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B. A Special Case
It is interesting to consider the special case of equal standard

deviations, D1 = D2 = * = DC because then the classification
rule reduces to a minimum-distance type of rule. In this case,
letting D denote the common standard deviation,

max f(x WC) max (kD2 )_IJ/2 exp [ {S + IJ(g - Gc )2
c c

+ (b - BC) EE[(ij)Z ] /(2D )
= exp [-S/(2D2)]

X exp [- (2D2 )y1 [min {IJ(g - Gc)
C

+(-C)2 y,[Z ,j)Z 2}]

Let

D(Wc)=IJ(g- GC)2 + (b - Bc)2 E E [z(i,j)- Z

c = 1, 2, - - , C. The quantity D(Wc) can be considered as the
square of a distance between (g, b) and (GC, Bc). The classifi-
cation rule reduces to classifying the object into class WC if

D(W) = min {D(W,'), c' = 1) 2, * * *, C}.

IV. DISCUSSION

The statistic D(W.) measures how well the class Wc fits the
data, compared to the best fit, as achieved by the least squares
estimators. Thus the statistics D(Wc) seem reasonable for use
in classification in a Markov model even when normality is not
assumed.
The presentation in the present paper has been in terms of

univariate observations, for a first-order Markov model with
equal autoregressive coefficients. The discussion has been
given in terms of this simplest case for ease of exposition.
Note, however, that allowing for different autoregression coef-
ficients and higher order autoregression causes no essential
complication; the solution is still given by the normal equa-
tions, providing the least squares estimates for linear statistical
models; the solution would be given by multiple rather than
simple regression. In this connection, note that the particular,
simple model used here for illustration is not necessarily real-
istic for common images. A more common (and more real-
istic) model, which is second-order in the sense of allowing
dependence on X(i - 1, j - 1) as well as on X(i - 1, j) and
X(i, j - 1), as alluded to in Section II, is a model of the form

X(i, j) = A + BX(i - 1, j) + CX(i,j- 1)

+DX(i- 1,1 - 1) + U(i, ).

The particular choice of class of model (causal, semicausal, or
noncausal) is important in the sense that the set of statistics
sufficient for the classification varies from model to model.
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A Min-Max Medial Axis Transformation

SHMUEL PELEG AND AZRIEL ROSENFELD

Abstract-Blum's medial axis transformation (MAT) of the set S of
l's in a binary picture can be defined by an iterative shrinking and
reexpanding process which detects "comners" on the contours of con-
stant distance from 5, and thereby yields a "skeleton" of S. For unseg-
mented (gray level) pictures, one can use an analogous definition, in
which local MIN and MAX operations play the roles of shrinking and
expanding, to compute a "MMMAT value" at each point of the picture.
The set of points having high values defines a good "skeleton" for the
set of high-gray level points in the given picture.

Index Terms-Medial axis transformation (MAT), local MIN and MAX
operations, skeletonization.

I. INTRODUCTION

Let S be a subset of a picture, let P be a point of S, and let
D(P) be the largest "disk" (or neighborhood of some specified
shape) centered at P that is contained in S. We call D(P) a
maximal disk of S if it is not contained in D (Q) for any Q # P.
Evidently, S is the union of its maximal disks. The "medial
axis transform" (MAT) [ 1] of S consists of the centers of these
disks together with their radii. In digital pictures "disks" are
usually approximated by squares, whose orientation depends
on the definition of distance in the grid. When the "chess-
board" distance [d((a, b), (c, d )) = max (la - cl, b - d |)] is
used, the "disks" are upright squares. When the "city block"
distance [d((a, b), (c,d)) = la - cl + lb- dl] isused,the "disks"
are an approximation of diagonal squares.
An equivalent definition of MAT uses paths from a point to

the boundary. The distance of a point x in S from S_is the
length of a shortest path from x to the complement S. The
MAT can then be defined as the set of all points in S which do
not belong to the minimal path of any other point, together
with their distances. It has been shown [2] that for digital
pictures using discrete distance metrics the points in the MAT
are those points whose distances from S are local maxima.
The MAT can be regarded as a generalized axis of symmetry of
a figure, and constitutes a kind of "skeleton."

Several generalizations of the MAT have been proposed,
based on these definitions, which allow a MAT to be defined
for a gray level digital picture, rather than for a two-valued
picture representing a set S (l's at points of S, 0's elsewhere).
One generalization [31, the Spatial Piecewise Approximation
by Neighborhoods (SPAN), is defined in terms of maximal
homogeneous disks; the given picture can be approximated
if we are given the set of centers, radii, and average gray levels
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of these disks [51. If the picture is two-valued, and "homo-
geneous" means "constant-valued," the SPAN reduces to the
MAT. Another generalization, the GRAYMAT [4], is based
on the concept of gray-weighted distance: the gray-weighted
length of a path is proportional to the sum (or integral) of the
gray levels along the path; the gray-weighted distance between
two points is the lowest gray-weighted length of any path be-
tween them. The GRAYMAT is the set of all points which do
not belong to any minimal gray-weighted path from any other
point to the zero-valued background, together with the corre-
sponding distance. This too reduces to the MAT in the two-
valued case. Still another generalization, the GRADMAT [51,
computes a score for each point P of a picture based on the
gradient magnitudes at all pairs of points that have P as their
midpoint; thus these scores are high at points that lie midway
between pairs of antiparallel edges, so that they define a
weighted "medial axis."
Each of these generalizations has disadvantages. The SPAN

