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V. CONCLUSION
A simple algorithm for matching three-dimensional objects is

proposed. It is based upon the use of the observed silhouettes
of the unknown object. Experiments conducted show that as
silhouettes are added to modify the three-dimensional struc-
ture of the unknown object, a consistent matching results

., ~ from moments and Fourier transform coefficients. The speed
of convergence depends on the amount of information supplied
by the sequence of silhouettes, since small modification to the
three-dimensional structure is made if a silhouette with little
new information is added. From the experiments above, it is
clear that for man-made objects with clearly defined faces and
edges, a fast convergence is achieved if the principal or orthog-

(a) onal silhouettes are observed. This technique fails when pieces
of the object are missing or the object is not isolated, since the;-..
principal direction calculation will not be accurate.
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sured at serveral resolutions. This area decreases at cdarser resolutions
since fine details that contribute to the area disappear. Fractal proper-
ties of the picture are computed from the rate of this decrease in area, and
are used for texture comparison and classification. The relation of a tex-
ture picture to its negative, and directional properties, are also discussed.

Index Terms-Fractals, fractal signature, multiresolution methods,
texture classification.

I. INTRODUCTION
The study of changes in picture properties resulting from

changes in scale has been accelerated by Mandelbrot's work on
fractals [4], [51 A theoretical fractal object is self-similar un-
der all magnifications, and property changes when undergoing
scale changes are limited; doubling resolution, for example, will
always yield an identical change, regardless of the initial scale.
One of the important properties of fractal objects is their

surface area. For pictures, the area of the gray level surface
has been measured at different scales. The change in measured
area with changing scale was used as the "fractal signature" of
the texture, and signatures were compared for texture classifica-
tion. Treating the areas of the upper side and lower side of the
gray level surface separately resulted in interesting variations
on this method. These variations, along with the method used
for scale change, are discussed in the following sections.

Earlier results on texture analysis using fractal techniques are
reported by Nguyen and Quinqueton [9] and Pentland [6].
While Nguyen and Quinqueton use only one-dimensional fractal
analysis along a space filling curve, Pentland performs full two-
dimensional analysis. Pentland used statistics of differences of
gray levels between pairs of pixels at varying distances as in-
dicators of the fractal properties of the texture. Under the as-
sumption that textures are fractals for a certain range of mag-
nifications, he obtained good classification results based on the
computed fractal dimension. Related work on multiresolution
texture analysis using pyramids is reported by Larkin and Burt
[21 , and general discussion on texture analysis can be found in
[3], [7], [8]. The texture pictures in this correspondence
were taken from Brodatz [ 1.

II. THE AREA OF THE GRAY LEVEL SURFACE
Measuring the area of the gray level surface is based on meth-

ods suggested by Mandelbrot [ 5 ] for curve length measurements.

A. Measuring Curve Length
The following methods are described by Mandelbrot for mea-

suring the lengths of irregular coastlines.
1) Given a yardstick of length e, walk the yardstick along

the coastline. The number of steps multiplied by e is an ap-
proximate length L(e) of the coastline. For a coastline, when
e becomes smaller, the observed length L(e) increases without
limit. This method is based on approximating the curve with a
polygon made from segments of length e.

2) The shortest path on the land that is not further than e
from the water can be regarded as an approximate length L(e)
of the coastline. This method discriminates between land and
water-a property Mandelbrot found undesirable. However,
this discrimination between sides of curves or surfaces will be
found to be useful for some texture properties.

3) Consider all points with distances to the coastline of no
more than e. These points form a strip of width 2e, and the
suggested length L(e) of the coast is the area of the strip divided
by 2e. Here, too, as e decreases L(e) increases.
4) Cover the coastline with the minimal number of disks of

radius E, not necessarily centered on the coastline as in c). Let
L(e) be the total area of these disks divided by 2e.
Mandelbrot reports studies that show that for many coast-

lines

where F and D are constants for the specific coastline. He
called D the "fractal dimension" of the line. Note that for a
straight line D = 1, and F is the true length of the line. For
fractal curves, D is independent of e, and when one plots L(e)
versus c on log-log scale one gets a straight line with slope 1 - D.
When D varies with e and is not a constant, the above plot will
not be a straight line.

