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Abstract

Mosaicing and super resolution are two ways to combine
information from multiple frames in video sequences. Mo-
saicing displays the information of multiple frames in a sin-
gle panoramic image. Super-resolution uses regions which
appear in multiple frames to improve resolution and reduce
noise. The aim of this work is constructing a high resolution
mosaic from a video sequence in an efficient way.

Simple combination of the two methods is problematic,
since the alignment used in mosaicing may not be accu-
rate enough for super resolution. Another issue is the ef-
ficiency of the super resolution algorithm, which requires
heavy computations, especially when applied to large im-
ages such as panoramic mosaics.

This paper introduces two novelties. First, a framework
for super resolution algorithms is presented, which enables
the development of very efficient algorithms. Second, a
method for applying super resolution to panoramic mosaics
is presented. This method preserves the geometry of the
original mosaic image, while improving its resolution.

1. Introduction
Video sequences of a scene can be compactly repre-

sented in a single image using panoramic mosaicing, by
projecting the images to a common manifold [9, 8, 7, 12].
The overlap between the input images can be used to in-
crease the resolution of the mosaic and reduce noise, by ap-
plying super resolution [13]. However, existing super reso-
lution algorithms solve a very large optimization problem,
and thus are computationally costly. They also require very
accurate alignment over the entire image. This work han-
dles these aspects of mosaicing and super resolution.

When constructing the mosaic, a region in the mosaic
corresponds to regions in several images. There are two
possible ways to determine the color details of this region:
(i) Combining the aligned images by a median, average etc.
(ii) Selecting a region from only one of the images.
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Figure 1. Manifold mosaicing is the process of
aligning strips along the seams so the optical
flow between each two strips is parallel. The
result is general non-rectangular strips.

Method (i) requires accurate alignment over the entire
image area, otherwise the resulting will be blurred [2].
Method (ii) requires alignment only along the seams. Thus
it is more useful in cases where the camera motion, the
scene geometry and the imaging conditions are challenging
[9, 8, 7], as illustrated in Fig. 1.

The algorithm presented in Section 3 improves the reso-
lution of the mosaic, even in cases where the alignment used
for mosaicing is not accurate enough over the entire region.
A preliminary presentation of this algorithm was made in
[13].
An important part of this work is the development of effi-
cient super resolution algorithms. The most common model
for super resolution [4, 2, 11, 3, 6] presents the problem in
the following way: The low resolution input images are the
result of different imaging processes on a high resolution
image. The imaging processes are usually modeled by a ge-
ometric transformation, blur, subsample, and additive noise.
As a first stage, the imaging processes are modeled and esti-
mated, based on motion computation between the input im-
ages, approximation of the blur caused by the camera and
the motion, etc. Then an optimization function expressing
the imaging process is defined. The large number of vari-
ables in this problem usually requires an iterative solution.



Several ways to solve to this optimization problem were
proposed. Irani & Peleg [4] used Iterative Back Projection,
adopted from computer-aided Tomography. Patti et. al. [6]
used the non-linear Projection-Onto-Convex-Hull, with im-
plementation similar to [4]. Some authors [1, 10] formu-
lated the super resolution problem in probabilistic bayesian
framework, and used MRF for modeling the prior, and find-
ing the solution. A unifying framework for super resolu-
tion as a generalization of image restoration, was presented
by Elad & Feuer [3]. They formulated the super reso-
lution problem using matrix-vector notations, and showed
that existing super resolution techniques are standard meth-
ods for solving linear equations. Based on this analysis,
they proposed other sparse matrix optimization methods for
the problem.

Recently, Shekarforoush & Chellapa proposed an algo-
rithm for reconstructing a super resolved image analytically
from the input images. They also described a way to esti-
mate the camera blur function from the input images.

2. Super Resolution
Super resolution is the reconstruction of a high resolu-

tion image from several overlapping noisy low-resolution
images. It can be presented as a large sparse linear opti-
mization problem, and solved using explicit iterative meth-
ods [3, 2]. In the presented framework we use a matrix-
vector formulation [3] in the analysis, but the implemen-
tation is by standard operations on images such as con-
volution, warping, sampling, etc. By alternating between
the two formulations a considerable speedup in the super
resolution computation is gained: This takes advantage of
the two worlds: gradient-based optimization techniques are
used, while the gradient is computed efficiently in the image
domain instead of multiplying large sparse matrices.

