
Real-Time Motion Analysis with Linear-Programming �

Moshe Ben-Ezra Shmuel Peleg Michael Werman

Institute of Computer Science
The Hebrew University of Jerusalem

91904 Jerusalem, Israel
Email: fmoshe, peleg, wermang@cs.huji.ac.il

Abstract

A method to compute motion models in real time from
point-to-line correspondences using linear programming is
presented. Point-to-line correspondences are the most reli-
able motion measurements given the aperture effect, and it
is shown how they can approximate other motion measure-
ments as well.

Using anL1 error measure for image alignment based
on point-to-line correspondences and minimizing this mea-
sure using linear programming, achieves results which are
more robust than the commonly usedL2 metric. While es-
timators based onL1 are not theoretically robust, experi-
ments show that the proposed method is robust enough to
allow accurate motion recovery in hundreds of consecutive
frames. The entire computation is performed in real-time
on a PC with no special hardware.

1 Introduction

Robust, real-time recovery of visual motion is essential
for many vision based applications. Numerous methods
have been developed for motion recovery from image se-
quences, among them are algorithms that compute the mo-
tion directly from the grey level or general local measures
[7, 11, 9, 2]. A second class of algorithms use feature points
to recover motion [4, 8]. A probabilistic error minimization
algorithm [15] can be used to recover motion in the pres-
ence of outliers. Another class of algorithms use explicit
probability distribution of the motion vectors to calculate
motion models [13].

Most of the methods cited above have problems when
computing high-order motion models (e.g. an affine mo-
tion model or a homography): either they are sensitive

�This research was funded by DARPA through the U.S. Army Research
Labs under grant DAAL01-97-R-9291, Supported by Espirit project 26247
- Vigor

to outliers, or the execution speed is very slow. An al-
gorithm is presented to recover such high-order motion
models from point-to-line correspondences using linear-
programming. Point-to-line correspondences are robust in
the sense that they are largely insensitive to aperture effects
and to T-junctions, unlike the common point-to-point cor-
respondences. Point-to-line correspondences can also ap-
proximate other measurements as well, such as point-to-
point correspondences, correspondences with uncertainty,
and spatio-temporal constraints.

TheL1 metric(
P
jai � bij) can be used with the point-

to-line correspondences, and is much more robust then the
L2 metric(

pP
(ai � bi)2), for example, the median mini-

mizes theL1 metric, while the centroid (average) minimizes
theL2 metric.L1 estimators are not considered truly robust
[5, 14] as they can be sensitive to leverage points. However,
our experiments show that linear-programming, minimizing
anL1 error measure is, robust enough to compute accurate
motion of hundreds of frames, even with large moving ob-
jects in the scene. Moreover, this is done in real-time on a
regular PC.

The linear programming solver does not need an ini-
tial guess, which is required for iterative re-weighted least-
square algorithms (such as M-estimators). The re-weighting
stage, which is similar to motion-segmentation, is some-
times as hard as the motion recovery itself. Comparisons
between estimators based on theL1 metric and the ro-
bust LMS (Least Median of Squares) estimators show
that global motion analysis using theL1 estimator is only
slightly less robust than theLMS estimator, but theL1
computation is much faster.

The alignment process has two steps. (i) Computing cor-
respondences and representing them as point to line corre-
spondences, is described in Sec. 2. (ii) Converting the align-
ment problem into a linear program using the point to line
correspondences, and solving it, described in Sec. 3. Sec. 4
describes experimental results and comparisons with other
methods. Sec. 5 gives concluding remarks. Appendix A



a) b)

6

S

Figure 1. Aperture Effect. a) The white arrow represents
the actual motion, while the black arrow represents the ap-
parent motion. b) Point to line correspondence.

describes a possible explanation for the experimental insen-
sitivity of L1 motion estimators to leverage points.

2 Point to Line Correspondences

Point to line correspondence are used for their insensitiv-
ity to the aperture effect. This section describes the aperture
effect, and the use of point to line correspondences to rep-
resent normal flow and uncertain correspondences.