B. Measuring Surface Area

To compute the surface area, approach c) above was adopted,
as its surface extension seems to be computationally efficient.
In this extension from curve to surface, all points in the three-
dimensional space at distance e from the surface were con-
sidered, covering the surface with a "blanket" of thickness 2e.
The surface area is then the volume occupied by the blanket
divided by 2e. The covering blanket is defined by its upper
surface u, and its lower surface b,. Initially, given the gray
level function g(i, j), u0(i, j) = b0(i, j) = g(i, j). For e = 1, 2,
3, * * *, the blanket surfaces are defined as follows:

u,(i,j) = max |u, 1 (i,j) + 1, max u_- I (m, n)|
1(m, n) -(i, j)l < 1

(2)
and

bE(i,j) =min b,-I(i,j)- 1, min b1 i(m,n)}.
1(m, n) - (i, j)l 6 1

(3)

The image points (m, n) with distance less than one from (i, j)
were taken to be the four immediate neighbors of (i, j). Sim-
ilar expressions exist when the eight-neighborhood is desired.
A point (x, y, f) will be included in the blanket for e when
b,(x, y)<f.u(x, y). The blanket definition uses the fact
that the blanket of the surface for radius c includes all the
points of the blanket for radius e - 1, together with all the
points within radius 1 from the surfaces of that blanket. Ex-
pression (2), for example, ensures that the new upper surface
u. is higher by at least 1 from uE1, and also at distance at
least 1 from u_ 1 in the horizontal and vertical directions.
The volume of the blanket is computed from u. and be by

ve = L (u.(i,j)- be(i,j)).
i,1

(4)

A one-dimensional illustration of the expansion process is
shown in Fig. 1.
As the surface area measured with radius c we take the vol-

ume of the added layer from radius c - 1, divided by 2 to ac-
count for both the upper and lower layers:

A(e) = (V2-Ve-1)

This definition deviates from the original method in Section
1I-A, which suggests that surface area be taken as v1/2e. This
is necessary, since v. depends on all smaller scales features.
Subtracting v,- isolates just those features that change from
scale e - 1 to scale e. When a pure fractal object is analyzed,
both definitions are identical since property changes are in-
dependent on scale, and measurements between any two dif-
ferent scales will yield the same fractal dimension. However,
for nonfractal objects this isolation from the effects of smaller
scale features is necessary. Definition (5) gives reasonable mea-
sures for both fractal and nonfractal surfaces.
The area of a fractal surface behaves according to the expres-

sion (Mandelbrot [ 5 ]):

(1) A(e) = F2 -D.
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Ill. TEXTURE ANALYSIS AND CLASSIFICATION
The magnitude of the fractal signature S(e) relates to the

amount of detail that is lost when the size of the measuring
yardstick passes e. High values of S(e) relate to strong gray
level variations at distance e. High values at small e result from
significant "high-frequency" gray level variations, while high
values for larger e result from significant "low-frequency"
variations. Thus, the fractal signature S(e) gives important in-
formation about the fineness of the variations of the gray level
surface, with no need for artificial decomposition into harmonic
frequencies as is done in Fourier analysis.
The fractal signatures have been computed for several texture

pictures of size 128 X 128, and are displayed in Fig. 3. For
two samples of every texture the surface area A (e) (for e = 1,
2, * * *, 50) and the fractal signature S(e) (for e = 2, 3, * * *, 49)
are displayed.
Textures are compared based on the differences between

their fractal signatures. For two textures i andj with signatures
S, and Si the distance is defined by

D(i, j) = E (S,(e) - S(e))2 log (. 1_.*
e k /

(6)

Fig. 1. A one-dimensional function g and its covering blanket for e = 1,
2. The blanket volumes (areas) are v(l) =47 and v(2)=78. There-
spective measured lengths are L(1) = (47-0)/2 = 235 and L(2) = (78-
47)/2 = 15.5.

Fig. 2. A fractal picture generated by a Brownian process. The plot of
its measured surface area, A(e) versus e in a log-log scale, is the top
curve. The fractal signature in the bottom curve is the slope S(e) of
A (e). The average slope ofA(e) is 0.51, giving an observed fractal di-
mension of 2.51. This result matches well the theoretical dimension
of 2.5 computed by Mandelbrot.

