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ABSTRACT

Many methods for motion computation and object tracking
are based on the Lucas-Kanade (LK) framework [1]. We
present a method which substantially speeds up the LK ap-
proach while preserving its accuracy. This acceleration is ob-
tained by avoiding the iterative image warping, inherent to the
LK framework. A three-fold speedup is observed on standard
image alignment tasks. Our second contribution focuses on
adopting a multi-frame approach in order to increase align-
ment accuracy and robustness. By utilizing the acceleration
procedure, the complexity of this multi-frame alignment be-
comes comparable to that of the two-frame approach.

Index Terms— Motion analysis, video stabilization, im-
age alignment, direct methods

1. INTRODUCTION

Many robust methods exist for motion computation. How-
ever, the iterative motion analysis proposed by Lucas & Kanade
[1] still dominates the field of motion analysis. It is widely
used for both parametric motion computations (For example
[2, 3, 4]) and object tracking [5].

In this paper we describe how LK can be implemented
with a computational cost of a single iteration without effect-
ing the accuracy of the estimated motions. We also present
a multi-frame alignment which uses all the pixels in several
frames.

A similar problem was addressed in [6, 7] but have sub-
stantial computational cost. With our method, a multi-frame
alignment is obtained with only slight additional computa-
tional cost compared to two-frames methods. As a result, it is
more appropriate to online and real time applications.

We begin by a brief description of the LK method for
computing motion between two frames. We show how it can
be implemented without iterative warping. This idea can be
used either as a stand-alone acceleration of traditional meth-
ods, or as a component in a multi-frame alignment introduced
in Section 3. The proposed algorithms were extensively tested
on image sequences, and a few results are presented in sec-
tion 4.

2. LUCAS-KANADE WITHOUT ITERATIVE
WARPING

We first describe LK for sub-pixel translation only, and in
Section 2.3 we introduce the accelerated LK to larger and
more general motions.

2.1. Brief Introduction to the LK method

Let I1 and I2 be a pair of images, and let the motion be-
tween the two images be a pure translation (u, v). Under the
constant-brightness assumption [2], the translation (u, v) can
be computed by minimizing the error:

Err(u, v) =
∑

x,y∈R

(I2(x + u, y + v) − I1(x, y))2. (1)

The summation is over the region of analysis R. This region
includes most of the image for many image alignment appli-
cations [2, 3], or only a window around a certain pixel for
local motion computations [1, 5].

Let∇I be the gradient of I2, computed from the image in-
tensities. The basic step in computing pure translation (u, v)

is solving the set of equations A [u, v]
T

= b, where the LK
matrix A and the vector b are given by:

A =
∑

x,y∈R

∇I(x, y)∇I(x, y)T (2)

b = −
∑

x,y∈R

∇I(x, y)(I2(x, y) − I1(x, y))

In the iterative scheme, given an estimation of the image
translation (u, v) from the current step, the image I1 is warped
towards the image I2 (using back-warping) according to the
current motion parameters, and the warped image is used to
compute b in the next iteration, until convergence.

The LK matrix A does not change between the iterations,
and is computed only once as described in detail by [4]. On
the other hand, the term b (Eq. 2) varies in each iteration:

b(i+1) = −
∑
x,y

∇I(x, y)I2(x, y) +
∑
x,y

∇I(x, y)I
(i)
1 (x, y)

(3)
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where I
(i)
1 is obtained by warping I1 towards I2 according to

the estimation of the motion between I1 and I2 after the ith

iteration.

2.2. Accelerating Sub-Pixel Translations

We propose to accelerate the computation of the term b(i+1)

in Eq. 3 by avoiding the iterative image warping. When the
relative translation between the frames is smaller than a pixel,
image warping can be performed using a convolution: I

(i)
1 =

I1 ∗ m(i), where m(i) is a interpolation kernel whose size
depends on the interpolation scheme. (Bilinear and bicubic
interpolations require kernels of sizes 2× 2 and 3× 3 respec-
tively).

Following this description we can examine the right term
of Eq. 3, which is the only element that needs to be re-computed
at every iteration, as I1 is warped towards I2.
∑
x,y

∇I(x, y)I
(i)
1 (x, y) =

∑
x,y

∇I(x, y)(I1(x, y) ∗ m(i)) (4)

=
∑
k,l

m(i)(k, l)
∑
x,y

∇I(x, y)I1(x − l, y − k)

Therefore, we can rewrite b(i+1) (from Eq. 3) as:

b(i+1) = r +
∑
k,l

m(i)(k, l)s(k, l) (5)

where the sum runs over all the locations (k, l) in the interpo-
lation kernel, and

r = −
∑
x,y

∇I(x, y)I2(x, y), (6)

s(k, l) =
∑
x,y

∇I(x, y)I1(x − k, y − l),

are all vectors of size 2 × 1 that remain constant throughout
the iterations. Since only the values of m(i) change in each
iteration, the rest of the terms can be computed only once.
As a result, very few operations are needed per each iteration,
independent of the size of the region of analysis.