2.1 Aperture Effect

Fig. 1.a describes the aperture effect: The apparent mo-
tion of a line when viewed through a small aperture is nor-
mal to the line. Therefore, the motion of pointp in Fig. 1.b
is defined only up to a line. The constraint on the displace-
ment(u; v) such that pointp = (x; y) in the first image has
moved to the straight lineS(x + u; y + v) in the second
image and is defined by the line equation:

S(x+ u; y + v) � A(x+ u) +B(y + v) + C = 0 (1)

Without loss of generality we assume for the rest of the
paper thatA2 +B2 = 1 by normalization.

2.2 Normal Flow

A constraint on the optical flow in every pixel can be
derived directly from image intensities using the gray level
constancy assumption. This optical-flow constraint is given
by [7, 11]:

uIx + vIy + It = 0 (2)

where(u; v) is the displacement vector for the pixel, and
Ix; Iy; It are the partial derivatives of the image at the pixel
with respect tox, y and time.

Eq. (2) describes a line, which is the aperture effect line.
When I2x + I2y are normalized to1 the left hand side of
Eq. (2) becomes the Euclidean distance of the point(x; y)
from the line passing through(x + u; y + v), which is also
called the normal flow [1].

2.3 Fuzzy Correspondence

An optical flow vector between successive images in a
sequence represents the displacement between a point in
one image to the corresponding point in the second image.
While it is difficult to determine this point to point corre-
spondence accurately from the images automatically, a cor-
respondence is usually assigned to the most likely point.
For example, given a point in one image, the correspond-
ing point in the second image will be the one maximizing
some correlation measure. However, such correspondences
are error prone, especially when other points in the second
image have a local neighborhood similar to the real corre-
sponding point.

A possible solution to this problem is to postpone the
determination of a unique correspondence to a later stage,
and to represent the uncertainty as given by the correlation
values. In this case the correspondence will not be a unique
point, but a fuzzy measure over a set of possible correspond-
ing points.

The fuzzy correspondence of a pointp can be repre-
sented as a matrixM(p) (the fuzzy correspondence matrix).
Each cell(i; j) of M(p) corresponds to the probability that
point p has a displacement of(i; j) [13]. In many cases
the fuzzy correspondence matrix has a dominant compact
shape: points on corners usually create a strong compact
peak while edges form lines. A common case is an ellipse.
While the fuzzy correspondence matrix contains all corre-
spondence uncertainty, utilizing this information to its full
extent is difficult.

To enable computation of global motion with linear pro-
gramming, we propose an approximation of the fuzzy cor-
respondence matrix by two point to line correspondences.
This approximation is given by two lines:Si(x; y) �
(Aix + Biy + Ci) = 0 (i = 1; 2) with two associated
weights,Wi. Fig. 2.a-b show a distance map of each point
from a line. The weighted sum of both distances forms an
L1 “cone”. Each equidistant line on the cone is anL1 “el-
lipse” with eccentricity proportional to the weights of the
two lines, as shown in Fig. 2.c

This approximation can also be used to express point-
to-point correspondence:(x; y) ! (x0; y0) can be approxi-
mated by two point to line correspondences: between point
(x; y) and the line(x = x0), and between point(x; y) and
the line(y = y0), with weightsW1 = W2.

Given a fuzzy correspondence matrix, the approximation
by the sum of distances from two lines can be computed
using a Hough transform as described in [3]. The following
constraint can be used in the linear programming for the
displacement for point(x; y):

W1S1(x+ u; y + v) +W2S2(x+ u; y + v) = 0 (3)



a) b)

c)

Figure 2. Approximation of anL1 “ellipse” using two
lines. a) Distance surface from one line. b) Distance surface
from a second line. c) Weighted sum of distances from both
lines, with weights of 2 from the first line and of 1 from the
second line. Each equal-distance line is anL1 “ellipse”.