is costly to compute, since it involves testing neighborhoods of
all sizes at every point for homogeneity. The GRAYMAT is
defined relative to the set of O's in the picture, so that it re-
quires the picture to be segmented into O's ("background")
and non-O's ("objects"). The GRADMAT turns out to be
rather sensitive to noise and to irregularities in region edges.
This correspondence proposes a new gray-scale generalization

of the MAT which is inexpensive to compute, does not require
the picture to be segmented, and is insensitive to noise. Its
definition is based on the fact that the MAT of a set S can be
constructed by a process of iteratively shrinking and reexpand-
ing S [6]. For grayscale pictures, the operations of local MIN
and local MAX are generalizations of shrinking and expanding,
respectively [7] . Thus if we use iterated local MIN and MAX
instead of shrinking and expanding, we obtain a "MAT" con-
struction that is applicable to grayscale pictures. The result-
ing "MAT" will be called the MMMAT (short for "min-max
MAT").
Section II reviews the shrink/expand construction of the

MAT and defines its min/max generalization. Section III shows
that this MMMAT construction yields reasonable "medial axes"
in a variety of cases.

II. THE MMMAT

The MAT can also be defined by a propagation process start-
ing at the contour of the figure, and propagating toward the
inside of the figure. The contour is the initial wavefront of the
propagation process, and the propagation velocity is fixed.
Wavefront superposition is not allowed, and wavefront inter-
section points are the points of the MAT. The gray level ex-
tension of this "grass fire" definition was given in [61, where
the propagation velocity is inversely proportional to the gray
level.
Following the above definition, the propagation of a wave-

front in a binary digital picture can be modeled by a sequence
of "shrink" operations, and the MAT can be constructed by a
simple process of iterated shrinking and reexpanding using the
appropriate neighborhood (4-neighborhood for the city block
distance, 8-neighborhood for the chessboard distance). Let
S(k) denote the result of "expanding" S k times, where a single
expansion step (S(1)) means that all points of S which are
neighbors of points in S are adjoined to S. Similarly, let
S(-k) be the result of "shrinking" S k times; a single shrinking
step means that all points of S which are neighbors of points
in S are deleted from S. Shrinking S is evidently equivalent to
expanding S, and vice versa. A point is in s(-k) if its distance
from S is at least k; here the distance is city block if we use
only horizontal and vertical neighbors in the definition of
shrinking, and the distance is chessboard if we also use diagonal
neighbors.

It can be shown that for all nonnegative i and j we have
(Si))(i) C S(i - i) C (S(i))&'); thus in particular, for all non-
negative k we have (S(-k))(1) C S(-k + '). The difference set
Dk s(-k + i) - (S(-k))(1) consists of points whose distances
from S are k - 1, and which have no neighbor at distance k or
greater; hence the discrete case Dk is just the set of distance
maxima at distance k - 1 from S. Thus Uk Dk is the set of all
distance maxima, i.e., of MAT points.
Shrinking S is equivalent to performing a local MIN opera-

tion on the two-valued picture that has 1's at the points of S,
and expanding S is equivalent to performing a local MAX oper-
ation on this picture, where "local" is defined in terms of the
appropriate set of neighbors. For a gray level digital picture E,
let l(k) be the result of applying k iterations of local MAX to
E, and let (-k) be the result of k iterations of local MIN. It
can be shown [7] that for all nonnegative i and j we have
(z(-i))(i) S VCi)(0< (i))(-); thus in particular, for all non-
negative k we have ( (-k))(1) < (-k+ 1), so that the difference
picture Ak -(-k+ 1) - (J(-k))(1) is everywhere nonnegative
(all picture operations are performed pointwise). If E is a
two-valued picture and S is its set of l's, then the set of l's
of Ak is just Dk.
In the two-valued case, when we shrink S, a given point P

of S remains unchanged until k = d(P, S), and then changes
to 0; but in the general case, when we iterate local MIN, the
value of P may change many times. Let Zk(P) be the lowest
gray level within distance <k of P; thus Zo > Z1 >, * * *, where
Zo is P's gray level in , = 2(°). Readily, Zk(P) is the gray level
(-&k)(p) Of P in ,(-k). If Zk(P) = Zk - 1 (P), Ak must be 0 at
P, since the max of Zk(P) and its neighbors in Ak is at least
(hence exactly) Zk - 1(P); but if Zk(P) <Zk - I(P), Ak may
be >0 at P.
The MMMAT value of P can be defined in terms of the Ak(P)

values (k = 1, 2, * - ) in several ways. One possibility is to use
their maximum; another is to use their sum. As we shall see
in the next section, both of these definitions yield MAT-like
loci of high MMMAT values. It is evident that the max defini-
tion yields values in the same range [0, ZI as the picture's
gray scale, since 0 < SAk = + 1) _ (i(k))(1) < (-k + 1) < Z
for all k. For the sum definition too, we have 0 < Ak < E Ak,
On the other hand,