To conclude, without effecting the accuracy of the LK,
the number of operations is reduced to that of a single LK
iteration plus a small number of operations that are done in
each iteration. The additional operations consists mainly of
solving the equations (Eqs. 2, 5). 1.

2.3. Large Translations & Parametric Motion

Translations that are larger than a pixel can be computed by
expanding the table s(k, l) (from Eq. 6). The additional num-
ber of entries in the table is determined by the number of pos-
sible (whole-pixel) translations. The table s is initially empty.

1For some platforms, the postponement of the interpolation to a later stage
also allows to perform the image warping with a better precision.

When a value is needed from the table, the relevant term is
computed only if it was not computed before.

In addition, a multi-resolution framework is used, where
the motion parameters that were estimated in lower-resolution
levels are used as initial estimations for finer levels [2]. In our
experiments we found that under the multi-resolution scheme,
the residual translation was almost always sub-pixel.

To generalize the LK acceleration to more general mo-
tions, the image can be divided into non-overlappingwindows
(usually 5 × 5 or 7 × 7), and assume a constant translation in
each window. Yet, we do not have to compute a translation
for each window, but directly compute a single parametric
motion for the entire region of analysis. Using these small
windows, we obtain almost identical acceleration to the trans-
lational motion model without noticeable loss in accuracy.

2.4. Runtime Evaluation

The speedup achieved with the proposed method is higher
for those difficult scenes where the traditional LK converges
slower than usual. When using a bilinear interpolation for the
image warping, the speedup ratio in the total run time ranges
from 2 to 4. (This speedup is a result of a reduction by a
factor of 3-10 in the number of image warps). The total run-
ning time includes the computation of Gaussian pyramids and
the computation of image derivatives. For many applications,
these computations are done anyway, making the number of
LK iterations be the main computational cost, and maximal
speedup is possible. The speedup is also increased when a
more accurate interpolation is being used for the image warp-
ing, such as a bicubic interpolation. Another case where the
speedup is larger is when a regularization term is used which
favors small motions. Such a regularization usually increases
the number of iterations needed for convergence. Some typi-
cal numerical results are given in Table 1. 2

3. ONLINE MULTI-FRAME ALIGNMENT

The robustness and stability of the LK method can be in-
creased by masking outliers and by using multi-frame align-
ment in which each frame is aligned simultaneously to several
preceding frames and not only to the previous one.

3.1. Masking of Outliers

When aligning a sequence of images, we can use the align-
ment of frame In to frame In−1 to determine whether we
should ignore some pixels in In before aligning In+1. Such
pixels can include, for example, moving objects in the scene.
A possible mask can be based on the intensity difference after
alignment, divided by the local gradient:

2The analysis was performed on a PC, where the memory is very fast. In
other platforms (like DSP cards) the bottleneck of the computations is usually
the number of passes over the image, which further increases the benefit of
using our method.
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Table 1. Performance (in frames per second) of the motion computations for some typical scenarios. (The evaluation was
performed on a 2.4GHz Pentium4, with 512MB RAM). It can be seen that a significant speedup is achieved when avoiding the
iterative image warping. The rows marked with (*) were stabilized by aligning all the frames to the first frame in the sequence.
When stabilizing “Sequence2”, only a few iterations were needed until convergence. This explains its better performance
compared with the stabilization of “Sequence1”

Motion & Scene Properties Original LK (fsp) Fast LK (fsp)

Translation (320x240) 12.9 30.7
Rotation & Translation (320x240) 11.1 30.3

Translation (600x800) 1.7 5.0
Affine (320x240), Sequence1* 9.4 40.8
Affine (320x240), Sequence2* 17.7 43.4

Mn(x, y) =

⎧⎨
⎩

1 if

∑
Wx,y

(In−In−1)
2∑

Wx,y
‖∇In‖2

< r

0 otherwise,

(7)

where Wx,y is a window around (x, y), and r is a threshold
(We typically used r = 1). When aligning In+1 to In, pixels
in In with Mn(x, y) = 0 are ignored.

3.2. Simultaneously Aligning the Image to Several Pre-
ceding Frames

Assume that the images I0 . . . In−1 have already been aligned
and let In be the new frame to be aligned. To compute the
motion parameters of In, we now minimize the residual error
after aligning this frame to its preceding frames:

Err(u, v) = (8)∑
k<n

wn
k

∑
x,y

Mk(x, y)(∇Ik(x, y)

[
u

v

]
+ Ik(x, y) − In(x, y))2.

