
Symmetry of Fuzzy Data

Hagit Zabrodsky� Shmuel Peleg� David Avnirz

Institute of Computer Science� and Department of Organic Chemistryz

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Symmetry is usually viewed as a discrete feature: an
object is either symmetric or non-symmetric. Follow-
ing the view that symmetry is a continuous feature, a
Continuous Symmetry Measure (CSM) has been devel-
oped to evaluate symmetries of shapes and objects. In
this paper we extend the symmetry measure to evalu-
ate the imperfect symmetry of fuzzy shapes, i.e shapes
with uncertain point localization. We �nd the proba-
bility distribution of symmetry values for a given fuzzy
shape. Additionally, for every such fuzzy shape, we
�nd the most probable symmetric shape.

1 Introduction

One of the basic features of shapes and objects is
symmetry. Symmetry is considered a pre-attentive fea-
ture which enhances recognition and reconstruction of
shapes and objects [2]. Symmetry is also an important
parameter in physical and chemical processes and is an
important criterion in medical diagnosis.

The exact mathematical de�nition of symmetry [4]
is inadequate to describe and quantify the symmetries
found in the natural world nor those found in the visual
world. Furthermore, even perfectly symmetric objects
loose their exact symmetry when projected onto an
image plane or retina due to occlusion, self-occlusion,
digitization, etc.

Previous work [5] introduced a symmetry measure
to de�ne and quantify the deviation of shapes and
objects from perfect symmetry. This work was ex-
tended to deal with evaluating the deviation from per-
fect symmetry of incomplete data as appears in oc-
cluded shapes [6]. In most cases, however, sensing
processes do not have absolute accuracy and the lo-
cation of each point in a sensed pattern is given only
as a probability distribution - a fuzzy shape. In this
paper we continue to deal with evaluating symmetry
of incomplete data, speci�cally evaluating symmetry
fuzzy or uncertain data.

a. b.

Figure 1: a) A perfectly D6-symmetric con�gura-
tion of points. b) Interference pattern of crystals.

Fig. 1a shows a perfect (D6) symmetric con�gura-
tion of points. The location of these points (marked as
dots) are given precisely. Fig. 1b shows an interference
pattern created by projecting X-ray beams onto crys-
tals. Crystal quality is measured by evaluating the
symmetry of these interference patterns. These pat-
terns represent uncertain locations (the dark blobs) of
point data. Extension of the symmetry measure to
quantify the symmetry content of uncertain data, can
be directly applied to evaluating patterns similar to
these interference patterns.

In the next section we brie
y review the symmetry
measure as applied to 2D shapes. In Section 3 we ex-
tend the symmetry measure to deal with uncertain or
fuzzy data. In Section 4 we give mathematical deriva-
tions of the methods described in Section 3.

2 A Symmetry Measure

The Symmetry Measure as described in [5] quan-
ti�es the minimum e�ort necessary to turn a given
shape into a symmetric shape. This e�ort is measured
by the sum of square distances each point is moved
from its location in the original shape to its location
in the symmetric shape.

A shape P is represented by a sequence of n points
fPig

n�1
i=0 . We de�ne a distance between every two

shapes P and Q:

d(P;Q) = d(fPig; fQig) =
1

n

nX
i=1

kPi �Qik
2



P0
^ P0

P1

P2

2π
33

2π

3
2π

^

^

^

P2
P1

P0 P0

P2

P1

d.a. b. c.

~

~

~

Figure 2: The C3-symmetry Transform of 3 points:
a) original points fPig2i=0. b) Fold fPig2i=0 into

f ~Pig2i=0. c) Average f ~Pig2i=0 obtaining P̂0 =
1
3

P2

i=0
~Pi. d) Unfold P̂0 obtaining fP̂ig2i=0.

We de�ne the Symmetry Transform P̂ of P as the
symmetric shape closest to P in terms of distance d.

The Symmetry Measure of P denoted s(P ) is
now de�ned as the distance to the closest symmetric
shape: s(P ) = d(P; P̂)

The CSM of a shape P = fPig
n�1
i=0 is evaluated by �nd-

ing the symmetry transform P̂ of P and then comput-
ing: s(P ) = 1

n�
n�1
i=0 kPi � P̂ik2. Following is a geomet-

rical algorithm for deriving the symmetry transform of
a shape P having n points with respect to rotational
symmetry of order n (Cn-symmetry). Mathematical
derivation and proof can be found in [7]. This method
transforms P into a regular n-gon, keeping the centroid
in place.

