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Abstract 
This paper presents a framework combining two 

prevailing approaches t o  motion analysis: optical f low 
which describes motion at each point, and methods 
that define global motions for [arger regions. Image 
motion is represented b y  layers, image regions whose 
coherent motion can be approximated b y  some para- 
metric motion model. The motion at every point is 
obtained b y  the parametric motion estimate of the en- 
tire layer, corrected b y  a residual f low field which cap- 
tures the diflerence between the real image motion and 
the layer's motion model. The new approach is able to 
construct accurate flow fields in the presence of multi- 
p le  motions, motion boundaries, and transparent mo- 
tions. 

1 Introduction 

This paper describes an approach for accurately 
computing optical flow by combining layered represen- 
tation of global parametric motion with local residual 
estimates. In general, optical flow estimation requires 
the use of some type of spatial coherence constraint in 
order to  obtain estimates in regions of low texture or 
aperture effect. The standard formulation of this con- 
straint in the form of a smoothness assumption is not 
adequate to  handle dynamic scenes whose projection 
on the image plane include multiple moving regions 
or multiple surfaces. Recently there has been a trend 
towards using global parametric motion models (e.g., 
see [2]) in order to obtain accurate estimates over an 
entire region. 

An important and necessary extension of paramet- 
ric motion models is the use of multiple motion esti- 
mation leading to  a layered representation [lo, 13, 71. 
This approach represents the scene with multiple sur- 
faces or layers, each moving with a single global para- 
metric transformation. However, there are two dif- 
ficulties with this approach. First, the global para- 
metric models, while being very effective and efficient 
for obtaining good overall alignments of the layer, do 
not capture the detailed variation of flow from pixel 
to  pixel. Second, the separation of images into layers 
is a difficult problem, and while a number of different 
solutions have been proposed for i t ,  the fundamental 
issues involved in solving this problem are still unclear. 

The approach described in this paper closes the cir- 
cle on this line of work, by taking the problem back 
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to accurate optical flow computation. In this regard, 
the layered parametric motion representation can be 
viewed as a generalizati'on of the spatial coherence as- 
sumption. By combining the layered motion fields to- 
gether with pointwise residuals, we expect to obtain 
the benefit (in terms of the accuracy, stability, and 
efficiency) of layered parametric motion models while 
being able to account for local variation of flow. 

2 Estimation of layered representa- 
tions and flow 

The basic problem of optical flow estimation based 
on parametric motion of layers plus residuals can be 
described as follows: Given some image frames deter- 
mine an optical flow field based on the decomposition 
of the image into a set of layers, each of which is de- 
scribed by a parametric motion model, such as the 

The total motion of each pixel is expressed as the com- 
bination of the layer's motion at that pixel together 
with a residual flow vector. Each pixel derives its Aow 
vector as a single layer ldus residual, while each layer 
has a set of pixels whose information contributes to 
the estimation of the motion parameters of the layer 
(called the support set), although it is important to 
note that it is not required that the support sets of 
different layers be mutually exclusive. (Hence, the 
support set and the classification map are not inverses 
of each other.) 

The overall requirement is that  the flow field de- 
scribe the image motion at all the pixels as accurately 
as possible. We impose the following constraints on 
the problem: (i) the maitched pixels between the im- 
ages should be "similar" according to some similari1,y 
metric, (ii) the residual motion of each pixel relative 
to the layer motion should small as possible, (iii) the 
number of layers should be as small as possible, and 
(iv) the overall residual measure (appropriately de- 
fined) of the support of each layer relative t o  the layer's 
motion should be as small as possible. In this paper, 
we do not develop a complete and rigorous mathemat- 
ical formulation of each of these constraints; rather, 
our aim is to  identify the primary constraints and ex- 
plore strategies for formulating them and implement- 
ing them. 