This is a multi-frame version of LK, where we also added a
validity mask Mk(x, y), and pre-defined weights wn

k which
control the contribution of each frame to the registration pro-
cess. We used exponentially decreasing weights wn

k−1 =
q · wn

k . This weighting scheme allows a fast accumulative
computation of the terms in the LK equations by multiplying
the old terms by a scale factor.

Note also the use of the gradients ∇Ik which are esti-
mated from the intensities of the preceding images {Ik}. This
multi-frame alignment is a more accurate version of a simple
temporal averaging suggested by [3].

4. MULTI-FRAME EXPERIMENTS

The proposed multiframe algorithm has been tested in various
scenarios, including videos of dynamic scenes and videos in
which the image motion does not fit the motion model. Con-
cerning computational time, the performance of the multi-

frame alignment was slightly slower than the traditional single-
frame alignment. To show stabilization results in print, we
have averaged the frames of the stabilized video. When the
video is stabilized accurately, static regions appear sharp while
dynamic objects are ghosted. When stabilization is erroneous,
both static and dynamic regions are blurred.

Figure 2 compares sequence stabilization using multiframe
alignment with original LK (with pyramids). A large portion
of the scene consists of dynamic objects (the moving pedes-
trians). In spite of the dynamics, after multiframe alignment
the sequences was correctly stabilized.

We also tested the algorithm on long sequences to evaluate
the effectiveness of the multiframe alignment in reducing the
drift of the motion computations. For very long sequences, it
is crucial to reduce the drift without storing a huge amount of
frames in the memory. An example is shown in Fig. 1. The
road sequence (Fig. 1a) was stabilized using exponentially de-
creasing weights with different exponents. The drift-errorwas
defined as the average error in the computed displacement be-
tween the first and last frames, for 4 selected points in the im-
age. (The ground truth displacements were computed man-
ually). The advantage of using a long history to reduce the
motion drift is clear from the monotonically decreasing error
in Fig. 1. For example, using an exponent of q = 0.99 gave
an average error of about a pixel. (And the error continued to
decrease with exponents closer to one.) The benefit of using a
validity mask is also evident from the graph. The contribution
of the validity mask is larger when using fewer frames for the
alignment.

Finally, Figure 3 shows a couple of tracking results. The
tracked objects were selected from the Edinburgh sequence
(Fig. 2). The appearance of the tracked objects change dur-
ing the tracking as they step towards or away from the camera.
(We have not updated the scale of the objects during the track-
ing). To overcome the changes of appearance we used a rela-
tively small exponent factor (q = 0.5). Nevertheless, the pro-
posed method performed well even when the traditional LK
failed. The difference in the performance of the two methods
was most evident in the presence of a textured background.
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Fig. 1. The motion drift when stabilizing long sequences.
(left) Two frames out of a sequence of 1500 frames.
(right) The motion drift-error with and without a validity
mask and as a function of the multiframe exponent. q = 0
stands for a traditional motion computation between pair of
frames, and q = 1 is equivalent to giving equal weights to all
previous frames. See text for further details.

Fig. 2. A sequence of 200 frames showing walking pedestri-
ans at the Edinburgh festival. Some original frames are shown
in top. The scene dynamics is visible by ghosting, but while
using traditional LK (middle) the background is also blurry
due to erroneous stabilization, the background appears much
sharper using multi-frame alignment (bottom).

Using traditional LK, the tracker tended to lose the object and
follow the background instead, while the multiframe tracker
ignored the background and remained fixed on the object.

5. CONCLUDING REMARKS

This paper presented an algorithmic acceleration of the Lucas-
Kanade method which avoids the iterative image warping used
in the original method. This acceleration was also combined
with a multiframe alignment to obtain a fast and robust align-
ment. Experimental results show improvement in both com-
plexity and accuracy.

The multiframe alignment proposed in this paper over-
comes the drawbacks of current multiframe alignment meth-

Fig. 3. Two tracking results of pedestrians at the Edinburgh
festival.
(left) The initial location, as drawn by the user.
(middle) The location of the tracker after ∼100 frames using
traditional LK (In both cases the tracking failed).
(right) The location of the tracker after∼100 frames after suc-
cessfully tracking the object using multi-frame alignment.

ods: high complexity or restrictive assumptions (such as small
motion or large memory). We believe that by overcoming
these drawbacks, the applicability of using multiframe align-
ment will be significantly increased.

The LK acceleration presented in this work can be used
for other various applications, such as computing stereo or
recovering the camera ego-motion. In all these applications,
the LK method is widely used (in small windows), and there-
fore can be improved using the ideas presented in this paper.
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