3 L1 Alignment Using Linear Programming

The alignment process has two steps: (i) Computing cor-
respondences and representing them as point-to-line corre-
spondences. (ii) Converting the alignment problem into a
linear-program using the point-to-line correspondences, and
solving it. The first step was detailed in Sec. 2, and in this
section the second step is described. In particular, we show
how to compute an eight parameter 2D homography, which
corresponds to the transformation between different views
of a planar surface.

A homographyH is represented by a3�3matrix, whose
i’th row is designatedHi. A 2D point p = (x; y; 1)t (in
homogeneous coordinates) located at imageI1 is mapped
by the homographyH into the 2D pointp0 in imageI2 as
follows:

p0 =

�
(H1 � p)

(H3 � p)
;
(H2 � p)

(H3 � p)
; 1

�t
(4)

The Euclidean distance of pointp0 from constraint lineS =
(Ax + By + C), using Eq. (4), is given by the following
equation which is zero when the alignment is perfect.

d(p0; S) =

�
A(H1 � p)

(H3 � p)
+
B(H2 � p)

(H3 � p)
+ C

�
(5)

Multiplying Eq. (5) by (H3 � p) (which is non-zero for a
finite size image) gives the following linear equation for the
residual errorof pointp.

a) b)

c) d)

Figure 3. Approximations for fuzzy correspondences. b)
The fuzzy correspondence matrix between successive im-
ages for the point that is marked with a white arrow in (a).
c) The lines used to approximate the fuzzy correspondence
matrix. Intensity corresponds to weight. d) Weighted sum
of city-block distance from the two lines in (c) is used as the
approximation of the fuzzy correspondence matrix in (b).

r(p0; S) = d(p0; S)(H3�p) = A(H1�p)+B(H2�p)+C(H3�p):
(6)

Since, in order to get a linear equation, we multiply the geo-
metrical distanced(p0; S) by the (unknown) value(H3 � p),
the coordinates ofp should be normalized to avoid bias [6].
Setting the residual errorr(p0; S) to zero gives a linear con-
straint on the elements of the homographyH that states that
pointp is mapped to pointp0 which is on the lineS.

In order to recover the eight parameters of the 2D ho-
mographyH , at least eight such point-to-line correspon-
dences are required. Each point-to-line correspondence
gives one point-to-line equation, and each point to two-lines
correspondence (the linear approximation to fuzzy corre-
spondence) gives two point-to-line equations. When more
than eight point-to-line correspondences are given,H can
be recovered usingL1 by solving the following minimiza-
tion problem:

Minimize :

nX
i=1

Wijr(p
0

i; Si)j: (7)

This error minimization problem is converted into the fol-
lowing linear program, where one constraint equation is
written for each point-to-line correspondence:



min :
Pn

i=1Wi(Z
+

i + Z�

i )
s:t:

Ai(H1 �pi) + Bi(H2 �pi) + Ci(H3 �pi) + (Z+

i �Z
�

i ) = 0
Z+

i ; Z
�

i � 0

The expression(Z+

i + Z�

i ) is the absolute value of the
residual error,r(p0i; Si). The is the result of the use in linear
programming of only positive values [10]. Each residual
error is represented by the difference of two non-negative
variables:r(p0i; Si) = (Z+

i � Z�

i ), one of which is always
zero at the above minimum.

Notes:

1. When the constraints are of the formAx� b+Z = 0,
a basic feasible solution that satisfies the constraints
is given byx = 0; Z = b. This enables the use of
an efficient one-phase simplex algorithm to solve the
problem.

2. This linear program can be used to minimize any linear
equation:Min(Ax � b). Parameter normalization or
an additional constraint may be needed to avoid a zero
root if b = 0.

3. If L is an(M �N) matrix,M is the number of con-
straint equations andN is the number of parameters
(M > N), then the linear program will have a total
of 2(M +N) variables:2N variables for the variable
vectorx, and2M variables for the slack variable vec-
tor Z. The factor of two is needed since in linear pro-
gramming each variable is represented by a difference
of two non-negative variables.

