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Abstract 
A digitized waveform is approximated by segments 

whose total description length is minimal for a given error 
bound. This approximation can be computed efficiently, 
and can be used for segmentation. The method is also 
shown to be applicable for segmentation and edge detec- 
tion in gray level and range images. 

1 Introduction 
Minimal length encoding as a method for describing and 
explaining information is not new. William of Occam in 
the 14’th century already stated the principle known as 
Occam’s Razor Principle: Entities should not be multiplied 
beyond necessity. Of all possible descriptions of an object 
the shortest description is preferred. Description length is 
addressed by Kolmogorov complexity [4], and also appears 
in Valiant’s learning theory and Rissansen’s minimum de- 
scription length principle [8]. 

We use this principle to segment waveforms into simple 
segments. These segments can be encoded by a short de- 
scription, and also provide a good and meaningful segmen- 
tation of the waveform. We also show some applications us- 
ing one-dimensional methods to segment two-dimensional 
gray scale and range images. 

Waveform segmentation has been addressed in [6] and 
a specific type of image segmentation using minimal de- 
scription length is described in [3]. A complete description 
of the proposed approach appears in [5]. 

2 Segments 
Waveform approximations will be built from segments, 
which are members of a parametric family of functions 
F = {ft}. In our studies we used polynomials or trigono- 
metric functions as the family of functions. 

A digitized waveform is given as a sequence of data 
points, { x i ,  ~ i } : = ~ .  We wish to describe the waveform with 
a segment, which is a function in F restricted to the in- 
terval [XI, zn]. There is usually no function ft in F such 
that ft(z,) = yi for all i. A segment is therefore defined 
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acceptable if it approximates (in some norm) the given set 
of points. 

The norm used in this paper is based on the 2 distri- 
bution: a maximal likelihood estimator, which represents 
the probability that the data originated from a function f i n  
F .  Segments are acceptable when the incomplete Gamma 
function is above a threshold. Acceptability becomes easier 
as the threshold is lowered Other possible norms are maxi- 
mum absolute deviation, sums of absolute deviations, fixed 
tolerances or robust statistics [7, 91. 

3 Waveforms 
A waveform is defined as a concatenation of acceptable seg- 
ments. There is more than one possible waveform repre- 
senting a given sequence. Indeed, one can choose every 
single point (xi, yi)  as a segment, or in the other extreme 
fit one member of F to all points. However, it is desirable 
to choose as few segments as possible, each having a sim- 
ple form. Segments are therefore weighted according to the 
minimal information needed to encode them. 

Given a sequence of data points, each possible contin- 
uous subsequence is being represented by a segment which 
is the simplest acceptable function approximating this sub- 
sequence. In case of polynomials, for example, this will be 
the lowest-order acceptable polynomial. A directed graph 
G = (V, E )  is then defined, V being the set of acceptable 
segments and ( v I , v ~ )  E E whenever subsequence vz im- 
mediately follows V I .  The vertices V are weighted by the 
cost of encoding the corresponding segment. A minimum 
length encoding of the entire waveform is then equivalent 
to a minimum weight path in G, with total encoding cost 
equal to the sum of weights of the segments in this path. 

Figure 1 is an example of the segmentation process 
where F is a family of polynomials. Polynomial segments 
are described by the length of the segment, the degree of 
the polynomial and the polynomial coefficients. Total cost 
of a polynomial segment is therefore its degree plus two. 

Computing x 2  and recovering the best fitting segment 
for each of the ( t )  intervals takes no more than O(n2) time 
because they are both functions of the smaller moments 
of the data points, Czi,Cyi,Cz~,Cy2,Cziyi,.... It 
takes only a constant time to compute the smaller moments 
for the points from i to j + 1 given the moments for the 
points from i to j. Computing the lowest weight path takes 
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Figure 1: Segmentation with a family of polynomials. 

Data points were generated from four polynomial seg- 
ments with added Gaussian noise. The segments from 
left to right are: second order, first order, constant and 
first order. The costs of encoding each segment are 5, 
4, 3 and 4 respectively, giving total cost of 16 for the 
entire waveform. 

O(n2)logn computation time. This is the worst case, but 
if there are not many long acceptable segments the com- 
putation complexity can approach O(n) by not trying to 
merge two barely acceptable segments into a longer one. 

3.1 Comparison with Split-Merge 
A popular approach for waveform segmentation is binary 
sub-division [6], which attempts to fit a function in F to 
all data points. If this fails, the data points are divided, 
and the function fitting attempt is continued recursively on 
each half. After splitting stops, similar adjacent segments 
are merged according to some acceptability criteria. 