When plotting A (e) versus e on a log-log scale. one gets a straight
line of slope 2-D. This curve does not have to be straight for
nonfractal surfaces. The slope of A(e) on the log-log scale is
of great interest, and for each gray level surface a "fractal sig-
nature" S(e) is computed for each e by finding the slope of
the best fitting straight line through the three points (log(e - I),
log(A(e - 1))), (log(e), log(A(e))), and (log(e + 1), log(A(e +
1))). For fractal objects S(e) should be equal to 2-D for all e.
To test our definitions, we constructed a fractal surface as

suggested by Mandelbrot [51: a line was randomly placed over
a plane dividing it into two half-planes. An arbitrarily chosen
half-plane was elevated by 1. This process was iterated many
times, and for the kth iteration the added elevation was 1 INfk
The resulting matrix was linearly transformed into the picture
limits. Fig. 2 shows the resulting picture after 1000 iterations,
together with the area function A (e) and the fractal signature
S(e). As predicted, A(e) is a straight line, and S(e) is almost a
constant at the value 0.51 giving a measured fractal dimension
of 2.51. This value is very close to the theoretical fractal di-
mension of 5/2 as given by Mandelbrot.

The weighting by log [(e + I)/(e - 1)1 is due to the unequal
spacing of the points in the log-log scale. These distances are
shown in Table I between all pairs of texture pictures tested.
A texture is identified with the closest signature, giving almost
perfect results for the tested images. The relative attractiveness
of these results is based on the relatively small number of tex-
ture descriptors. While only 48 features were used in our ex-
periments, corresponding toS(e) fore = 2, * * ,49,this number
can vary according to texture properties.

IV. SYMMETRY ISSUES
When describing method b) for coastline measurement (Sec-

tion Il-A), Mandelbrot [ 51 criticizes it as being discriminatory
between land and water; i.e., when reversing the role of land
and water different length measurements might result. How-
ever, these very differences can reveal some important proper-
ties of the curve (or surface). Fig. 4 exhibits this asymmetry
in length measurements.
Consider, for example, an image of light particles scattered

over a dark background. When high gray level stands for white,
the min operator of (3) will shrink the light regions correspond-
ing to the particles, and the rate of this shrinking will only
depend on the shape properties of the particles. The max op-
erator of (2), however, will shrink the background regions, and
the rate of this shrinking will mainly be affected by the dis-
tribution of the particles.
To take advantage of this asymmetry, we divide our surface

area measurements into two parts: measuring the area of the
gray level surface when viewing it from "above" and measuring
the area when viewing the surface from "below." We change
the volume definition of (4) to the following two definitions of
"upper volume" v+ and "lower volume" vu as follows:

(7a)Ve' = E (u(i, j) - g(i, j))
i,i

and

ve = E (g(i,j)- be(i,j)).
I,j

(7b)

The area expression (5) is also changed into "top area" A' and
"bottom area" A - as follows:

(8a)
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Fig. 3. Textures studied (two samples each), with plots of their associated areas A(e) on a log-log scale (upper curve), and
the fractal signatures S(e) (lower curve). (a) Ice. (b) Raffia. (c) Seafan. (d) Burlap. (e) Pigskin. (f) Mica.

TABLE I
DIFFERENCES BETWEEN ALL PAIRS OF TEXTURE PICTURES, As DEFINED IN
(6). MINIMAL DIFFERENCES FOR EVERY COLUMN ARE UNDERLINED. ONLY

ONE MISCLASSIFICATION OCCURs, BETWEEN pigl AND icel.

|..afx nlwafan2 b,rl%pIl burlhrP2 jct ici2 g Pi l r!:2 rnT I -n!-- 2

zloanI0o0 0.013 0.114t 0.168 0.21S 0.143 0.2104 0.2S5 0 0S 0,3i3 Oez 13

Fafzv.2 0.013 0.000 0.101 0.135 0.311 021, 0.315 0.354 0.520 0.4O58 0.573 0 .39
I-I .1Q.1;4 0.101 0.C00 0.012 0.354 0.2S3 0.405 0.47. 0.63 05'13 ! 37 0 713

ot:r' 016S O.135 0.012 0.000 0 499 10100 0.545 0.S2052 0.8o. 1l.C o.o~s
' :e1 ! 02:S , ~~~~~~~~0.31 1 0.3fq 4O0C00 q!0I 09 I O.nlOcoocsossols 0.oI o0

i :10.1t31 O.21-, 0 .2S3 0.100 0 013 0.000| 0.0U1 |0.033 0.101 0.0.3 | 1'.1 : 171OV. _ _____~ 101 003 0- Iu' I~~

, '* 021tI 0,313 0. t O.- St515 (Oil 0o0lR oono11 ools, on0Is 0020 O r-! r.
027, 0.::.i 0.9 0.625 0jC'23 0.33iC.013 10.C0 0.CC.0021 003214

0^, 0.520 0.5S3 0.S62 0.065 0.101 S0.0t 10.035 0.000O| 0n01o 0025 n012o
L rzf;.i2 !.03; 9 0.4SS t 0.613 0 -S3 10.o516 0,0.3 0.0:'9) 0.02t I 0~010 | °°!oool 0 mi3