4. The slack variable vectorZ contains the error mea-
sures for each point and can be used for motion seg-
mentation.

5. Additional linear constraints can be added to the re-
covered model. For example we can define a mo-
tion model that is more general than similarity but has
bounded affine/projective distortions.

4 Experiments and Comparisons

To compare our model to existing point-to-point meth-
ods, we converted each point-to-point correspondence to
two point-to-line correspondences according to Section 2.3.
The panorama example used point-to-line correspondences
computed from fuzzy correspondence matrices.

4.1 Mosaicing with Similarity Model

A panoramic image was created in real-time (10-12
frames / second) using a PC, as shown in Fig. 4.b. While
the camera was scanning the scene, a large pendulum was

a) b)

c) d)

Figure 5. Computing homography usingL2 registration
compared toL1 registration. The same feature points were
used in theL1 minimization and theL2 minimization. Both
examples are single iteration output, no segmentation and
no re-weighting were used. a) Selected feature points are
marked on one images. b) The sum of the two original im-
ages to show their misalignment. c) The sum of the images
aligned with the homography obtained using linear pro-
gramming. d) Warping the second image towards the first
image with the homography obtained using a least-square
method.

swinging. The size of the pendulum was large enough
to create about 15% outliers among the feature points.
Since the stabilization algorithm used only frame to frame
motion recovery,any error will cause the panorama to
fail. Fig. 4 shows the pendulum (and its shadow) appear-
ing/disappearing several times due to the swinging motion.
Howeverall frames were correctly aligned with a similarity
model as can be seen by the objects that were not occluded
by the pendulum.

4.2 Homographies: Comparison withL2

This experiment compares the computation of a 2D
homography usingL1 registration to the least-squares
method for point-to-point registration. Given two images,
the feature points were selected automatically from a bi-
directional optical-flow field. Each selected point had a
strong intensity gradient, and the optical flow from the first
to the second image agreed with the optical flow from the
second to the first image. Selected points are shown in
Fig. 5.a.

The homography that minimizes theL2 distance be-
tween the computed correspondences is shown in Fig. 5.d.
It is completely useless due to outliers.



a) b)

Figure 4. Mosaicing examples. a) Point selected for motion computation. Four of the thirty points are located on the moving
pendulum. b) Panoramic image that was created while a pendulum was swinging. The alignment was not affected by the outliers.

The L1 alignment used the same data, but converted
each point-to-point correspondence into two point-to-line
correspondences (point(u; v) is converted to the two lines
(x = u) and(y = v)). Fig. 5.c shows the sum of the two
images after alignment. The alignment is now very good,
and can be compared to Fig. 5.b where the two images were
added before alignment.

4.3 Computing Affine Motion from Normal Flow

An affine alignment between two images can be com-
puted from normal flow by an iterative method. In this
example 112 points residing on strong edges and spread
evenly across the image were selected automatically. The
iterations were as follows:

1. The normal flow is computed from spatio-temporal
derivatives and represented by a line constraint as de-
scribed in Sec. 2.2.

2. An affine motion model was computed using linear
programming from the linear constraints.

3. The second image was warped toward the first image
using the affine model.

4. Repeat steps 1-3 until convergence.

The iterations are necessary in this case since the accuracy
of the normal flow depends on the accuracy of the spatio-
temporal derivatives, which increases as the motion esti-
mate becomes better. Fig. 6 shows the registration results
for theL1 registration by normal flow lines.

4.4 Efficiency Considerations

The linear programming approach is compared to the
following well known probabilistic algorithm [15]:

Input: N matched pairs (either point to point or point to
line).

Output: A linear motion modelM� of rank k that min-
imizes the sum of the absolute values of the residual
errors.

Algorithm :

1. k pairs are selected randomly.

