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Abstract

Motion segmentation is traditionally coupled
with motion detection, where each image re-
gion corresponds to a particular motion model
which accounts for the temporal changes in the
region. Using the motion model to estimate the
second frame from the first frame, for example,
should give a very low prediction error in the
corresponding region.

To relax the need for accurate motion models,
it is proposed to examine the convergence of
the prediction error, rather than the prediction
error itself. In an iterative process of motion
computation followed by computing the predic-
tion error, those points for which the prediction
error is being reduced are considered as a coher-
ent region. This segmentation approach works
well even with approximate motion models that
don’t eliminate the prediction error.

1 Introduction

Motion segmentation is traditionally coupled with mo-
tion detection, where each region corresponds to a
particular motion model which explains the temporal
changes in that image region [Boult and Brown, 1991;
Wang and Adelson, 1993; Irani et al., 1994]. Using the
motion model to estimate the second frame from the
first frame, for example, should give a very low predic-
tion error in the corresponding region. Under this ap-
proach motion segmentation corresponds to selecting a
threshold for the prediction error. Regions having be-
low threshold prediction error are considered to belong
to the motion model being used.

To remove the need for accurate motion models, and to
reduce the dependency on the arbitrarily selected thresh-
old for the prediction error, it is proposed to examine
the convergence of the prediction error, rather than the
prediction error itself. In an iterative process of region-
based motion computation [Bergen et al., 1992] followed
by computing the prediction error, those points for which
the prediction error is being reduced are considered as
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a coherent region. The proposed approach works well
even with approximate motion models that don’t elimi-
nate the prediction error.

2 Region-Based Motion Analysis

Region motion is computed from spatio-temporal image
derivatives [Lucas and Kanade, 1981; Bergen et al., 1992;
Trani et al., 1994]. Given two successive frames from an
image sequence, I1(x,y) and Ix(z,y), partial derivatives
are denoted as follows:
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Using the well-known constraint equation [Horn and
Schunck, 1981], the 2D motion (u,v) which minimizes
the prediction error for the region of analysis R [Irani et
al., 1992] should also minimize the following error func-

tion:
E(u,v) = Z (ul, +vl, + 1;)*. (2)
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The error minimization is performed over the param-
eters of one of the following motion models [Irani et al.,
1994]:

1. Translation: 2 parameters, u(z,y) = a, v(z,y) =
d. In this model, the entire image is assumed to
have a uniform translation.

2. Affine: 6 parameters, u(z,y) = a + bz + cy,
v(z,y) = d + ex + fy. [Bergen et al., 1992].

3. A Moving planar surface (a pseudo projective
transformation): 8 parameters [Adiv, 1985; Bergen
et al., 1992]  w(z,y) = a + bz + cy + gz* + hay,
v(z,y) = d+ex + fy+gry + hy’.

The computation framework is based on multiresolu-
tion and iterations, using a Gaussian pyramid, as de-
scribed in [Bergen and Adelson, 1987; Irani et al., 1994].

One of the major properties of this framework is that
it finds the motion parameters of a single image region
[Burt et al., 1991], even when the image contain several
different motions. This region will be called the Dom-
wnant Region having the Dominant Motion. The prop-
erty of finding a single motion of a single image region
appears especially in the case of the translation model,



and enables a preliminary image segmentation (Sect. 3)
to locate the pixels which belong to that object.

3 Motion Segmentation

When the parameters of a motion model are initially
computed for a region that includes several different mo-
tions, the resulting parameters are influenced by all mo-
tions, and do not correspond to a single motion. How-
ever, rarely are all motions perfectly balanced, and there
is one region that affects the motion computation more
than other regions.

The proposed segmentation method looks for exactly
these more influential, or dominant, pixels. When the
two frames are registered using the computed motion pa-
rameters, the dominant pixels will be those pixels whose
prediction errors are reduced by the registration.

This definition of dominant pixels avoids the need for
arbitrary thresholds of the prediction error itself, and it
gives good results even when inaccurate simple motion
models are being used (Figs. 2,3). The preliminary seg-
mentation using a simple motion model is being used for
another motion computation process, this time focusing
only on the dominant region. This process is repeated
while upgrading the motion model to a more accurate
one, and in our experiments the most elaborate motion
model used was the image motion of a 3D moving planar
surface with its 8 motion parameters.