As expected, the basic method is to  start with crude 

affine model ( U ,  v )  = ( P I  + P ~ Z  + P ~ Y , P ~  + p 5 ~  +BY). 
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Figure 1: 
Framework for the estimation of layered motions. 

estimates of layer models or support sets and iterate 
among flow computation, motion model estimation, 
and segmentation. As shown in Figure 1, this frame- 
work is non-committal with respect to  choices made 
at the various decision points. Those choices lead to  
particular algorithms, which resemble existing algo- 
rithms in the literature (e.g., 110, 13, 71). Framework 
components are now examined. 

Parametric Motion Models: The motion mod- 
eling module estimates a parametric model that fits 
the coherent component of motion of any set of points 
given to  it. Choices include fitting a regression model 
to  a motion field computed by the flow estimation 
module [13] and direct parameter estimation from im- 
age gradients [lo, 3, 91. Unless segmentation is al- 
ready correct, a set of pixels being fitted may contain 
multiple motions besides a dominant coherent com- 
ponent. Flow regression demands techniques like M- 
estimation [ll] to  avoid outlier effects. Hierarchical 
gradient-based algorithms developed for parametric 
motion model estimation [a] usually tend to lock onto 
the dominant component [6]. 

Layer Separation: The segmentation module de- 
termines the support sets of one or more layers given 
their motion models. The approach is to  base the de- 
cision on a local measure of fit between each model 
and the local information over an elemental area that  
could be single pixels or small regions. Choices con- 
sidered for the measure of fit include: residual flow 
with respect to the layer motion, the parametrzc error, 
i.e. the difference between the model and parameters 
obtained by a local fit to  flow around the pixel, and 
resadual zntensaty between images after compensating 
for the layer's global motion [la]. These measures can 
be integrated over a neighborhood to promote spatial 
coherence and reduce noise sensitivity. Spatiotempo- 
ral coherence[l3, 4, 101 and mutual exclusion could 
also be used to  make layers correspond more closely 
to physical scene surfaces. 

Flow Estimation: The flow estimation module 
is responsible for estimating an image-wide motion 

field close to  any specified parametric motion model. 
This is performed by registering the images by that 
model, computing the residual flow using any of the 
standard flow estimation algorithms, then composing 
the result with the model. To feed the motion model- 
ing or segmentation modules, the given model can be, 
depending on the control strategy, either (i) fixed as 
0,  in which case flow need only be computed once- 
prior to  framework iterations [13]-or else (ii) set to  
the current motion model of each successive layer. 

Flow estimates are usually most accurate when the 
given model is close to  actual motion, since small resid- 
ual flows can be more accurately estimated: there is 
less need to  invoke large scale spatial smoothness dur- 
ing estimation, which tends to  reduce accuracy and 
spatial resolution of the results. Therefore, to con- 
struct an accurate flow field for a multiple-motion 
scene, all the flow fields from (ii should be multi- 

tation mask. 
Control Strategy 

Motion modeling, segmentation, and optical flow 
estimation are the top level computational modules 
of the algorithm framework. The control strategy de- 
termines when layers are added and updated. Three 
paradigms include: 

Sequentzal- layers are successively added to  the rep- 
resentation, initializing the support set to  the whole 
image for the first layer and previously unclaimed pix- 
els for subsequent layers [5, 3, lo]. 

Parallel- multiple layer motion models and sup- 
ports are refined concurrently, as in K-means clus- 
tering. Each layer initially has either a random model 
or random support set, e.g. a small patch of connected 
pixels, likely to  be part of a coherent motion. 

Haerarchzcal- split existing classes when homogene- 
ity tests are not satisfied [S, 91. 

plexed on a pixel-wise basis accor d ing to the segmen- 

3 Results 

Two distinct algorithms consistent with the fore- 
going framework were implemented. The two major 
choice points in the framework are the control strategy 
and the motion model estimation technique. In order 
to cover these alternatives, one algorithm used a par- 
allel control strategy with both direct and flow-based 
model estimation, and another one used a sequential 
control strategy with direct model estimation. The 
first of these, which was inspired by [13], is farther 
along in its development and was used to  produce the 
experimental results included in this section. 