2. The motion modelM is computed from thek se-
lected pairs.

3. The sum of residualL1 errors is computed from
all pairs, using the recovered model.

4. The last three steps are repeated fort iterations.

5. Of all examined models, the modelM� having
minimal error is selected.

If the probability of choosing an outlier isq, then int itera-
tions the probabilityP of having at least one perfect guess,
with no outliers in allk selected points, is given by:

P = 1� [1� (1� q)k]
t
: (8)

Given the desired probability of successP , the number of
necessary iterationst is given by

t = ln(1� P )=ln(1� (1� q)k): (9)

The number of iterations required to reach a certain level of
confidence is exponential ink and inq, and therefore this
method is very expensive in these cases. The complexity
of the linear program is polynomial in the number of con-
straints, which equals the number of correspondences. In
most practical cases, however, the complexity is known to
be nearly linear.

4.4.1 Synthetic Performance Experiment

In this test we tried to compare the actual performance
of the two algorithms. The test consisted of the following
synthetic data:
Number of matched pairs: 100 point to point correspon-
dences.



a) b)

c) d)

e) f)

Figure 6. Normal-flow point-to-lineL1 registration. a)
First image. b) Second image. c) Summation of (a) and (b)
shows the displacement between the two images. d) Magni-
fied Normal flow of the selected points at the last iteration,
displayed over a gradient map. The outliers are easy to spot.
e) (b) warped towards (a) using the affine model computed
by L1 alignment. f) Summation of (a) and (e) shows good
alignment in most of the scene.

Rank of linear model: k = 4.
Outliers probability: q = 0:4 (three motion models,
matched pairs are distributed as follows: 20, 60 ,20).
Added Noise: Normal distribution with zero mean and
variance is 5% of the range. Even though the probabilis-
tic algorithm was able to execute 7000 iterations during the
time the single-iteration linear programming executed, the
results obtained were inferior to linear programming as seen
in Fig. 9.

4.4.2 Real-Time Performance

Programs for video mosaicing and for image stabiliza-
tion were written based on fuzzy correspondences (Sec 2.3).
Execution on a PC using windows NT with no special hard-
ware an image sequence was directly processed from the
camera at 10-12 frames per second. The panoramas in
Fig. 4 were created in real-time using this program.

5 Concluding Remarks

This paper presented a new approach for real-time mo-
tion analysis by converting image measurements into point-
to-line correspondences, and computing the motion model
using linear programming. The presented approach was
shown in many experiments to be resistant to outliers, ef-
ficient, and enables real-time performance on a regular PC.

Although other estimators, e.g. theLMS estimator, may
be superior to theL1 estimator, theL1 estimator is recom-
mended for many applications which have a large number
of parameters. An analysis regarding the effects of leverage
points on theL1 metric in the image analysis domain is de-
scribed in the Appendix, as well as a comparison between a
leastL1 estimator and LMS.

References

[1] Y. Aloimonos and Z. Duric. Estimating the heading direc-
tion using normal flow.IJCV, 13(1):33–56, September 1994.

[2] P. Anandan. A computational framework and an algorithm
for the measurement of visual motion.Int. J. of Computer
Vision, 2:283–310, 1989.

[3] M. Ben-Ezra, S. Peleg, and M. Werman. Robust real-time
motion analysis. InDARPA98, pages 207–210, 1998.

[4] O. Faugeras, F. Lustman, and G. Toscani. Motion and struc-
ture from motion from point and line matching. InInt. Conf.
on Computer Vision, pages 25–34, 1987.

[5] R. P. Hampel F.R., Ronchetti E.M. and S. W.A.Robust
Statistics: The Approach based on influence Functions. New
York: John Wiley, 1986.

[6] R. Hartley. Minimizing algebraic error in geometric estima-
tion problems. InICCV98, pages 469–476, 1998.

[7] B. Horn and B. Schunck. Determining optical flow. InAI,
volume 17, pages 185–203, 1981.

[8] T. Huang and A. Netravali. Motion and structure from fea-
ture correspondences: A review.PIEEE, 82(2):252–268,
February 1994.

[9] M. Irani and P. Anandan. Robust multi-sensor image align-
ment. InICCV98, pages 959–966, 1998.

