point is displayed symbolically in Fig. 6(a),
which is analogous to Figs. 2(a)-5(a). The coefficients derived
from Fig. 6(a) using (12) are shown in Table IV. Fig. 6(b)-(d)
shows iterations 2, 6, and 12 of the relaxation process using these
coefficients, applied to Fig. 6(a). The results are analogous to

0.00 -0.03 -0.09 -0e06 -0.09 -0.04 -0.01 0.00 -0.01
-0.03 0.56 0.66 -1.00 -1.00 -0.09 0.15 -1.00 0.47
-0.02 -1. 00 0. 66 0. 67 -1.00 -1. 00 -1. 00 -1. 00 -1.00
-0.02 -0. 1 -1. 00 O 92 -1 00 -1.00 -1. 00 -1.00 -1 00

c) -0.01 -100 -1.00 0.76 -0.04 -1.00 -1.00 -1.00 -1.00
-0.03 -1.00 -1.00 -1.00 06.2 0.53 0.41 0.14 -1.00
-0.01 0.28 0.33 -1. 00 0. 1 -1.00 -1 00 -1 00 -1 00

0°01 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

-0.02-1.00 0.57 -1.00 0.76 0~09 -100 -100 -100

0.00 -0.02 -0.01 0.01 -0.0o -0.11 -0.06 -0.04 -0.03
-0.02 0.61 -1.00 -1.00 0.34 -0.10 0.37 -1.00 -1.00
-0.02 -1.00 0.59 -1.00 0.52 -1.00 -1.00 -1.00 0.63

-0.02 -1.00 -1.00 -100 0.90 0.26 -ld -1.00 -1.00

d) -0.03 -1 -1.00 -1 00 06.4 0. 54 -1 0 -100 -1.00
-0. 11 -100 -.00 -1. 00 0.44 0. 75 034 -Loo 0. 1

-0.09 0. 15 -1. 00 -1 00 -100 0.56 0.83 0.42 0.42

-0.01 -1 .00 -1 00 -1 00 -1 00 0. 35 -_1.0 -1. -1 00

-0.06 0.42 -1 00 -1 00 -1 00 -1. 00 -1. 00 0.9 .64

0. 00 -0.17 -0.20 -0.14 -0.13 -0.19 -0.15 -0. 14 -0.15
-0. 17 0.85 0.40 -1.00 00 -1 00 -1 00 - 00 -1.00

-0.20 0.40 1 00 0.35 -1. o -100 -10 -0 -1.00

e) -0 14 -_100 0.035 1.00 -1.00 -1 00 -1 00 -1 00 - 00
-0.13 -1.00 -100 -1 00 00 0.49 -1.00 -1.00 -1 00
-0. -_1 00 -100 -1 00 0.49 0.93 -_10 -10 - o00
-0. 15 -1 00 -I 00 -1 00 -1. 00 -1.00 1. 0o 5. -1.00
-0 14 -1.00 -1.00 -1.00 -1.00 -1 00 51 1.00 -1 0O
-0. 15 -1-.00 -1.00 100 -1. 00 -1. 00 -1. 00 -1.00 1. 00

0 00 -0.02 -0.02 -0.02 -0.03 -0 12 -0.09 -0 01 -0 06

-0.02 06. 1 -1.00 1.00 -100 -100 0. 15 -1.00 0.42
-0.01 -1. 00 0. 59 -1 00 -1.,00 -1.00 -1. 00 -i. 00 -1.00

0.01
-

-1.00 -1. 00
-
1.00 -1.00 -1. 00 -1.00 -

00

f) -0.08 0.34 0520.90 0.64 0.44 -1.00 -1.00 -1.00
-0.12 -0.10 -100 0.26 0.54 0.74 0. 56 0. 35 -1 00
-0.06 0.37 -1.00 -1.00 -1. 00 0. 34 0983 -1.00 -1 00
-0. 04 -1.00 -1.00 -1. 00 -1.00 -1 00 0. 42 -1.00 0.98
-0.03 -1.00 0.63 -1 00 -1.00 01.9 0.42 -1.00 0.64

.000 -0.02 -0.02 -0.02 -0.01 :-003 -0.01 0.01 -0 02
-0.02 0.6 -1. 00 -0.61 100 -1 00 0.28 -1. 00 -1.00