1. Fold the points fPig
n�1
i=0 by rotating each point

Pi counterclockwise about the centroid by 2�i=n
radians (Fig. 2b). The \folding" takes Pi to ~Pi,
where ~P0 = P0.

2. Let P̂0 be the average of the folded points f ~Pig
n�1
i=0

(Fig. 2c).

3. Unfold the points, obtaining the Cn-symmetric
points fP̂ig

n�1
i=0 by duplicating P̂0 and rotating

clockwise about the centroid by 2�i=n radians
(Fig. 2d).

A 2D shape P having qn points is represented as q sets
fSrg

q�1
r=0 of n interlaced points Sr = fPin+rg

n�1
i=0 . The

Cn-symmetry transform of P is obtained by applying
the above algorithm to each set of n points seperately,

a. b.

Figure 3: The C3-symmetry transform for a 6-sided
polygon. The centroid of the polygon is marked by
�. a) The original polygon shown as two sets of 3
points. b) The C3-symmetric shape obtained.

where the folding is performed about the centroid of
all the points (Fig. 3). The procedure for evaluating
the symmetry transform for mirror-symmetry is simi-
lar (see [5]).

3 Symmetry of points with uncertain

locations

In most cases, sensors do not have absolute accu-
racy and the location of each point in a sensed pattern
can be given only as a probability distribution. Given
sensed points with such uncertain locations, the fol-
lowing properties are of interest:

� The most probable symmetric con�guration rep-
resented by the sensed points.

� The probability distribution of symmetry distance
values for the sensed points.

3.1 The most probable symmetric shape

Fig. 4a shows a con�guration of points whose loca-
tions are given by a normal distribution function. The
dot represents the expected location of the point and
the rectangle represents the uncertainty of the loca-
tion, where the width and length of the rectangle are
proportional to the standard deviation. In this section
we describe a method of evaluating the most proba-
ble symmetric shape under the Maximum Likelihood
criterion given the sensed points. Detailed derivations
and proofs are given in Section 4.1. For simplicity we
describe the method with respect to rotational symme-
try of order n (Cn-symmetry). The solution for mirror
symmetry or any other symmetry is similar.

Given n ordered points in 2D whose locations are
given as normal probability distributions with ex-
pected location Pi and covariance matrix �i:
Qi � N (Pi;�i) i=0 : : :n�1, we �nd the Cn-symmetric
con�guration of points at locations fP̂ig

n�1
0 which is

optimal under the Maximum Likelihood criterion.

Denote by ! the unknown centeroid of the most
probable Cn-symmetric set of locations P̂i:
! = 1

n

Pn�1
i=0 P̂i. The point ! is dependent on the loca-

tion of the measurements (Pi) and on the probability
distribution associated with them (�i). Intuitively, !
is positioned at that point about which the folding (de-
scribed below) gives the tightest cluster of points with
small uncertainty (small s.t.d.). We assume for the
moment that the centroid ! is given. A method for
�nding ! is derived in Section 4.1. We use a variant of
the folding method which was described in Section 2
for evaluating Cn-symmetry of a set of points:
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Figure 4: Folding measured points. a) A con�gura-
tion of 6 measured points Q0 : : :Q5. The dot rep-
resents the expected location of the point and the
rectangle has width and length proportional to the
standard deviation. b) Each measurement Qi was
rotated by 2�i=6 radians about the centroid of the
expected point locations (marked as '+') obtaining
measurement ~Q0 : : : ~Q5.

1. The nmeasurements Qi � N (Pi;�i) are folded by
rotating each measurement Qi by 2�i=n radians
about the centroid !. A new set of measurements
~Qi � N ( ~Pi; ~�i) is obtained (see Fig. 4b).

2. The folded measurements are averaged using a
weighted average, obtaining a single point P̂0. Av-
eraging is done by considering the n folded mea-
surements ~Qi as n measurements of a single point
and P̂0 represents the most probable location of
that point under the Maximum Likelihood crite-
rion.

P̂0 � ! = (
n�1X
j=0

~��1j )�1
n�1X
i=0

~��1i
~Pi � !

3. The \average" point P̂0 is unfolded as described
in Section 2 obtaining points fP̂ig

n�1
i=0 which are

perfectly Cn-symmetric.

