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Abstract 
Images of scenes with moving objects, taken from a 

moving camera, have several motion components. The 
dominant image motion is usually generated by the camera 
motion which affects the stationary background. Moving 
objects contribute to  other motion components. An iter- 
ative method is described for segmenting image sequences 
into independently moving regions while computing the mo- 
tion parameters of each region. In each iteration, image 
points are classified to regions based on their consistency 
with the different motion estimates, and motion estimates 
are then updated using the obtained regions. The motion 
estimates and the segmentation improve with every itera- 
tion, and the iteration stops when a stable segmentation 
is obtained. Accurate motion parameters are recovered for 
each segment. The proposed process is performed directly 
on grey-level images, and does not require detection of spe- 
cial feature points and the computation of point correspon- 
dence. It is also faster and more robust than optical flow 
based segmentation methods. 

1 Introduction 
The segmentation of moving objects in image sequences 
becomes harder when the camera itself is moving, and the 
motion parameters of the camera and of each object are 
unknown. Common approaches to motion based segmen- 
tation use optical Aow [2]. The optical flow is computed 
at every image point, and is then used for segmentation 
[l, 11, 10, 131. Adiv [l] shows that given the optical flow, 
segmentation of the scene into independently moving pla- 
nar objects is possible. He partitions the flow field into 
connected segments of flow vectors where each segment is 
consistent with a rigid motion of a planar surface. Seg- 
ments are then groups under the hypothesis that they are 
induced by a single rigidly moving object. 

Optical flow liased methods have all the drawbacks as- 

sociated with the computation of optical flow. There is very 
little motion information in the small windows used for op- 
tical flow computation, resulting in inaccuracies a t  motion 
boundaries, within uniform regions, and in the presence of 
noise. Increasing the window size reduces the ambiguity, 
but there is a larger chance that  the window will cover 
more than one motion. 

We propose to  combine segmentation with motion 
computation to  overcome the problem of several motions 
in one large region. While computing motion on large re- 
gions, thus reducing noise and ambiguity, the segmentation 
assures that  only relevant points will participate in motion 
computation. 

Analysis of camera motion relative to  a static scene 
has been extensively treated [5, 7,  8, 9, 121. Recover- 
ing this uniform motion does not require the computation 
of optical flow at every image point. Negahdaripour and 
Horn [12] present a method for recovering the observer's 
motion relative to a planar surface directly from the spatial 
and temporal derivatives of the image brightness. Horn and 
Weldon [7] follow this approach, and using a least squares 
method determine the observer's motion in the special cases 
of known depth, pure rotation, or known rotational motion 
component. 

We use a method based on [7] for recovering uniform 
motion of a set of pixels to  perform motion-based segmen- 
tation, in conjunction with an iterative clustering process. 
This process converges from initial motion estimates for 
each object to final accurate motion parameters. Segmenta- 
tion is obtained by clustering all pixels based on their agree- 
ment with the motion parameters of the different objects. 
The problems of the optical flow based methods are avoided 
by using larger regions. The motion recovery method re- 
quires the knowledge of the depth of the scene. Therefore, 
the segmentation process is currently limited to two spe- 
cial, but important, cases: when the depth of the scene is 
either constant or otherwise known. 
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2 Recovering Uniform Motion 
In this section we consider the problem of recovering the 
camera motion relative to a rigid unknown world. We 
present the brightness change constraint equation of Negah- 
daripour and Horn [la], and following Horn and Weldon [7] 
we use a least squares method to solve the equation for the 
motion parameters in the case of known depth. 
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2.1 Constraint Equation 
Under perspective projection, a scene point P = ( X ,  Y, 2) 
is imaged a t  the picture coordinates p = (x, y) = 
(X/Z, Y / Z ) ,  where the world (X, V )  coordinates are paral- 
lel to the image (x, y) coordinates, and the optical axis is 
along the Z axis. 

When the camera moves with translational velocity 
T = (V,V,W) and rotational velocity w = (A,B,C) ,  the 
optical flow ( x t ,  yt), is given by [lo]: 

Azy-  B ( z 2  + 1) + C y +  (;:) = ( -Bzy+A(y2 + 1) - Cz + ””) .  (1) 

The brightness of the image changes with the motion 
due to  change in factors such as lighting or orientation. 
However, it is reasonable to  assume that the brightness of 
a small patch does not change by motion (refer to  [7] for a 
discussion on this assumption). Under this assumption on 
the image brightness, I ,  we have d I / d t  = 0. Expansion of 
the total derivative of I using the chain rule results in 

which can be rewritten as 

X t I Z  + Y t I y  = - I t .  (3) 

Substituting from Equation (1) for zt and gVt and rearrang- 
ing (refer to  [7] for details) we get the brightness change 
constraint equation of Negahdaripour and Horn [12] which 
can be written in compact form as  