In the analysis part we represent images as column vec-
tors. The basic operations in the image formation model,
such as convolution, sampling and warping are linear, and
thus can be represented as matrices operating on these vec-
tor images. Givenn input imagesg1::gn, the image forma-
tion process ofgk from the super resolved imagef can be
formulated in the following way [3]:

~Yk = DkCkFk ~X + ~Ek

where:

� ~X is the high resolution imagef of size[L � L], re-
ordered in a vector of size[L2].

� ~Yk is the k-th input imagegk of size[Mk �Mk], re-
ordered in a vector of size[M2

k
].

� ~Ek is the normally distributed additive noise of size
[Mk �Mk], reordered in a vector of size[M2

k
].

� Fk is the geometric warp matrix, of size[L2 � L2].

� Ck is the blurring matrix, of size[L2 � L2].

� Dk is the decimation matrix, of size[M2
k
� L2].

Stacking the vector equations from the different images
into a single matrix-vector:
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We assume the noise is uncorrelated and has uniform
variance. In this case, the maximum likelihood solution is
found by minimizing the functional:

L( ~X) =
1

2
k ~Y �A ~X k22

deriving L with respect to~X :

5L = 0 =) AT (A ~X � ~Y ) = 0()

()
NX
k=1

FT
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k
DT

k
(DkCkFk ~X � Yk) = 0

The matrices of this linear system are very large, and iter-
ative methods are required for its solution. Gradient-based
iterative methods can be used without explicit construction
of these large matrices. Instead, the multiplication with A
andATA is implemented using only image operations such
as warp, blur and sampling.

The matrixATA operates on vectors~X; corresponding
to an image of the size of the super resolution solutionf ,

ATA ~X =
NX
k=1

FT

k C
T

k D
T

kDkFkCk ~X

The matrixAT operates on vectors~Y , stacking of the in-
put imagesg1 : : : gN reordered in column vectors~Y1 : : : ~Yk

AT ~Y =
NX
k=1

FT

k
CT

k
DT

k
~Yk

The matricesFk; Ck; Dk model the image formation
process, and their implementation is simply the image
warping, blurring and subsampling respectively. The im-
plementation of the transpose matrices is also very simple:

� DT

k
is implemented by upsampling the image without

interpolation, i.e. zero padding.
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� CT

k
- For a convolution blur, this operation is imple-

mented by convolution with the flipped kernel, i.e.if H
is the imaging blur kernel, then the flipped kernel is the
matrix K such that8i; j;K(i; j) = H(�i;�j). Other-
wise,CT

k
is implemented by forward projection of the

intensity values, using the weights of the original blur
filter.

� FT

k
- If Fk is implemented by backward warping, then

FT

k
should be the forward warping of the inverse mo-

tion.

The simplest implementation of this framework is using
Richardson iterations [5], with iteration step:

X(n+1) = Xn +
NX
k=1

FT

k
CT

k
DT

k
( ~Yk �DkCkFk ~X)

This is a version of the Iterated Back Projection [4], us-
ing a specific blur kernel and forward warping in the back
projection stage.

We have implemented the conjugate gradient in this
framework, and achieved a considerable speedup in com-
putation. The results are presented in Section 2.2.

2.1 Constrained Minimization
In many cases super resolution does not have a unique

solution, and the matrixATA is not invertible. This can
be solved by introducing constraints on the solution, e.g.
smoothness. If the constraints are linear, and can be easily
computed from the image, (e.g. convolution), then they can
be added to our framework, by minimizing:

L( ~X) =
1

2
(k ~Y � A ~X k22 +� kM ~X k22)

Where M is the constraining operator, and� is the regu-
larization coefficient. Using the derivative of L with respect
to ~X :

ATA ~X + �MTM ~X �AT ~Y = 0

The image corresponding to the added term�MTM ~X

can be computed using image operations, by applying the
constraining operator and its transpose, similarly to the blur
operators mentioned in the previous section.

Non-linear constraints can also be used in this frame-
work. an example is the POCS implementation in [6].