When we are given m = qn measurements, we �nd the
most probable Cn-symmetric con�guration of points,
similar to the folding method of Section 2. The m
measurements fQig

m�1
i=0 , are divided into q interlaced

sets of n points each, and the folding method as de-
scribed above is applied seperately to each set of mea-
surements. Derivations and proof of this case are also
given in Section 4.1.

a. b. c. d. e.

Figure 5: The most probable symmetric shapes. a)
A con�guration of 6 measured points and the most
probable symmetric shapes with respect to b) C2-
symmetry, c) C3-symmetry, d) C6-symmetry, and
e) mirror-symmetry.

Several examples are shown in Fig. 5, where for a
given set of measurements, the most probable symmet-
ric shapes were found. Fig. 6 shows the e�ects of vary-
ing the probability distribution of the measurements
on the resulting symmetric shape.

a. b. c. d. e.

Figure 6: The most probable C3-symmetric shape
for a set of measurements after varying the a-c) the
uncertainty (s.t.d.), d-e) both the uncertainty and
the expected location of the measurements.

3.2 The probability distribution of sym-
metry values

Fig. 7a displays a Laue photograph ([1]) which is an
interference pattern created by projecting X-ray beams
onto crystals. Crystal quality is determined by eval-
uating the symmetry of the pattern. In this case the
interesting feature is not the closest symmetric con�g-
uration, but the probability distribution of the sym-
metry distance values.

Consider the con�guration of 2D measurements
given in Fig. 4a. Each measurement Qi is a normal
probability distribution Qi � N (Pi;�i). We assume
the centroid of the expectation of the measurements is
at the origin. The probability distribution of the sym-
metry distance values of the original measurements is
equivalent to the probability distribution of the loca-
tion of the \average" point (P̂0) given the folded mea-
surements as obtained in Step 1 and Step 2 of the
algorithm in Section 3.1. It is shown in Section 4.2
that this probability distribution is a �2 distribution
of order n� 1. However, we can approximate the dis-
tribution by a gaussian distribution. Details of the
derivation are given in Section 4.2.

In Fig. 7 we display distributions of the symmetry
distance as obtained for the Laue photograph given
in Fig. 7a. In this example we considered every dark
patch as a measured point with variance proportional
to the size of the patch. Thus in Fig. 7b the rectan-
gles which are proportional in size to the corresponding
dark patches of Fig. 7a, represent the standard devia-
tion of the locations of point measurements. Note that
a di�erent analysis could be used in which the variance
of the measurement location is taken as inversely pro-
portional to the size of the dark patch.

In Fig. 8 we display distributions of the symmetry
distance value for various measurements. As expected,
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Figure 7: Probability distribution of symmetry val-
ues. a) Interference pattern of crystals. b) Probabil-
ity distribution of point locations corresponding to
a. c) Probability distribution of symmetry distance
values with respect to C10-symmetry. Expectation
value = 0.003663.

the distribution of symmetry distance values becomes
broader as the uncertainties (the variance of the dis-
tribution) of the measurements increase.

Medical diagnostics often use symmetry. For ex-
ample cancerous tissues are quite often non symmetric
and asymmetric organs may imply some abnormality
or cancerous growth. Using symmetry measures these
imperfect symmetries can be quanti�ed and used to
assist in medical diagnosis. A speci�c case is that of
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Figure 8: Probability distribution of symmetry dis-
tance values as a function of the variance of the
measured points. a-d) Con�gurations of measured
points. e) Probability distribution of symmetry dis-
tance values with respect to C6-symmetry for the
con�gurations a-d.
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Figure 9: Probability distribution of symmetry val-
ues a-b) Two images of skin spots. c-d)Probability
distribution of point locations corresponding to the
skin spots of a-b respectively. e) Probability distri-
bution of symmetry distance values with respect to
mirror-symmetry for skin spots. Expectation value
for skin spots a and b are 0.009013 and 0.002921
respectively.

skin cancer where the skin spot is determined to be
cancerous, as a function of the \amount" of symmetry
of the spot [3]. Fig.s 9a-b display two images of skin
spots. These spots were represented by a sequence of
measurements along the fuzzy contour of the spot (see
Fig. 9c-d). The symmetry distribution of these sets of
measurements were evaluated with respect to mirror
symmetry. Notice that the skin spot of Fig. 9a has not
only a higher expectation for the symmetry value but
also has a broader distribution.

4 Mathematical derivations

4.1 The most probable Cn-symmetric
shape

In Section 3.1 we described a method of evaluating
the most probable symmetric shape given a set of mea-
surements. In this Section we derive mathematically
and prove the method. For simplicity we derive the
method with respect to rotational symmetry of order
n (Cn-symmetry). The solution for mirror symmetry
is similar.