(4) 
9 . T  

W .  w + - = - I t ,  
Z 

where 

-12 

X I 2  + Y I y  

+ I y  + Y ( Z L  + YIy) 

YIZ - X I y  

= ( -Iy ) ; 2, = ( -Iz - x ( x I z  + .Iy)) . ( 5 )  

2.2 Mot ion C o iiip u t a t io 11 
The camera’s motion ( r ,  U )  and the scene depth Z ( x ,  y) can 
be computed from an image region by solving Equation (4) 
using the measurements of s, U, and It as defined in Equa- 
tions (5). Computing both camera motion and scene depth 
is impossible in the general case, but this can be done in 
some special cases. We solve the equations in the case of 
known depth. This case, and a few others, are also pre- 
sented in [7]. 

Motion is computed by finding the parameters (w, r )  
which minimize the total deviation from the brightness 
change constraint equation (4) in the region. This devi- 
ation is defined as the sum over all region points: 

E(w,  T) = CIIt + 2, * w + (l /Z)S. TI ’ .  (6) 
ZY 

The deviation can be minimized by differentiating 
E ( w , r )  with respect to  w and r ,  and setting the results 

to zero. A set of two vector equations is obtained. This 
set is actually a set of six linear equations with six un- 
knowns which could be solved for the six motion parameters 
(w, .) = ((A, B ,  C), (U, v, W ) ) .  

2.3 Iterative Refinement 
I t  may be impossible to  compute the camera motion using 
Equations (7), as the brightness change constraint equation 
(4) holds only for small rotations and translations. For two 
images I1 and I 2  recorded at a discrete time interval, the 
displacements between the images might not be sufficiently 
small, and the motion recovery method described above 
could fail. To ensure the accuracy of computed motion in 
most general cases, motion computation is iterated in two 
different ways. 

To overcome the difficulties presented by large mo- 
tions, a multi-resolution approach is used. From each input 
image, a sequence of reduced resolution images is generated 
by repeatedly blurring the image, followed by subsampling 
by a factor of two. Each image is therefore represented 
a t  several levels of resolution. For an input image of size 
256 x256, for example, reduced resolution images of sizes 
128x128, 64x64,  and 32x32 are generated. The registra- 
tion is first performed between the two lowest resolution 
representations of the input images. At  this low resolution 
level, all displacements are small with respect to  the pixel 
size. Under these conditions motion computation is more 
accurate. The obtained transformation coefficients are used 
to warp one of the next higher resolution images towards 
the other. The resulting two higher resolution images have 
smaller pixel displacements, allowing the residual motion to 
be computed. The total motion is now applied to warp the 
next higher resolution images, and the process continues 
until the two highest resolution images are registered. 

To increase accuracy, the following iterations are per- 
formed a t  every resolution level [9]: 

Initially assume no motion between the frames. 
Compute approximations to  the motion parameters by 
solving Equations (7).  Add the computed motion to 
the existing motion estimate. 
Warp I1 towards I2 using the current motion estimates, 
and return to Step 2 with the warped image 4.  

The warped version of I1 gets closer to I2  a t  every - 
iteration, and as the residual values of w and T computed in 
Step 2 get smaller they become more accurate. The process 
is stopped when the corrections to w and T approach zero. 

It should be noted that of all the coefficients used in 
Equations (7), only 1, changes from one iteration to  the 
next. Therefore, 36 of the 42 coefficients are computed 
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only once. Only six coefficients, depending on It, are re- 
computed a t  each iteration. 

The above method recovers the camera motion relative 
to a static world. A modification of the algorithm enables 
the recovery of the camera motion even when some small 
moving objects are present in the scene. This is achieved 
by multiplying the contributions of each pixel in Equa- 
tion (7) with weights which are inversely proportional to  
the brightness difference, It, between the two images. In 
the present algorithm, weights used for every pixel (z,y) 
are 1 / (1+  l I t ( z ,y ) l ) .  When the two images are almost reg- 
istered, a large brightness difference usually corresponds to  
moving objects, and these points will have a smaller effect 
on the computation of motion parameters. 

The ability of the algorithm to recover the camera mo- 
tion in a non static world is an important feature which is 
used by the segmentation algorithm presented in the next 
section. 

3 Motion Based Segmentation 
Image sequences will be segmented into independently mov- 
ing objects, using the registration algorithm for recovering 
uniform motion described in Section 2 .  

Let 11 and I 2  be two consecutive frames in an image 
sequence. For simplicity, we assume that  the scene consists 
of one moving object, and that  the background is moving 
due to  camera motion. Let mo and ml denote the mo- 
tion parameters of the background and the object respec- 
tively. Each motion parameter consists of two vectors, the 
translation vector T = (U,V,W) and the rotation vector 
w = ( A ,  B,  C). 