I -; l ! osis 1 ~~~0.. 3 O.S0 1 .0 o. l o0.64 10.03!°-°0 00''5 0.034 0.00010v

r3.e2 |0.513 |0.665 0.7,8 0.958 0.109 1 0.1 j11 0-094 0.079 |0.042 |0.053 |0 009 |0.000|

A-(e) = v- - v-_1. (8b)

Two different fractal signatures S+ and S- are also computed.
Fig. 5 displays two collections of parts, together with their

top and bottom fractal signature graphs. As expected, the S

graphs, representing the shapes of the parts, are identical for
both pictures, while the S+ graphs, representing the background,
are different. The textures of Fig. 3 were analyzed again, this
time differentiating between top areas and bottom areas, and
the distance between two textures i and i was defined as
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12 1

Fig. 4. Nonsymmetric length measurement for a curve. For e << 1,
measured length will be approximately 102 regardless of side. Mea-
suring the length from above, the curve will look like a straight line
and have a measured length of about 33 for e > 1, as the narrow
cracks will not be measurable. Measuring the length from below, the
curve will behave as a straight line only for e> 12.

Fig. 5. Parts spread in two different configurations. In both pictures,
A(e) and S(e) for the bottom area (right side of each photo), which
correspond to the parts' shape, behave identically. The top area (left
side of each photo), which corresponds to the shape ofthe background,
behaves extremely differently.

TABLE 11
DIFFERENCESBETWEEN ALL PAIRS OF TEXTURE PICTURES AS DEFINED IN(9),
WHEN UPPER AND LOWER SIDES OF THE GRAY LEVEL SURFACE ARE
EXAMINED SEPARATELY. ALL TEXTURES ARE CLASSIFIED CORRECTLY.

:tfritFIa!inZ b:;lnI bi:rlap2' el i-2 Pirl r*;-2 rif17 j rm'72 1i -:i- l r.i2
- ';1a OC^ 0 0.0o1 0.420 0.514 0 3 s9 00.6 0.6S3 0 8.55 O*IS 1 20 I 11.8.~~~~~~~~~~~~~~0 IS I -I_,* 4 g} I o~~~~.noL0',aI_0.30 031 0.4.- ...0 -5? St . ....1^t4I e 5 14.4' I.4^

: .-1)1 0000 0 O.Z91 O.C00432 078'0 0.6 O.F19 JOF 1 1461 4I I 7l
, IC I 0 131. 0 0 010 :0 ,00I 0C5 O07t I 911- I I . I'

i- .04 1 O. I8 O . SO BI ° -g I101to[ C., -';0 . I12 .-
0,.. 0 478 0228 0.914 00O19 0.000 0191 0. 1I. 0 227 0 IF'-3 01;f 1427,

0729 j 0.910 ~~~~~~~~~~~~~~~~~~~~~~~0.130017i3 0210 3I0.%1 25 122 ~~I7IoooI0s0.1131I 01 10.17.3

-.l11 0 s I_; 1.121 1.491 1.835 0.150 0.2sU7 0.21 0.15.7.ceo 0.140 O.l"t I
4 7O-a.5Sl 1.075 1.33S5 1.6SS5 0.112 0.18S 01°0S0lo 5 C_oe^; 3.c 0 .t4. 1Ot92

I:,zj.= 1.4.2 |I.5S8 1.9f9 0.2721 0.415 10.170 1 0.151 0.140 0.147, O.0, C273
Ci;a2 . 1.1.8 1.438 j 7, 1.941 2570.42S 0.213 10.17.5 0.124 !0.13J I QC'3 0.000

D' (i,j) =1{ (S,(e) - S7(e))2 + (S,7(e) - Si(e))2]

.log (-2)(9)

The distance as defined above is shown in Table II. This time,
the classification results are all correct.

V. DIRECTIONAL PROPERTIES

All methods described so far are invariant to texture direc-
tion. When directionality of the texture is of importance, the
blanket growth in (2) and (3) could be made directional. Max-
imizing (or minimizing) in a circular neightborhood can be re-
placed by a nonsymmetric neighborhood. Directional analysis
of the Brodatz "raffia" texture is displayed in Fig. 6. In this

case, the neighborhood consisting of the four immediate neigh-
bors has been replaced by the following choices: I) upper and
lower neighbors; 2) left and right neighbors; 3) upper-left and
lower-right diagonal neighbors; 4) upper-right and lower-left
diagonal neighbors. The differences in the fractal signatures
reveal the directional characteristics of the "raffia" texture.