-0.09 0.66 06.6 -1.00 -1.00 -L00 0.33 -10 0.57
-0.06 -1 .00 0.67 0. 92 _0.76 -00 -100 -1o00 -1.00

g) -0.0 -1.00 -1.00 -1 00-0 04 O0 62 0.51 -:100 0.76
-0.03 -.08 :1.00 1-. 00 -1.00 0.55 1.00 1.00 0.09
-0.01 0 15 -100 -1.00 -1 00 0.41 -1.00 -1 00 -1 00
0.00 -1.00 -1.00 -1 00 -1.00 O014 -1.00 -1.00 -1.00

-0.01 0.47 -1. 00 -1 00 -1 00 -1 0O -1. 00 -1. 00 -1.00

0.00 -0 07 -0.10 -0.02 0.01 -0.04 -0.01 -0.02 -0.04
-0.10 0.78 0.52 -1.00 -1.00 -0.12 -1.00 -1.00 -1.00
-00 7 0.46 0. 83 -1.00 -1.00 -1.00 -1.00 -1 00 0. 36
-0.03 -1.00 0.65 0983-10- 100-10 -1100 -1 00-0. 03 -1.00 066 0.65 0 11 -I 00 -1.00 -1 00h) -0 03 :l oo ° 1: oo 0. 52 -00o-lo

/ -0.03 -0.09 0 01 -1.00 -1 00 0 6 -100 -1.00 0:37
-0.02 _1- 00

- 00 -1.00 -. 00 0 0.62 -1.00 -1 00
-0.01 1. 00 -1.00O -1100 -1.00 0.14 -1. 0:60 -100
-0.07 0.47 -100 -1 00 -1.00 -_1.00 -_1 00 0. 75 0. 83

000 00 -0 0.01 0.01
-004 -003

-0.05 -0.07-001 059 025 -10 -1 - .00 -1. O 0.36 -1.00
0.00 -100 0.37 -1 00 -_10 -1 - .00 -_1 00 -10O
0.01 -1 -00 -1.00 -1.00 -1.00 -1.00 1.00 -1.00 -1 00

-0 04 0.46 06.7 -1.00 009 -1.00 0.39 -1.00 -1.00
) -0.02 -1.00 0.29 -100 -100 051 -100 -1.00 0.24

-007 0.31 -100 - 00 -00 046 00 0 66 -1 00
-08 0. 36 -1 00 -1. - 00 -1 00 0 .57 0.94 0.94

-0.05 0 02 0.45 -1.00 -1.00 0.20 -1.00 -1 00 0.87

those in Fig. 5; ambiguity has been reduced, and the basic region
outlines have been preserved.

Fig. 7 shows the results of applying the coefficients of Table III

(derived from Fig. 5(a)) to Fig. 6(a), and Fig. 8 shows the results of
applying the Table IV coefficients to Fig. 5(a). These results are

very similar to those of Figs. 5 and 6. Relaxation curve enhance-
ment seems to work about as well when the coefficients are

derived from a picture of an entirely different type, as long as it
contains a reasonable set of curves.

On the other hand, one cannot indiscriminately use relaxation

coefficients derived from one line detection operator to perform
curve enhancement on the output of another operator. Fig. 9

(a)

(c)

(a)

(c)

553



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. sMC-8, NO. 7, JULY 1978

(a)

(c)

(b)

(d)

Fig. 8. Same as Fig. 5, but using coeffcients derived from Fig. 6(a) rather than from
Fig. 5(a).

(b)(a)

(c)

Fig. 9. Analogous to Fig. 8, but using coeffidents derived from linear detector
outputs rather than from nonlinear detector outputs used in previous examples.

shows what hap,pens when the coefficients derived from the out-
puts of linear line detectors (see Section III) are applied to the
initial probabilities derived from nonlinear detector outputs. Am-
biguity is reduced, but many of the weaker curves are destroyed.
(The coefficients themselves are shown in Table V.)
A quantitative or comparative evaluation of the results ob-

tained using the various sets of coefficients has not been attempted
here. We could have, for example, compared the results obtained
using mutual information coefficients with those obtained using a
simple continuation measure (e.g., based on a product of cosines)
as in [3]. However, note that the continuation coefficients could
equally well have been used with any line detection operator,
whereas the information coefficients are specific to a particular
operator, so that it seems unfair to compare the two methods. We
could also have evaluated the reduction in ambiguity produced by
the relaxation process by using, e.g., an entropy measure; but note
that this measure is very low when there are (e.g.) only "no line"
responses (as happens in the case of Fig. 2), so that it might rate
the unweighted correlation coefficients as very successful. The
problem of quantitatively evaluating the results of relaxation
processes still lacks a satisfactory solution.