N
Z ((-k) - E(-k- 1)) = (0) _(-N- 1) < Z;

k =O

and since

(1(-k - 1))(1) > E(-k- 1)

this implies f (1(-k) - (z(k- 1)))) . Z.
When the local MIN operation is iterated many times, border

effects become a serious problem. In the two-valued case, if
we require that S be interior to the picture, then the border of
the picture consists entirely of 0's, and we can treat the out-
side of the picture as consisting of 0's without creating any
artifacts. In the gray-scale case, however, whatever value(s)
we use outside the picture will have effects on their neighbors
inside it, and as the process is iterated, these effects propagate,
as we will see in the next section.

III. EXAMPLES AND CONCLUDING REMARKS

Fig. 1 shows eight pictures and their MMMAT's computed in
three different ways: max A, using eight- and four-neighbor
operations, and I A,k using eight-neighbor operations. The
four-neighbor version contains artifacts due to border effects,
resulting from the fact that the outside of the picture is treated
as consisting of 0's. In all cases, the high MMMAT values con-
stitute very reasonable "skeletons" of the dark points in the
given picture.
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(a) (b) (C) td)
Fig. 1. Some pictures and their MMMAT's: (a) Originals (64 by 64

pixels). (b) 8-neighbor MMMAT's using maxk. (c) 4-neighbor
MMMAT's using maxk. (d) 8-neighbor MMMAT's using Sk. The
number of iterations used in each case is somewhat greater than the
radius of the largest dark region.

In the two-valued cases, S can be reconstructed from its
MAT by a reexpansion process; in fact, S is the union of the
disks centered at the MAT points and with radii equal to the
distance values of those points. In the gray-scale case, analo-
gously, if we know Al(Z), A2(Z), * * *, /Am(Z) for each Z, we
can reconstruct z from V-m) by an interated local MAX pro-
cess, where at each step we add the appropriate A value back
into the picture. Specifically, given (-m), we have V-m + 1) =
(f(-m))(0) + AM; J(-m + 2) = (j(-m + 1))(1) +Am - 1; * * *

2(0) = (Q(-1))(1) + A1. Note, however, that this reconstruction
process requires a large amount of information, namely m
arrays of A values, unlike the two-valued case where we only
need a single distance value for each point. This is a conse-
quence of the fact that in the MAT construction process, the
value of a point changes from 1 to 0 only once (for k equal to
its distance from 5), whereas in MMMAT construction, the
value of a point may change at every iteration. In any case,
the picture cannot be reconstructed from its MMMAT values,
since these are maxes or sums of Ak's, and we need all of the
individual Ak values for correct reconstruction.

It has been suggested [ 1] that biological visual systems com-
pute MAT's and use them to extract perceptually significant
features from shapes and patterns (e.g., lobes on a shape cor-
respond to branches on its MAT). However, it seems implau-
sible that visual systems threshold their input, which would

be necessary for MAT computation. The MMMAT provides a
possible alternative approach in which medial axes can be
computed from unthresholded input.
Comparisons with the other methods mentioned in Section

I are not given here, but some idea of relative performance can
be gotten by comparing our results with those in [3] -[5] . All
of the methods produce "disconnected" skeletons, just as the
MAT itself does (local maxima of distance cannot be adjacent
unless they have the same value). If the MMMAT algorithm is
applied for only a few iterations, it yields a "partial" skeleton
arising from thin parts of the objects in the image, or extending
part way along the bisectors of corners. The time complexity
of the algorithm is proportional to the image size times the
number of iterations, since each iteration requires another local
MIN and local MAX applied to the entire image; on a cellular
array (one processor per pixel), the time would be propor-
tional to the number of iterations.
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Construction of a Distributed Associative Memory
on the Basis of Bayes Discriminant Rule

KENJI MURAKAMI AND TSUNEHIRO AIBARA

Abstract-The purpose of this correspondence is to propose a new
construction method of distributed associative memory which operates
with discrete-valued signals. In this method, memorized pairs of
vectors (cue vectors and data vectors) are recorded in the form of a
matrix W and a vector T. From an input vector X, the data vector is
recalled by an operation u(XW + T) where X is a cue vector or a noisy
cue vector. and u is a quantizing function. The methods of memoriza-
tion and recall are similar to the Associatron; however, the proposed
model can recall the data vectors optimally in Bayesian sense even
when noisy cue vectors are given as the input vectors.
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