Given n points in 2D whose positions are given as
normal probability distributions: Qi � N (Pi;�i),
i = 0 : : :n�1, we �nd the Cn-symmetric con�guration
of points fP̂ig

n�1
0 which is optimal under the Maxi-

mum Likelihood criterion.
Denote by ! the center of mass of the points P̂i:

! = 1
n

Pn�1
i=0 P̂i. Having that fP̂ig

n�1
0 are Cn-

symmetric, the following is satis�ed:

P̂i = Ri(P̂0 � !) + ! (1)

for i = 0 : : :n�1 where Ri is a matrix representing
a rotation of 2�i=n radians. Given the measurements
Q0; : : : ; Qn�1 we �nd the most probable P̂0 and !by
maximizing Prob(fPig

n�1
i=0 j !; P̂0) under the symme-

try constraints of Eq. 1.
Thus, due to the normal distribution we minimize:

n�1Y
i=0

ki exp(�
1

2
(P̂i � Pi)

t��1i (P̂i � Pi)

where ki =
1
2
� j �i j1=2. Having log being a monotonic

function, we maximize:

log
n�1Y
i=0

ki exp(�
1

2
(P̂i � Pi)

t��1i (P̂i � Pi)

Thus we �nd those parameters which maximize:

�
1

2

n�1X
i=0

(P̂i � Pi)
t��1i (P̂i � Pi)

under the symmetry constraint of Eq. 1.
Substituting Eq. 1, taking the derivative with re-

spect to P̂0 and equating to zero we obtain:

(
n�1X
i=0

Rt
i�
�1
i Ri)

| {z }
A

P̂0 +
n�1X
i=0

Rt
i�
�1
i (I �Ri)

| {z }
B

! =

n�1X
i=0

Rt
i�
�1
i Pi

| {z }
E

(2)

Note that R0 = I where I is the identity matrix.
When the derivative with respect to ! is zero:

(
n�1X
i=0

(I �Ri)
t��1i Ri)

| {z }
C

P̂0 +
n�1X
i=0

(I � Ri)
t��1i (I �Ri)

| {z }
D

!

=
n�1X
i=0

(I � Ri)
t��1i Pi

| {z }
F

(3)

Notice that when all �i are equal (i.e. all points have
the same uncertainty, which is equivalent to the cases
in Section 2 where point location is known with no
uncertainty), Eqs. 2-3 reduce to Eqs. 3.5-3.6 in [7].
From Eq. 2 we obtain

P̂0 � ! = (
n�1X
j=0

Rt
j�
�1
j Rj)

�1

n�1X
i=0

(Rt
i�
�1
i Ri)R

t
i(Pi � !)

Which gives the folding method described in Sec-
tion 3.1, where Rt

i(Pi�!) is the location of the folded
measurement (denoted ~Pi in text) and Rt

i�
�1
i Ri is its

probability distribution (denoted ~�i in the text). The

term (
Pn�1

j=0 R
t
j�
�1
j Rj) is the normalization factor.

Reformulating Eqs. 2 and 3 in matrix formation we
obtain: �

A B
C D

�
| {z }

U

�
P̂0
!

�
| {z }

V

=

�
E
F

�
| {z }

Z

Noting that U is symmetric we solve by inversion V =
U�1Z and obtain the parameters ! and P̂0, and obtain
the most probable Cn-symmetric con�guration, given
the measurements fQig

n�1
i=0 .

Similar to the representation in Section 2, given
m = qn measurements fQig

m�1
i=0 , we consider them as

q sets of n interlaced measurements: fQiq+jg
n�1
i=0 for

j = 0 : : : q�1. The derivations given above are applied
to each set of n measurements separately, inorder to
obtain the most probable Cn-symmetric set of points
fP̂ig

m�1
i=0 . Thus the symmetry constraints that must

be satis�ed are:

P̂iq+j = Ri(P̂j � !) + !

for j = 0 : : : q � 1 and i = 0 : : : n � 1 where, again,
Ri is a matrix representing a rotation of 2�i=n radians
and ! is the centroid of all points fP̂ig

m�1
i=0 .