This algorithm updates a fixed number of layers in 
parallel and consists of two phases, first with blocks 
of pixels as elements and then with individual pix- 
els. During phase 1, each layer support starts out as 
a single randomly chosen small block and, via frame- 
work iterations,.grows to  include all consistently mov- 
ing blocks. This phase is restarted several times t o  
seek lower error solutions, then phase 2 starts out 
with the best motion models of phase 1. In phase 
1, a hierarchical gradient-based algorithm [l] is ini- 
tially used to estimate optical flow, starting from a 
null model, and affine motion models are regressed to  
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flow by M-estimation in each layer at each iteration. 
In phase 2, model parameters are estimated by a direct 
method. In both phases, support sets are updated by 
assigning each element to the layer minimizing mea- 
sures of residual flow (with respect to the initial flow) 
and residual intensity integrated over elements, yield- 
ing nonoverlapping layers. (For comparison, the clus- 
tering step of [13] is equivalent to phase 1 using para- 
metric error.) At  the end, optical flows are computed 
starting from each layer model and multiplexed. 

The characteristics of optical flow estimation via 
layered representations can be illustrated using the 
sequence shown in Figure 2a. In this scene, there are 
three principal moving regions: the background trans- 
lates mainly to the right due to camera motion, the 
right boxer moves slightly to  the right, and the left 
boxer moves down. 

The parallel algorithm is used to extract a layered 
representation, with the number of layers fixed at four 
and the phase 1 block size set to 20 x 20. The layer 
classification map is indicated by shades of gray in Fig- 
ure 2b. Besides extracting the three primary moving 
objects, the algorithm extracts a separate layer for the 
right boxer’s arm, which moves slightly with respect 
to his body. 

The frame difference after motion compensation by 
each layer’s parametric motion model only is shown 
in Figure 3a. In part, these residuals are caused by 
insufficiency of an affine model to fully account for 
motion in the extracted layers, due to parallax motion 
and nonrigid objects. 

Finally, optical flow is computed within each 
layer, initialized with the corresponding affine motion 
model. As shown in Figure 3b, the resulting motion- 
compensated difference energy is much smaller than 
with affine registration alone. The most significant 
improvement in optical flow, shown in Figure 4, is that  
sharp discontinuities of flow at motion boundaries are 
well preserved. For comparison, optical flow estima- 
tion without layers, i.e. the flow starting from a null 
model, yields the flow fields shown in Figure 5. Since 
the same hierarchical optical flow algorithm is used in 
all the cases, the improvement can be attributed to 
the use of layers. 

4 Summary 

This paper described a framework which is an alter- 
native to the prevailing approaches to motion analysis. 
Global parametric motion models are used to segment 
the image into layers. This is interleaved with optical 
flow estimation which refines the layered representa- 
tion’s models to allow for local flow variation. Ex- 
perimental results based on a parallel layer extraction 
strategy show that  this approach extends the ability of 
standard optical flow estimators to deal with multiple 
motions and motion boundaries. 
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Figure 2: 
(a) One frame of a 3-frame sequence. There are 3 
main moving objects in this scene: the background 
and boxing ring, the left boxer, and the right boxer. 
(b) Classification map of extracted layered represen- 
tation. 

Figure 3: 
(a) Brightness difference after registration using only 
affine motion model for each layer. 
(b) Reduced difference using flow field of layered algo- 
rithm, which corrects affine model by a residual flow. 

Figure 4: 
Velocity components from layered flow estimation al- 
gorithm, dark=leftward or downward motion. Sharp 
discontinuities of flow are preserved at motion bound- 
aries. 

Figure 5: 
Velocity components from standard optical flow esti- 
mation, without using layers. 
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