Results of applying this process at two different accep- 
tance thresholds are shown in Figure 2. Because the split- 
ting process is usually not consistent with the structure of 
the segments, and because the process is not guaranteed 
to find a representation which is minimal in any sense, the 
minimal length segmentation achieves better results. 

4 2D Segmentation 
Minimum length encoding cannot be computed in two di- 
mensions as its computational complexity is of the class 
NP-complete [2]. We extend the minimal length encoding 
to higher dimensions by working on one dimensional pro- 
jections. Since the intersection of a d’th degree bivariate 
polynomial surface with a plane is a d’th degree univariate 
polynomial, one dimensional polynomials are usually used. 
2D polynomial surfaces are suitable for describing optical 
flow [I], luminance functions, and range data of man made 
objects. 

Two-dimensional segmentation is obtained from one- 
dimensional segmentations of cuts in two orthogonal direc- 
tions. Taking a t  least two different directions is necessary 
to detect all discontinuities in the image. Whenever an edge 
becomes almost parallel to one of the directions, i t  can be 
detected by segmentation of a cut in the other direction; 
see Figure 3 for clarification. Cuts were made in two types 
of orthogonal grids: a dense grid and a sparse grid. In both 
grids the cuts were taken parallel to the 2 and y axes. 

Figure 2: Comparison of minimum length encoding to 
binary sub-division: Data points were generated from 
two linear segments with added Gaussian noise. 
a) Successful segmentation of minimal length encoding. 
b) Binary sub-division: a t  split-merge threshold of 0.35, 
the two segments were not separated. 
c) Binary sub-division: at split-merge threshold of 0.3 
too many segments are obtained. 

A dense grid includes all rows and columns of an im- 
age. Combining all the discontinuities found by the segmen- 
tation of each row and each column yields an edge-map. 
These edges can further be linked together to produce a 
partition of the image. 

A sparse grid includes only part of the rows and 
columns of an image. Discontinuities found in the one- 
dimensional segmentations can be used to insert break- 
points in the two-dimensional grid a t  the locations of the 
discontinuities. This defines a set of connected components 
on the grid. Each connected component corresponds to a 
different region in the image which can be described by a 
smooth surface, because the borders between segments in 
the one-dimensional cuts correspond to edge-pixels in the 
two-dimensional data. These connected components can 
serve as seed-regions in a region-growing method [lo]. Fig- 
ure 4 demonstrates the use of a sparse grid. Using a sparse 
grid is faster than using a dense grid as not all rows and 
columns of the picture are segmented. On the other hand, 
some edges may not be detected using a sparse grid. 

5 Experimental Results 
The input images are assumed to be noisy, quantized sam- 
ples of a piecewise-smooth function. The first examples 
use a synthetic image to demonstrate the ability of the al- 
gorithm to detect very low contrast edges. 

Figure 3 shows the application of a dense grid. This 
synthetic image has a square object with a background 
composed of two constant grey-levels. The grey-levels of 
the square change linearly from one background grey-level 
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Figure 3: Dense-grid segmentation. 
At the top from left to right: The original grey level 
images; Discontinuities a t  all columns; Discontinuities 
at all rows; Sum of discontinuities in both directions. 
At the bottom from left to right: Edge linking; Edges 
superimposed on the image; Image segmentation; Re- 
construction of the image from the segmentation and 
computed surfaces. 

to the other, producing two very low contrast edges on both 
sides of the square. 

Figure 4 shows the results of applying a sparse grid. 
The one-dimensional segmentations were performed only 
on every fifth row and column in the image. 

Figure 5 shows the edge-map of a range image. The 
segmentation was done using second degree polynomials. 
Since the object in this example is not piecewise second- 
degree polynomial there are many redundant edges in the 
edge map. Note the detection of the edge between the 
cylinder-wall and the top disk in the sharpener, even though 
it  has a very low-contrast and is noisy. 

6 Concluding Remarks 
We have presented a tractable minimal length encoding al- 
gorithm for segmenting and compressing waveforms, and 
have demonstrated applications for two-dimensional data. 

There are many fundamental questions concerning the 
use of one-dimensional cuts to achieve a meaningful two- 
dimensional segmentation: 
a. How many cuts are needed? 
b. At which directions should the cuts be taken? 
c. How should the one-dimensional results be combined? 

Answers to the first two questions are usually data- 
domain dependent. Solutions can be determined either 
prior to the segmentation or actively during the segmen- 
tation process, taking into account former one-dimensional 
results. 
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