2.2 Results
To demonstrate the computational benefit of our frame-

work, we implemented the conjugate gradient method us-
ing image operations. We compared its running time to an-
other image-based non-constrained algorithm, the IBP of
Irani & Peleg [4]. We captured images of a plane by a hand
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Figure 3. The minimization Error as a func-
tion of running time. The CG iteration times
are marked by crosses, and the IBP ones are
marked by circles.

held camera, and computed the projective-planar motion be-
tween the images. We then applied both methods of super
resolution, and compared the computation time and the re-
sults.

The results of both of the algorithms after several iter-
ations are presented in Fig. 3. Note the differences in the
separation between the fingers of the player. The CG result
at the 3rd iteration is similar to the IBP result at the 5th it-
eration, and after another iteration, the CG result is similar
to the IBP result at the 9th iteration.

The graph in Fig. 2 shows these results quantitatively,
presenting the minimization Error as a function of the pro-
gram running time. The first iteration in the CG method is
slower, since it requires additional multiplication with the
matrix ATA. The next iterations of both of the methods
require a single multiplication with A andAT , so the run-
ning time of each iteration is similar (with minor advantage
to the CG method). This means that the comparison of the
running time of these algorithm depends mainly on the con-
vergence rate. One can see in the graph that the convergence
of the CG method is much faster, yielding better results in
very short time. This can be further accelerated by using ef-
ficient image operations in the computation of the gradient.

3. Combining Super Resolution and Mosaicing
Mosaicing algorithms such as manifold mosaicing em-

phasize image alignment in the seams between strips,
whereas for super resolution algorithms alignment accuracy
over the entire overlapping region is very important: image
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Figure 2. A Panoramic mosaic with a detailed window before super resolution (a, b) and after super
resolution (c, d). The camera motion included rotation and translation.

resolution can be improved only when an accurate align-
ment can be computed [2]. Thus the image alignment for
mosaicing may not be accurate enough for super resolution.
We present a method for combining super resolution into
manifold mosaicing even in cases where the alignment used
for mosaicing may not be accurate over the overlapping re-
gions.

The proposed algorithm starts with creating the mosaic
using generalized strips [8, 7]. As the first step in the super
resolution algorithm, the mosaic is expanded to the desired
resolution using some image interpolation method (for ex-
ample a bilinear interpolation). The resolution is enhanced
using the following steps for each strip in the panorama:

1. All images containing this strip are collected, and the
location of this strip in these images is computed us-
ing the parameters found at the initial image alignment
step.

2. All overlapping frames are aligned to the strip in the
mosaic. This alignment is computed only for the strip
and a small neighborhood, and may use a different
alignment model than used for mosaicing. For ex-
ample, even when the mosaic algorithm uses a rigid
alignment with only image translation and image ro-
tation (3 parameters), the alignment in this step may
use an affine model (6 parameters) or a homography

(8 parameters). Since only a strip is aligned, and not
the entire image, and since a more accurate model may
be used, this alignment will be more accurate than the
alignment used for mosaicing.

3. From all images aligned to the strip, images with poor
quality or poor alignment are removed. Image qual-
ity may include sharpness, noise, dynamic range, and
other quality criteria.

4. A super resolution algorithm is applied to the strip us-
ing the selected images.

The strip in the mosaic is enhanced without changing
the geometry of the mosaic. The seams in the original
panorama, the result of sampling artifacts, noise and gain
differences, also disappear. An example is shown in Fig. 4.

4 Summary
For the construction of high resolution mosaic images,

two novelties were presented. First, an algorithm for apply-
ing super resolution to mosaic images, using the enlarged
panoramic image as the reference for registration. Second,
a framework for fast implementation for super resolution
was introduced. Our framework factors the super resolution
optimization to two parts: the optimization technique, and
the gradient computation by image operations. An efficient
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Figure 4. Super resolution results.
a) An original frame. b) A small region from
the original frame, enlarged by NN interpola-
tion. The region is marked in figure (a).
c) IBP method - 5th iteration. d) IBP method -
9th iteration.
e) CG method - 3rd iteration. f) CG method -
4th iteration.

algorithm can be implemented by choosing the appropriate
gradient-based technique, and by optimizing the image op-
erations.

By combining the two results, panoramic images with
enhanced resolution can be constructed in an efficient way,
without distorting its geometric structure. This process also
smoothes the seams without degradation in the image qual-
ity.
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