3.1 It er at ive S eg iiieii t a t i o ii 
Step 1. Deriving Ini t ia l  Motion Estimates 

The registration algorithm of Section 2 is first applied 
to frames 11 and 12. Assuming that  the moving object is 
much smaller than the background, the resulting motion 
parameter is an estimate for mo, the background's motion. 
We will denote this estimate by m: (the superscript being 
the iteration number). 

11 is then warped towards I2 using the motion esti- 
mate m:. The warped 11 is now aligned with 12, and the 
difference between the two images is computed. High ab- 
solute values in the difference image are therefore a coarse 
approximation to the location of the independently moving 
objects. The largest region having high difference is iden- 
tified, and motion parameters are computed for this region 
by applying the registration algorithm to compute my - an 
initial estimate to  the motion of the moving object. 

Step 2. Segmeritiiig Us ing  M o t i o n  E s t i m a t e s  
For every pixel location p in frame 11, m: and my are 

used with Equation (1) to calculate the two possible loca- 
tions of p in the frame 1 2 :  m:(p) and my(p) respectively. 

If p is part of the object which moved ml,  then its 
grey-level Il(p) in frame 11 should be similar to  the grey- 
level Iz(mY(p)) a t  location my(p) in frame 12. On the other 

hand, if p is in the background which moved m ~ ,  then 11 ( p )  
should be similar to  the grey-level Iz(m:(p)) a t  location 
m:(p) in frame 12. 

Let R(p)  be the ratio between the grey-level differences 
when using motion my and the grey-level differences when 
using motion m:: 

Pixel p will be classified as background, moving mo- 
tion m:, when R(p) >> 1, and as object, moving my, when 
R(p)  << 1. Pixel p is classified as  undecided when R(p)  FZ 1. 

In actual implementations, the differences in Equa- 
tion (8) are not single pixel differences, but are taken on 
a 3x3 local neighborhood of the pixel. Although this lim- 
its the accuracy of the segmentation to  be within one pixel 
around the edges of the object, it has been found to  be nec- 
essary when applying the algorithm to  noisy images. After 
classification, object pixels are smoothed by morphological 
opening and closing [SI to  eliminate random noise. 

Step 3. Calcula t ing  N e w  Motion E s t i m a t e s  
Motion is computed separately for the region classified 

as object and for the region classified as background. The 
two new motion parameters computed by the registration 
algorithm, mk and mi,  are improved over m: and my, since 
the segmentation in Step 2 improves the separation of the 
scene into object and background. 

and mi as 
the initial estimates to  compute m;+' and mi+' and so on. 
The process is terminated when there is no (or very little) 
change in the values of the motion parameters from one it- 
eration to  the next. After termination of the iterations an 
accurate segmentation of the image into object and back- 
ground is obtained, as well as an accurate estimate of their 
motion. 

The algorithm can be generalized to  include scenes 
with more than one object by using more motion param- 
eters, and by applying the algorithm to  m:, my, m i . .  . to  
compute mk, mi ,  mi . . . and so on. In this case Equation (8) 
is being applied between the two motions which cause the 
lowest temporal grey-level differences. 

, 

Steps 2 and 3 above are repeated using 

3.2 Exp eriineiital Results 
Two examples for motion segmentation are shown. One 
is on synthetic random noise images and the other is on a 
real scene. In both cases the algorithm has been applied 
to  two consecutive images from the sequence, in which the 
background and the object have translated and rotated in 
different directions. 

Figure 1 presents a synthetic example: image (a) 
is a random noise image of size 128 x 128. Image 
(b) is a copy of (a) translated by ( 4 1 )  with a 
square of size 25 x 25, representing the object, trans- 
lated by (-2,-2). The motion parameters are there- 
fore (T, w) = ( ( -4 ,1,0) ,  ( O , O ,  0)) for the background and 
( ( - 2 ,  -2 ,0) ,  (0, 0,O)) for the central square. The mo- 
tion parameters recovered by the algorithm after two 



Figure 1: Motion segmentation on random noise im- 
ages. 
a-b) Original sequence images. 
c) Segments after 2 iterations: object is white, back- 
ground is grey and occluded regions are black. 
d) The grey-level of object regions. 

iterations were ((-3.97,0.98,0.00), (0.00, 0.00,0.09)) and 
((-2.24, -1.83, - O . O l ) ,  (0.00, 0.00,0.21)) respectively (ro- 
tation angles are in degrees). The segmentation as shown 
in Figure 1 is accurate within one pixel. 

Figure 2 presents an  example on a real scene: (a) 
and (b) are the first and second images. The cam- 
era has moved between the two images, and the white 
car has moved independently. The motion parame- 
ters found by the algorithm after two iterations were 
((-6.48,2.09,0.00), ( O . O O , O . O O , O . O O ) )  for the background, 
and ((0.60,-1.59,0.05), (0.00, -0.00,2.94)) for the object 
(rotation is in degrees). As the background regions around 
the car are smooth, some of their pixels are also classified 
as  a n  object in Figure 2. 

