
Shift-Map Image Editing

Yael Pritch Eitam Kav-Venaki Shmuel Peleg

School of Computer Science and Engineering
The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Geometric rearrangement of images includes operations
such as image retargeting, inpainting, or object rearrange-
ment. Each such operation can be characterized by a shift-
map: the relative shift of every pixel in the output image
from its source in an input image.

We describe a new representation of these operations as
an optimal graph labeling, where the shift-map represents
the selected label for each output pixel. Two terms are used
in computing the optimal shift-map: (i) A data term which
indicates constraints such as the change in image size, ob-
ject rearrangement, a possible saliency map, etc. (ii) A
smoothness term, minimizing the new discontinuities in the
output image caused by discontinuities in the shift-map.

This graph labeling problem can be solved using graph
cuts. Since the optimization is global and discrete, it out-
performs state of the art methods in most cases. Efficient
hierarchical solutions for graph-cuts are presented, and op-
erations on 1M images can take only a few seconds.

1. Introduction

Geometric image rearrangement is becoming more pop-
ular as it is being enabled by recent computer vision tech-
nologies. While early manipulations included mostly crop
and scale, modern tools enable smart photomontage [1], im-
age resizing (a.k.a. “retargeting”) [2, 13, 19, 14, 16], ob-
ject rearrangement and removal [5, 14, 6]. Recent retarget-
ing methods propose effective resizing by examining image
content and removing “less important” regions. Fig. 1 and
Fig. 2 show comparisons of a few retargeting methods.

Seam carving [2, 13] performs retargeting by iterative
removal of narrow curves from the image. As an iterative
greedy algorithm no global optimization can be made, and
something as simple as removing one of several similar ob-
jects is impossible. Since seam carving removes regions
having low gradients, significant distortions occur when
most image regions have many gradients.

a)

b) c)

d) e)
Figure 1. Comparison of a few retargeting methods, reducing
width by half. (a) Original image. (b) Video-retargeting [19];
(c) Optimized scale-and-stretch [16]; (d) Improved Seam Carving
[13]; (e) Our shift-map editing.

The use of a continuous image warping for retargeting
was proposed in [19, 16]. While providing global con-
siderations, continuous warping can introduce significant
distortions, and good object removal is almost impossible.
Both methods use saliency maps (e.g. face detection), and

151

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

a) b)

c) d) e)
Figure 2. Comparison of a few retargeting methods, reducing
width by half. (a) Original image. (b) Our shift-map editing.
(c) Video-retargeting [19]; (d) Optimized scale-and-stretch [16];
(e) Improved Seam Carving [13];

saliency mistakes cause distorted results. One of the ma-
jor problems in these methods is the application of different
scaling to different objects. This causes most of the distor-
tions visible in Fig. 1.(b-c).

An approach based on bidirectional similarity is pre-
sented in [14], which also names retargeting as “summa-
rization”. Every feature in the input should appear in the
output, and every feature in the output should appear in the
input. This method can also be used for image rearrange-
ment.

The method most related to our work is the patch trans-
form [5], which segments the image into patches which are
than rearranged using global optimization. The need for
prior determination of the patch size is a major drawback
of this method. Also, the patches reduce significantly the
flexibility for rearrangement and composition. The inherent
problems of using patches are also affecting the object re-
moval in [9]. We found that our results, moving individual
pixels, significantly improve the results in [5].

In shift-map editing a global optimization for a discrete
labeling is performed over individual pixels, overcoming
most of the difficulties of previous methods. This is demon-
strated in the simple retargeting example in Fig. 2, where
best retargeting is very easy: a simple removal of a segment
in the net that leaves its structure intact. This is easily possi-
ble with shift-map. In general, shift-map avoids scaling and
mostly remove or shift image regions. Multi resolution op-
timization makes the shift-map computation very efficient,
and most of the examples in this paper were prepared in less
than 30 seconds.

2. Image Editing as Graph Labeling

The relationship between an input image I(x, y) and an
output image R(u, v) in image rearrangement and retarget-
ing is defined by a shift-map M(u, v) = (tx, ty). The
output pixel R(u, v) will be derived from the input pixel
I(u + tx, v + ty).