(d)

TABLE V
MUTUAL INFORMATION COEFFICIENTS DERIVED FROM OUTPUTS OF

LINEAR LINE DETECTORS APPLIED TO FIG. I(C)

0.01 -0.06 -0.02 -0.02 -0.04 -0.02 -0.03 -0.04 -0o05
-0.03 0.24 0.06 0.09 -0.06 -0.06 -0. 04 0.19 0.16
-0.05 0.24 0.19 0.16 0.07 -0 02 -0.10 0.07 0.23

a) -0°02 0.07 0.10 0.16 0.0 0.01 -009 -0.00 0.12
-0 02 -0 07 -0.04 -0 03 0 19 0 09 0. 14 -0.05 0 00
-0.04 -0 09 -0 07 -0 02 0.27 0.24 0.23 -0.06 -0.05
-0.04 -0 03 -0 00 0.04 0.24 0.17 0.20 -0.01 -0.01
-0.03 0.16 0 06 0.02 -080 -002 0.04 0.22 0.12
-0 05 0 27 0. 10 -0 02 -0 12 -0 06 0 04 0 24 0 25

0.01 -0.0O -0.06 -0.04 -0.06 -0.03 -0.03 -0.02 -O.O
-0.06 0.34 0.23 0 10 -0.06 -0.09 -0.05 0.15 0.30
-0. 07 0.23 0.29 0.23 0.06 -0.02 -0.06 -0.02 0.20

b) -0.04 0.12 0.17 0. 25 0. 1 0.02 -0.09 -0.02 0.09-0. 03 -0 05 -0 01 0 05 0. 24 0 14 0 13 -0 1t -.001-O0 05 -0.06 -0.05 -001 0.29 0.26 0.24 -0.07 -0.06
-O. 04 -0.04 0.01 0.03 0.24 0.16 0.22 -0.02 -0.03
-0.03 0.14 0.06 -0. 04 -0.09 -O.05 0.05 0.25 0.20
-0.06 0.25 0.21 0.04 -O 06 -007 -0.02 0.15 030

0.01 -0.03 -0.07 -0.05 -0.06 -003 -0.04 -0.01 -0.05
-0.06 02.3 0.28 0.14 -0.04 -0.10 -0.06 0.06 026
-0.04 0.13 0.24 0.23 0.02 -0.02 -0.02 -0o01 0.10
-0.05 0.16 0.20 0.23 010 0.03 -0.01 _0.04 0.09

c) -0.04 -0.03 0.02 0.11 0.26 0 17 0.15 -0.10 -002
-0. 06 -007 -0.04 0.01 0.30 0. 27 0.25 -0.09 -006
-0. 03 -0.07 -0 01 -0 02 0.22 0 17 0.23 -0.04 -007
-0.03 0 10 0 10 -0.01 -0.04 -0 07 0.03 0 17 020
-0. 03 0 09 0 23 0 14 0.00 -0 0B -0 10 0 02 0 20

001 -0.06 -0.03 -004 -0.06 -0.07 -0.04 -0.03 -004
-0.03 0.24 0 10 0.14 -0 04 -O.O -0o6 0.15 0 13
-0.07 0.27 023 0.20 0.06 -0.03 -0.06 0.09 0.24
-0. 04 0.11 0.19 0.22 0.12 0.02 -0. 10 -0.02 0. 15

d) -006 -0°06 -0.01 0.05 0.30 0.26 0.20 -0 07 0 02
-0.07 -0.10 -0 04 0.01 0.28 0.34 0.24 -0.06 -0 07
-0.06 -0.05 -0.01 0 03 0.23 0.27 0.29 0.02 -0.07
-O. 02 0.12 0.01 0.02 -0.13 -_006 0.00 0.21 0.07
-0.05 0.27 0.09 001 -0.10 -0 07 -0.03 0.23 0.24