VI. CONCLUDING REMARKS

An approach to analysis and classification of textures is de-
scribed, based on scale varying surface area measurements as
suggested by Mandelbrot for fractal objects. Although textures
are mostly not fractal for the entire scale range, the change in
these measurements proved to be helpful in characterizing the
texture. "Frequency" information about texture can be ob-
tained directly in the spatial domain without need to use the
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Fig. 6. Directional analysis of "raffia" exhibits similar properties for
the vertical (V) and horizontal (H) directions, but different proper-
ties for the diagonal directions.

frequency domain. As with almost any multiresolution ap-
proach, efficient implementation in pyramid data structures
should be studied.
Applications of fractal analysis to textural problems of ma-

terials of industrial importance (e.g. adsorbents, catalysts) as
well as comparison of this technique to surface-texture probing
by absorption experiments [ I 0], [11] are in progress.
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Determining Motion Parameters for Scenes
with Translation and Rotation

CHARLES JERIAN AND RAMESH JAIN

Abstract-A study of methods that determine the rotation parameters
of a camera moving through synthetic and real scenes is conducted.
Algorithms that combine ideas of Jain and Prazdny, using hypothesize-
ana-verify paradigm, are developed to find translational and rotational
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parameters. An argument is made for usinghypothesized motion param-
eters rather than relaxation labeling to find correspondence. Some
work with real scenes shows the difficulties introduced by noise, the
lack of resolution, and the need for better low4evel techniques.
Index Terms-Dynamic scene analysis, focus of expansion, hypothe-

size, motion parameters, optical flow.

I. INTRODUCTION
There have been many different approaches to extracting the

motion information from sequences of dynamic scenes [13],
[18]-[20], [24], [29], [30]. A number of these methods
concentrated on determining the FOE or focus of expansion
form of the translational parameters. Most of these methods
require optical flow vectors or corresponding points in different
discrete frames as input. Other methods seek to use the focus
of expansion to yield the correspondence [13]. The FOE as
the intersection of all optical flow vectors does not exist when
the system undergoes rotation, however we feel that the con-
cept of a FOE can still be used in analyzing 3-dimensional mo-
tion parameters and in solving the correspondence problem for
such cases [20]-[23] .
Roach and Aggarwal [24] showed the sensitivity of nonlinear

methods for the recovery of structure from motion to the
noise in location of tokens. Tsai and Huang [251-[271 pro-
posed a linear method, assuming correspondence of eight points
in two frames, for the recovery of motion parameters. This
mathematically elegant method is very sensitive to noise in the
location of the points. It is possible to develop, however, a
hypothesize-and-verify approach to recover motion parameters
using this approach. In this correspondence, we present some
of our studies using optimization and linear methods for the
recovery of motion parameters using the hypothesize-and-
verify paradigm. This will allow better recovery using the
existing approaches. Based on the experiments we did, it ap-
pears that none of the existing methods is robust enough to
function independently in real images. This encouraged us to
study the feasibility of combining features of different ap-
proaches and develop a paradigm for the recovery in real
scenes. We discuss problems of locating features and their
effect on the recovery.

II. RECOVERY OF 3-D MOTION PARAMETERS
One simple method for determining the focus of expansion

in scenes where corner points or other matchable entities have
been extracted has been proposed by Jain [9]. This method
does not use a correspondence between the frames, rather it
uses the triangle inequality to show that in approaching mo-
tion the sum of the distances of points in the second frame
from the FOE minus the sum of the distances of points in the
first frame from the FOE is maximized. This method is diffi-
cult to apply directly to real scenes because most corner detec-
tors can lose points from frame to frame and can also find
multiple points in both frames. However, the idea of hypoth-
esizing a likely focus of expansion and verifying it in some
way against the image is an important method. In this corre-
spondence we will suggest other variations of this basic hypoth-
esize-and-verify paradigm. In Prazdny's work also, optimi-
zation of a quality of fit function was proposed to find the
rotation parameters from given optic flow vectors and this was
tested on synthetic data [22].
As an alternative to this method a linear solution to rotation

and translation parameters have been found by Tsai and Huang
[25]-[281. Tsai and Huang have a linear algorithm for finding
the direction of motion and the rotation parameters given op-
tical flow. Their method is in contrast to the optimization
methods in that it uses a system of linear equations. All other
systems studied have nonlinear equations in their methods.
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