The optimal shift-map is defined as a graph labeling,
where the nodes are the pixels of the output image, and each
output pixel can be labeled by a shift (tx, ty). The optimal
shift-map M minimizes the following cost function:

E(M) = α
∑
p∈R

Ed(M(p)) +
∑

(p,q)∈N

Es(M(p), M(q)), (1)

where Ed is a data term providing external requirements,
and Es is a smoothness term defined over neighboring pix-
els N . α is a user defined weight balancing the two terms,
and in all our examples we used α = 1. Each term will now
be defined in detail. Once the graph is given, the shift-map
labeling is computed using multi-label graph cuts [8, 4, 3].

2.1. Single Pixel Data Term

The data term Ed is used to enter external constraints.
We will describe the cases of pixel rearrangement, pixel re-
moval, and pixel saliency.

2.1.1 Pixel Rearrangement

When an output pixel (u, v) should originate from location
(x, y) in the input image, the appropriate shift gets zero en-
ergy while all other shifts get a very high energy. This is
expressed in the following equation:

Ed(M(u, v)) =

{
(u + tx = x) ∧ (v + ty = y) 0
otherwise ∞ (2)

For example, in changing the width of the image, this
constraint is used to determine that both the leftmost and
rightmost columns of the output image will come from the
leftmost and rightmost columns of the input image.

2.1.2 Pixel Saliency and Removal

Specific pixels in the input image can be forced to appear
or to disappear in the output image. A saliency map S(x, y)
will be very high for pixels to be removed, and very low for
salient pixels that should not be removed. The data term Ed

for an output pixel (u, v) with a shift-map (tx, ty) will be

Ed(M(u, v)) = S(u + tx, v + ty) (3)

It is also possible to use automatic saliency map com-
puted from the image such as the ones proposed in [19, 16].

152

2.2. Smoothness Term for Pixel Pairs

The smoothness term Es(M(p), M(q)) represents dis-
continuities added to the output image by discontinuities
in the shift-map. A shift-map discontinuity exists between
two neighboring locations (u1, v1) and (u2, v2) in the out-
put image R if their shift-maps are different: M(u1, v1) �=
M(u2, v2). The smoothness term Es(M) takes into ac-
count both color differences and gradient differences be-
tween corresponding spatial neighbors in the output image
and in the input image to create good stitching. This treat-
ment is similar to [1].

Es(M) = (4)∑
(u,v)∈R

∑
i

(R((u, v) + ei)− I((u, v) + M(u, v) + ei))2+

β
∑

(u,v)∈R

∑
i

(�R((u, v)+ei)−�I((u, v)+M(u, v)+ei))2,

where ei are the four unit vectors representing the four
spatial neighbors of a pixel, the color differences are Eu-
clidean distances in RGB, �I and �R are the magnitude
of the image gradients at these locations, and β is a weight
to combine these two terms. In most of our experiments we
used β = 2. As both color differences and gradient differ-
ences are used for smoothness, structure is better preserved.

As we use non metric distances, many of the theoretical
guarantees of the alpha expansion algorithm are lost. How-
ever, in practice we have found that good results are ob-
tained. We further found that squaring the differences gave
better results than using the absolute value, preferring many
small stitches over one large jump. Deviation from a metric
distance was also made in [10, 1].

3. Hierarchical Solution for Graph Labeling

Finding the optimal graph labeling as described in the
previous section can be computationally infeasible, due to
the very large number of nodes and of labels. In some cases
a pixel in the output image could originate from any pixel
in the input image and the number of possible labels is the
number of pixels in the input image.

A heuristic hierarchical approach for finding the opti-
mal graph labeling can substantially reduces the memory
and computational requirements of the graph-cut algorithm.
It provides good results for most of the shift map editing
applications, even though optimality cannot be guaranteed.
The speedup obtained by this approach is of several orders
of magnitude, turning an intractable problem into a problem
that can be solved in a few seconds.