As derived in Eq. 2, we obtain for j = 0 : : : q � 1:

(
n�1X
i=0

Rt
i�
�1
iq+jRi)

| {z }
Aj

P̂j +
n�1X
i=0

Rt
i�
�1
iq+j(I � Ri)

| {z }
Bj

! =

n�1X
i=0

Rt
i�
�1
iq+jPiq+j

| {z }
Ej

(4)

and equating to zero, the derivative with respect to !,
we obtain, similar to Eq. 3:

q�1X
j=0

(
n�1X
i=0

(I � Ri)
t��1iq+jRi)

| {z }
Cj

P̂j+

q�1X
j=0

n�1X
i=0

(I � Ri)
t��1iq+j(I �Ri)

| {z }
D

! =

q�1X
j=0

n�1X
i=0

(I �Ri)
t��1iq+jPiq+j

| {z }
F

(5)

Rewriting Eqs. 4 and 5 in matrix formation we obtain:



0
BBBBB@

A0 B0

A1 B1

. . .
...

Aq�1 Bq�1
C0 C1 � � � Cq�1 D

1
CCCCCA

| {z }
U

0
BBBBB@

P̂0
P̂1
...

P̂q�1
!

1
CCCCCA

| {z }
V

=

0
BBBBB@

E0

E1

...
Eq�1
F

1
CCCCCA

| {z }
Z

Noting that U is symmetric we solve by inversion V =
U�1Z and obtain the parameters ! and fP̂jg

q�1
j=0, and

obtain the most probable Cn-symmetric con�guration,
fP̂jg

m�1
j=0 given the measurements fQig

m�1
i=0 .

4.2 Probability distribution of symmetry
values

In this section we derive the probability distribu-
tion of symmetry distance values with respect to Cn-
symmetry, obtained from a set of n measurements:
Qi � N (Pi;�i) i = 0 : : :n � 1 (see Section 3.2).

Denote by Xi the 2-dimensional random variable
having a normal distribution equal to that of ~Qi i.e.

E(Xi) = RiPi
Cov(Xi) = Ri�iRt

i

where Ri denotes (as in Section 2) the rotation matrix
of 2�i=n radians.

Denote by Yi the 2-dimensional random variable:

Yi = Xi �
1

n

n�1X
j=0

Xj

in matrix notation:0
B@

Y0
...

Yn�1

1
CA

| {z }
Y

= A

0
B@

X0

...
Xn�1

1
CA

| {z }
X

or Y = AX where Y and X are of dimension 2n and
A is the 2n� 2n matrix:

A = 1
n

0
BBBB@

n� 1 0 �1 0 �1 � � �
0 n� 1 0 �1 0 � � �
�1 0

.. . 0 �1 � � �
. . .

. . .
� � � n� 1

1
CCCCA

And we have

E(X) =

0
B@

E(X0)
...

E(Xn�1)

1
CA Cov(X) =

0
B@
Cov(X0)

. . .

Cov(Xn�1)

1
CA

E(Y) = AE(X) Cov(Y) = ACov(X)At

Given that the matrix ACov(X)At, is symmetric and
positive de�nite, we can �nd a 2n� 2n matrix S diag-
onalizing Cov(Y) i.e.

SACov(X)AtSt = D

where D is a diagonal matrix (of rank 2(n� 1)).
Denote by Z the 2n-dimensional random variable

SAX.
E(Z) = SAE(X)
Cov(Z) = SACov(X)AtSt = D

Thus the random variables Zi that compose Z are in-
dependent and, being linear combinations of Xi, they
are of normal distribution.

The symmetry distance, as de�ned in Section 2, is
equivalent, in the current notations, to s = YtY. Hav-
ing S orthonormal we have

s = (AX)tAX = (SAX)tSAX = ZtZ

If Z were a random variable of standard normal dis-
tribution, we would have s being of a �2 distribution
of order 2(n� 1). In the general case Zi are normally
distributed but not standard and Z cannot be stan-
dardized globally. We approximate the distribution of
s as a normal distribution with

E(s) = E(Z)tE(Z) + traceDtD
Cov(s) = 2trace(DtD)(DtD) + 4E(Z)tDtDE(Z)

5 Conclusion

In this paper we evaluated the deviation from per-
fect symmetry of incomplete data. We described a
method based on a continuous measure of symmetry,
previously de�ned, for dealing with uncertain data, i.e.
dealing with a con�guration of measurements repre-
senting the probability distribution of point location.
A direct application of this method is to quantify crys-
tal quality by evaluating the symmetry of interference
patterns obtained by projecting X-rays onto crystals.
These methods can be easily extended to higher di-
mensions and to more complex symmetry classes.
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