[10] H. Karloff. Linear Programming. Birkhäuser Verlag, Basel,
Switzerland, 1991.

[11] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. InIJCAI81,
pages 674–679, 1981.

[12] P. Meer, D. Mintz, and A. Rosenfeld. Analysis of the least
median of squares estimator for computer vision applica-
tions. InCVPR92, pages 621–623, 1992.

[13] Y. Rosenberg and M. Werman. Representing local mo-
tion as a probability distribution matrix and object tracking.
In DARPA Image Undersading Workshop, pages 153–158,
1997.

[14] P. Rousseeuw. Least median of squares regression.Journal
of American Statistical Association, 79:871–880, 1984.

[15] P. Torr and D. Murray. Outlier detection and motion seg-
mentation. InSPIE, volume 2059, pages 432–443, 1993.



a)

%

$

S

T�

T�

b)

% $

ST�

T�

Figure 7. Leverage points for line regression.

a)

b)

Figure 8. Monte-Carlo comparison between leastL1 and
LMS. The histograms show the number of correct classifi-
cations. White bars corresponds to theL1 recovered model.
Black bars corresponds to theLMS recovered model. a)
Low noise level. b) High noise level.

A L1 Leverage Points in Motion Analysis

TheL1 metric has a breakpoint zero. This means that
even a single outlier point can flip the recovered model very
far from the real model. Such points are called leverage
points. An example of a leverage point is shown in Fig. 7.a.
Line A is the real model, pointsq1::q7 are located on line
A. Pointp satisfies:L1(p;A) >

Pn

i=1 L1(qi; B); where
L1(a; b) represents theL1 distance betweena andb. This
causes the model to flip into lineB. Figure 7.b describes a
very similar setup with pointsq1::q7 spread along the lineA.
This time there is no single point in the bounded-rectangle
that qualifies as a leverage point. There is no “room” for a
“lever” long enough to flip the model. In this particular case
the breakpoint of theL1 metric is larger than zero - we then
refer to lineA as the “dominant line”.

In practice, the background of a scene usually forms a

a) b)

Figure 9. Comparing performance of linear-
programming and a probabilistic algorithm running
for the same time. 60 of the 100 points are in the desired
model (q = 0:4). a) Error plot for the linear programming
solution. clean separation is obtained. b) Error plot for the
probabilistic algorithm solution. Separation between inliers
and outliers is possible, but not for all points.

large model that is spread across the image, and thus is not
subject to leverage points within the image boundaries. This
behavior was confirmed by hours of testing in real-time rate
(10-12 fps) and by synthetic Monte-Carlo tests presented in
Sec. A.1.

A.1 Comparing L1 and LMS Estimators

The Least Median of Squares (LMS) estimator is a well
known robust estimator [12, 14] which has a theoretical
model breakpoint of0:5 (i.e. it can tolerate up to 50% out-
liers). This is better than the theoretical breakpoint of the
leastL1 estimator, which is zero.

Fig. 8 shows the results of comparingLMS with least
L1 on synthetic data using a Monte-Carlo method. Given
two similar linear transformations (4 by 4 matrices), a sin-
gle test consisted of randomly selecting 100 points (3D pro-
jective points), transforming 60 points with one model and
40 points with the second model, and then adding random
noise to the transformed points. Given this data, the linear
transformation was recovered one time usingLMS and one
time using a leastL1 estimator. The accuracy of a recov-
ered transformation was computed by counting the number
of correct classifications: The transformation was applied
to the original points, and the points were sorted based on
their error from the transformed points. In perfect condi-
tions, all 60 points having lowest error should come from
the first model. The “correct classifications” is the number
of points actually coming from the first model among the
60 points having lowest errors. The test was performed 200
times, each time with a new set of points. The histogram
in Fig. 8 shows for each number of correct classifications
how many times it occurred among the 200 tests. as can be
seen, theLMS has a shift to the right which means that it
has more correct classifications. Therefore theLMS is bet-
ter that the leastL1, but only slightly in the global motion
analysis domain.