0.01 -0.09 -0.07 -0.05 -0.07 -0.07 -0.05 -0.03 -007
-0.09 0.35 0.24 0.11 -005 -0.09 -0.05 0.15 0.26
-0.07 0.24 0.32 0.22 0.05 -0.04 -0.04 -0.00 0.20

e) -0.05 0.11 0.22 0.30 0.11 0.02 -0.04 -0.06 0.06
-0o07 -005 0.05 011 0.33 0.2 0.21 -0.16 -004
-0.07 -0.09 -0 04 0.02 0.26 0.36 0.27 -0.06 -0.06
-0.05 -0.05 -O.04 -0.04 0.21 0.27 0.32 0.04 -0.05
-_003 0.15 -0 00 -0.06 -0.16 -0.06 0.04 0.30 0.19
-0.07 0.26 0.20 0.06 -0.04 -0.06 -0.05 0.19 033

0.01 -0.03 -0.07 -0.04 -0.06 -0.07 -0.06 -0.02 -0.05
-0.06 0.24 0.27 0.11 -0 06 -0.10 -0.05 0 120I27
-0.03 0.10 0.23 0.19 -0.01 -0.04 -0.01 001 0.09

f -0.04 0. 14 0.20 0.22 0.05 0 01 0.03 0.02 0.01
-0.07 -_0.4 006 0.12 0.31 0.26 0.23 -0.13 -0.10
-007 -0.06 -0.03 0.01 0.26 0.35 0.26 -0.06 -0.07
-0.04 -0.06 -0.06 -0.10 0.20 0.25 0.29 -0.00 -0.03
-0.03 0.15 0.06 -0 02 -0.07 -0.07 0.02 0.21 0.23
-0.04 0 13 0.24 0.15 0.02 -0.07 -0.07 0.07 0 24

0. 01 -0.06 -0.04 -0.OS5 -0.04 -0.06 -0. 03 -0.03 -0. 03

-0. 03 0. 23 0. 13 0.17 -0. 03 -0. 07 -0.07 0. 10 0 09

-0. 07 0. 26 0-24 0 20 0. 02 -004 01 01I0 0.22

-0.05 0.14 0.23 0.23 0.11 0.01 -0.02 -001 0.14

g) -0.06 -0.04 0.02 0 10 0.26 0.30 0.22 -0.05 0.00

-0.03 -0.10 -0.02 0.03 0.17 0.27 0.17 -0.07 -0.06

-0.03 -0.06 -0.02 -0.01 0.15 0.25 0.23 0~03 -0.10

-001I0.06 -0.02 0.03 -0.09 -0.09 -0.04 0.17 0.02
-0.05 0. 26 0.10 0.09 -0.02 -006 -007 0.20 0.20

0.01 -0.06 -0~06 -0.04 -0.03 -0.05 -0.04 -0.03 -0.06

-0.06 0.34 0.23 012 -005 -009B -0.05 0.14 0.25

-0:06 0.23 0.29 017 -0. 01 -0 05 0.01 0.06 0.21

-0.04 0.10 0.23 0.25 0.05 -0.01 0 03 -0.04 0.04

h) -0.06 -0 06 0.06 0.11 024 0~29 0:24 -0.09 -0.06

-0.03 -0.09 -0.02 0.02 0.14 0.26 0.19 -0 05 -0.07

-0 03 -0.05 -0.08 -009 0.13 0.24 0.22 0.05 -0.02

-0.02 OlS5 -0.02 -0.02 -01I1 -007 -0.02 0.25 0.15
-0.06 .0 0 -001 -00 -0.03 0.20

0.01 -0.03 -0.05 -0.02 -002 4 -004
-006 0-24 0.24 0.07 -0.07 -0.09 -0.03 0.16 0.27
-0. 02 0.06 0.19 0.10 -0.04 -0.07 -0.00 0.06 0.10

-0.02 06 0.16 0.16 -0.03 -0.02 0.04 0.02 -0.02

-0.05 -0.06 0.07 0.07 0.19 0.27 0.24 -0.08 -0.12

-0.02 -0 06 -0.02 0.01 0.09 0.24 0.17 -0.02 -0.06
-0.03 -0:04 -00.10 -0.09 0.14 0.23 0.20 0.04 0.04

-0.04 0.16 0.07 -0.00 -0 05 -OOS5 -0.02 0 22 0.23

-0~05 0.16 0.23 0.12 0.00 -0.05 -0.01 0.12 0.25

VII. CONCLUDING REMARKS

The results reported here indicate that usable compatibility
coefficients for some types of relaxation processes can be derived
by statistical analysis of the initial label probabilities. This process
appears to be robust, in the sense that the coefficients can be
computed in at least two different ways (weighted correlation
coefficients or mutual information values) and that coefficients
computed from one image will also give good performance on
other images. Thus it does not seem to be necessary to derive the
coefficients by analyzing a large ensemble of images. It would be
of interest to conduct further studies of this approach in connec-
tion with other applications of relaxation processes [2].
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Iterative Histogram Modification, 2

SHMUEL PELEG

Abstract-Histogram peaks can be sharpened using an iterative
process in which large bins grow at the expense of nearby smaller
bins. The modified histogram will consist of a few spikes correspond-
ing to the peaks of the original histogram. The image corresponding
to the modified histogram is often almost undistinguishable from the
original image. The small number of different gray levels in that
image can be used to facilitate approximating or segmenting it.