3.1 Changes in the Prediction Error

Given two frames [; and Iy, let I3' be the frame I
warped back towards frame I; using the motion parame-
ters computed in the registration step. I; and I;* will be
the temporal derivatives before and after the registration
process :

L=L-L , '=1-1 . (3)

The Improvement Measure M, measuring for each
pixel (z,y) the improvement in the prediction error after
applying the registration, is defines as:
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When |I;| = |I}*| = 0, no motion has been detected,

and M is set to 1. This way, regions which seem station-
ary both before and after the warping are considered to
be part of the dominant object.

The measure M has the following properties:

1. -1<M<1.

2. M = 0 when the registration has no effect on the
prediction error.

3. When |I;| > |I}*| then M — 1, indicating that the
prediction error decreases by the registration pro-
cess, and the pixel therefore belongs to the domi-
nant object.

4. When |I;| < |I}”| then M — —1, indicating that the
prediction error increases by the registration pro-
cess, and the pixel therefore does not belong to the
dominant object.

Figure 1: The Reliability Measure of an image.
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the Normal Flow, the measure M (Eq. 4) can also be
interpreted as the improvement in the Normal Flow.

Note that since is actually the magnitude of

3.2 Membership in the Dominant Region

A point will be considered as part of the dominant re-
gion if it has an improvement in the prediction error
(M(z,y) > 0), subject to the reliability of the motion
information at this point. The Reliability Measure R at
pixel (z,y) is defined as

R(x,y) = \L(x,y)? + L (2,y)?. (5)

Figure 1 displays this measure for a given image.

The membership function in the dominant region is
computed using images in several resolution levels, 0 <
[ < N — 1. For each resolution level [ both measures
Ri(z,y) (Eq. 5) and M;(z,y) (Eq. 4) are computed. The
membership function in the dominant region is defined

as the weighted sum over all resolution levels:
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The measure S, whose values are always in the range
—1 < 5 <1, indicates the membership in the dominant
region, where S = 1 indicates absolute membership, and
S = —1 is absolute non-membership. It is interesting to
observe uniform regions with no gradients. In this case
S =0since M =1 (Eq. 4) and R = 0 (Eq. 5), and
the uniform regions will not be considered as part of the
dominant region.

S(z,y) =

3.3 Steps of Segmentation Algorithm

1. Given two frames I;(z,y) and Iz(z,y), the global
translation of the entire image is calculated. This
step converges to the dominant translation even
without segmentation [Burt et al., 1991].

2. Frame I, is warped towards frame [; using the mo-
tion parameters that were computed in the previous
step.

3. The Segmentation Measure S(x,y) is computed (Eq.
6).

4. The above process is repeated for higher order mo-
tion models, where the translation motion model is

followed by the affine model, which is followed by
the mowving plane model. For all motion models,



Figure 2: Motion segmentation - first sequence.

a) An original frame.

b) Binary Segmentation mask using a translation motion
model. Black is excluded from the dominant region.

c) The fuzzy segmentation mask S using a moving-plane mo-
tion model.

d) Binary segmentation mask using a moving-plane motion
model.

except the translation model, motion computation
was done when points were weighted by the segmen-
tation mask S, so that only points in the dominant
region are influencing the computation.

4 Examples

Results of applying the proposed motion segmentation
method on two publicly available image sequences are
displayed in Figures 2-3. In addition to an original frame,
binary segmentation masks are displayed when the trans-
lation motion model was used, and when the moving
plane motion model was used. The fuzzy segmentation
mask S is displayed for the last case of the moving plane
motion model. Note that the binary mask was created
for visualization only, and is not used by any part of the
algorithm. Only the fuzzy segmentation mask S is used.

5 Concluding Remarks

The motion segmentation approach described in this pa-
per has two contributions. First, the segmentation can
be performed even with an approximate motion model.
In addition, identifying regions with an improved predic-
tion error does not depend on arbitrary thresholds as do
existing methods, which examine whether the prediction
error falls below the threshold. We find this approach
very helpful in the analysis of multiple image motions.
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