3.3 Detecting Occluded Areas 
Regions that are exposed in one frame and occluded in an- 
other frame cause special problems in segmentation and 
motion estimation. Consider the case of a background re- 
gion in frame 11 which becomes occluded by an  object in 
frame 12. Pixels in this region do not have matching loca- 
tions in frame 12. Therefore they either remain unclassified, 
or each is classified randomly. In order to  have accurate 
classification, these regions should be identified, and either 
not joined to any other region, or  joined to the background. 

Figure 3 presents a simple one-dimensional example 

Figure 2: Motion segmentation of an  imaged scene. 
a-b) Original sequence images. 
c) Segments after 2 iterations: object is white, back- 
ground is grey and occluded regions are  black. 
d) The grey-level of object regions. 

for such occlusion. Let Xi denote background pixels and 
Oi denote object pixels. Let us assume that  values a t  all 
pixels are unique so that matching is trivial. 

Figure 3.a-b are the sections of the two frames, 11 and 
12. As shown, the background is stationary, and the object 
has moved 2 pixels to  the right. 

Locations 7 and 8 in frame 11 have no match in frame 
12, and cannot be classified correctly (Figure 3.c). If occlu- 
sion is not detected, they may be classified as either object 
or background, making the boundary inaccurate. 

To improve the segmectation, the inverse problem is 
examined: finding the motion from IZ to  11. From the dis- 
continuity of the detected motion values between locations 
8 and 9 (Figure 3.d) and from the  fact that the relative mo- 
tion between the object and the background is 2, we learn 
that there should be a discontinuity of motion between lo- 
cations 6 and 7 of frame 11 and that locations 7 and 8 in 11 
are occluded in 12. Due to noise, we might also get discon- 
tinuities around locations 4 and 5, but in this case analysis 
of the motion values will reveal a contradiction. 

The full segmentation process, taking occlusions into 
account, is summarized as follows: Motion segmentation is 
first performed from frame 11 to  frame 12. The unclassified 
regions of frame 11, due to  lack of preferred direction when 
using Equation (S), are marked as suspect occluded region 
in frame 12. The motion segmentation from frame 12 to 
frame 11 is then computed. Using the motion discontinu- 
ities from frame I2 to  frame 11, the exact occluded areas 
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1 2 3 4 5 6 7 8 9 1 0  

c : 0 0 0 2 2 2 ? ? 0  0 

d : O  0 0 ? ? - 2 - 2 - 2  0 0 

Figure 3: A one-dimensional example for occlusion (see 
text). a) Frame I i ;  b) Frame I2. c) Translation from I1 
to I2. d) Translation from 1 2  to  I I .  

are marked, giving more accurate segmentation. The seg- 
mentation results in Figures 1 and 2 include the application 
of the above process. 

4 Concluding Remarks 
An algorithm has been presented for segmentating image 
sequences into independently moving objects, based only 
on motion information. The algorithm is fast, accurate 
and relatively immune to noise. Segmentation is an  impor- 
tant ingredient even when only motion computation is of 
interest. It has been found that the predominent motion 
can be computed accurately using the method described in 
Section 2 if sufficient iterations are performed. However, 
to compute the other motions in the scene, the effect of 
the prominent motion must be removed by segmentation. 
Without segmentation, the effects of the predominent mo- 
tion mask out the other motions. A method for removing 
the effect of one motion without requiring segmentation is 
described in [4]. 

Experiments with the algorithm show that it gives ac- 
curate results. The rotation angles, however, must be rel- 
atively small due to the use of Taylor series approximation 
in the analysis. In the case of image sequences taken at  
video rate this constraint is usually met. The segmentation 
found by the algorithm could be incorrect, but such error 
can be detected by checking the error after transforming a 
detected segment in the first frame to its location in the 
second using the associated motion parameters. 

The presented experimental results were obtained un- 
der the assumption of constant depth of the scene (Le. 
2-D scenes). This case covers applications such as aerial 
or satellite images, and some microscopical images. This 
method should also work with 3-D scenes if the depth of the 
scene is known. The depth information may be obtained 
either directly from a range finder or using the disparity in- 
format,ion provided by a stereo system [3]. Our  method will 
fail in more complicated 3-D cases. This is due to the inher- 
ent ambiguity in the brightness change constraint equation. 
In these cases a more general method, based on the optical 
flow of every point in the image, is probably needed. 

A method for detecting regions which are occluded in 
oiie image and revealed in another has also been presented. 
This method was used for refining the segmentation around 

the boundaries of the objects. 
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