A full shift map is first solved in a coarse resolution,
in which both the number of nodes (image pixels) and the
number of labels (possible shifts) are reduced. For exam-
ple, at the 4th pyramid level the number of nodes and the

(a) (b)

(c) (d) (e)
Figure 3. Shift-map retargeting for different output widths. In each
case different objects are removed. (a) Original image taken from
[13]; (b-c-e) Different output widths using no saliency. (d) Same
width as (c), but the child was marked salient.

number of labels are reduced by a factor of 64 (in the case of
both horizontal and vertical shifts). Once a coarse shift-map
is found, it is interpolated to an initial guess for a higher res-
olution using a nearest neighbor interpolation, and the shift-
map values are doubled to match the higher image resolu-
tion.

In the higher resolution levels only small shifts relative
to the initial guess are examined. In our implementation,
we used three relative shifts, (-1, 0, +1), in each coordinate,
giving a total of nine labels for both directions. It is impor-
tant to note that the data and smoothness terms are always
computed with respect to the actual shifts, and not to the
labels. We used three to five pyramid levels, such that the
coarsest level contains up to 100 × 100 pixels. The shift
map computation took between 0.5 to 30 seconds for most
of the examples in this paper. To increase accuracy in la-
bel discontinuities, more than three refinement labels can be
used. For example, the possible labels of a pixel can repre-
sent not only shifts from its own parent, but also shifts from
the neighbors of its parent. This will improve accuracy at
shift discontinuities, but at higher computational and mem-
ory costs.

While the hierarchical approach is not guaranteed to give
the global optimum, the results are very good as can be seen
in the examples. It is likely that this success, as the success
of most pyramid approaches in computer vision, can be at-
tributed to the observation that a natural image includes in-
formation in all frequencies. A multi-resolution method for
graph-cuts with two labels (min-cut) was used in [11, 13],
and was shown to provide good results. The contribution in
this paper is to extend this case to multiple labels depicting
image displacement.

153

4. Shift-Map Applications

Shift-map is computed by an optimal graph labeling,
where a node in the graph corresponds to a pixel in the out-
put image. In the section we describe how to build the graph
and use shift-maps for several image editing applications.

4.1. Image Retargeting

Image retargeting is the change of image size, which is
typically done in only a single direction in order to change
the image aspect ratio. We will assume that the change is
in image width, but we could also address changing both
image dimensions.

4.1.1 Label Order Constraint

In image resizing it is reasonable to assume that the shift-
map will retain the spatial order of objects, and the left-
right relationship will not be inverted. This implies a mono-
tonic shift-map. In the case of reducing image width, if
M(u, v) = (tx, ty) and M(u + 1, v) = (t′x, t′y), than
t′x ≥ tx. This restriction limits the number of possible la-
bels to be the number of removed pixels: when reducing or
increasing the width of the input image by 100 pixels, the
label of each pixel can only be one of 101 labels. In addi-
tion, the smoothness term will give an infinite cost to cases
when t′x < tx. Note that for reducing image width the val-
ues of tx are non negative, and for increasing image width
the values of tx are non positive and t′x ≤ tx. The order
constraint is important also in case a saliency map is used,
as it helps to avoid duplication of salient pixels.

Theoretically, only horizontal shifts need to be consid-
ered for horizontal resizing. However, this makes it im-
possible to respect geometrical image properties such as
straight diagonal lines. When small vertical shifts are al-
lowed, in addition to the horizontal shifts, the smoothness
term will better preserve image structure.

4.1.2 Controlling Object Removal

It is possible to control the size and number of removed
objects by performing several steps of resizing, since the
smoothness constraints will penalize the removal of an ob-
ject larger than the step size. In Fig. 4 it is demonstrated
that when more steps are performed fewer objects are re-
moved from the image. It is interesting to note that if the
number of steps becomes the number of removed columns,
each iteration changes the image width by only one pixel,
and shift-map retargeting becomes practically equivalent to
the seam carving algorithm [13]. Shift-map can therefore
be considered as a generalization of seam carving, adding
the flexibility to remove larger strips in a single step, pos-
sibly removing entire objects. It is also possible to control
object removal by marking objects as salient as in Fig. 3.d.

a)

(b) (c) (d)
Figure 4. Controlling object removal by changing the number of
steps. (a) Original image. (b) Resizing in a single step may cut out
some of the objects. (c) Six smaller resizing steps remove fewer
objects. (d) Ten even smaller steps remove even fewer objects.
Note that in order to fit more objects in a smaller image, the result
in (d) has vertical shifts introduced automatically by the optimiza-
tion process.