I. INTRODUCTION
The histogram of an image is the discrete distribution function

of the gray levels of the pixels in it. This correspondence describes
a process for sharpening peaks on an image's histogram. It supple-
ments preliminary work by Rosenfeld and Davis [1]. The process
thins each peak on the original histogram into a spike. The image,
corresponding to the modified histogram, has only a few gray
levels. These gray levels correspond to the spikes in the modified
histogram. The process can also generate a spike from the "shoul-
der" of a peak. Such shoulders are created by small peaks close to
bigger ones; the process provides a cheap method of discovering
such hidden peaks. The resulting image is a mapping of the orig-
inal image into very few gray levels corresponding to the spikes
found. This mapping provides an initial segmentation of the
image, each segment corresponding to a spike in the histogram.
Even though the modified image generally consists of very few
gray levels, no deterioration in the image detail is seen. This
should make possible efficient coding of the image without no-
ticeable deterioration in its quality.

II. THE ALGORITHM
The algorithm described below operates on a one-dimensional

histogram, but has a natural generalization to any number of
dimensions. Thus it could be used to process three-dimensional
color histograms or histograms based on additional pixel proper-
ties besides gray level. (This generalization was suggested by E.
Riseman in a personal communication.)

Manuscript received December 23, 1977; revised March 6, 1978. This work was
supported by the U.S. Army Night Vision Laboratory under Contract
DAAG53-76C-0138 (ARPA Order 3206}
The author is with the Computer Science Center, University of Maryland, College

Park, MD 20742

Fig. 1. Iterations 0, 1, 2, 4 of peak sharpening process.

Let Bi be the number of pixels having gray level i. For each
histogram bin i, the neighboring 2r (an input parameter) bins i + j
on each side of i (j = 1, 2, - * *, r) are examined. If B, is greater than
the average A ofB+ 1, * B+, (and similarly on the other side of
i), we compute the ratio X = (Bi- A)/Bi, which specifies the frac-
tion of pixels whose gray levels will be shifted towards i. Then the
following gray-level changes are executed:

B -+, X from i + r to i + r - 1;

Bj,,_j Xfrom i +r-1I toi+r -2;--;.

Bj+j *X from i + I to i.

The entire process is then iterated.
In order to minimize the changes in gray levels and to preserve

their original order (i.e., to preserve "darker than" and "lighter
than" relations), a "history" of pixel movement is kept. A matrix
H is created in which element H(a, P) indicates the number of
pixels currently at gray level a that had original gray level .
Initially,

H(i, j) = I0, i *j
(number of pixels with gray level i, i =j.

The algorithm performs gray-level changes on H only (not on the
image,\ When transferring pixels from gray level a to gray level P.
the pixels transferred first are those whose origin is closest to p.
Finally, the image is transformed by changing H(a, P) pixels from
gray level P to gray level a.

III. BANDWIDTH COMPRESSION
An immediate application of the algorithm described

previously is to provide a segmentation of the image into a few
gray levels. Simple images such as tanks (see Figs. 1, 6, 7) can be
represented by three or four gray levels, thus reducing the number
of bits per pixel from six to two. Figs. 2-5 show that even more
complicated images can be represented by about eight distinct
gray levels.

Efficient encoding schemes can be used to further improve
compression. From the final histogram we can derive a Huffman
coding [2] for the image. This coding gives about 1.4 bits per pixel
for the tank images in Figs. 6 and 7 and 2.1 bits per pixel for Figs.
4 and 5. Run length coding can also be used, since the reduction in
the number of gray levels favors longer runs.

IV. EXAMPLES
Fig. 1 shows the steps in the creation of spikes from the original

histogram. Displayed are the original image and its histogram and
the images produced after one, two, and four iterations. Figs. 2-7
each consist of an original image and, to its right, the images
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