4.1.3 comparison to other algorithms

Comparison of shift map with several retargeting algo-
rithms is provided in Fig. 13 at the end of the paper. All our
results were done with a single step of the algorithm and the
same set of parameters as described before. The other algo-
rithms were run by the original authors, whose cooperation
is appreciated. Note some geometric distortions and photo-
metric artifacts in the different images, like the bending of
straight lines that do not appear in our results.

4.2. Image Rearrangement

Image rearrangement consists of moving an object to a
new image location, or deleting part of the image, while
keeping some of the content of the image unchanged. The
user selects a region to move, and specifies the location at
which the selected region will be placed. A new image is
generated satisfying this constraint. This application was
demonstrated in [5, 14] and gave impressive results in many
cases. A failure example of [5] is shown in Fig. 5, together
with a successful result given by shift-map.

Object rearrangement is specified in two parts using the
data term. One part forces pixels to appear in a new location
using Eq. 2. The second part marks these pixels for removal
from their original location using Eq. 3 to avoid their du-
plication in the output. More rearrangement examples are
shown in Fig. 6 and Fig. 7.

In image rearrangement pixels can be relocated by a
large displacement, creating a possible computational com-
plexity. The need to allow many possible shifts as labels
may cause an exponential explosion. In order to reduce
this complexity, the set of allowed shifts for each pixel will
include local shifts around its original location, plus local
shifts around the displaced location.

154

(a)

(b) (c)
Figure 5. Image Rearrangement: Comparison of shift-map and
patch transform, on a failure case of the patch transform [5]. (a)
The original image. (b) The user constraints marked by squares
on top of the result given by patch transform: “move the person
and a part of the temple to the right, and keep the tourists at their
original location in the left bottom corner”. (c) Shift-map result
on the same input.

As the number of labels is growing significantly when
there are multiple user constraints, A smart ordering is
used for the alpha expansion algorithm of the graph cut [4]
to enable fast convergence. The main idea of the alpha-
expansion algorithm is to split the graph labels to α and
non-α, and perform a min cut between those labels allow-
ing non-α labels to change to α. The algorithm will iterate
through each possible label for α until convergence. In the
alpha expansion the labels that represent user constraints
are considered first, improving the speed and image qual-
ity. Since in many cases the user is marking only a small
part of the object, first expansion steps on user constraints
are getting the rest of the object to its desired location. Al-
pha expansion on the remaining labels generates the final
composition.

4.3. Inpainting

Shift-map can be used for inpainting image regions, a
topic extensively studied in computer vision [7, 17, 6]. Af-
ter interactive marking of unwanted pixels, an automated
process completes the missing area from other image re-
gions or from other images. Using shift-maps, the unwanted
pixels are given an infinitely high data term as described in
Eq. 3. The shift-map maps pixels inside the hole to other lo-
cations in the input image. Once the mapping is completed
by performing graph cut optimization, the missing pixels
are copied from their source location. Most of the existing
inpainting algorithm such as [6] are iteratively reducing the
size of the hole, and therefore in each step can only make
local considerations. The shift-map approach is treating in-
painting as a global optimization and therefore the entire

(a)

(b) (c)

(d) (e)
Figure 6. Image Rearrangement: (a) Original image. Small boy to
be removed from the image, big boy to be repositioned to left. (b)
Shift-map results with the marked user constraints (”move the big
boy to the left”) on top of the result. (c) Additional rearrangement
on the same image: The small boy is re-positioned to the right.
(d)-(e) Patch transform results corresponding to (b)-(c). Undesired
effects are marked by ellipses.

filled content is considered at once.

Examples demonstrating inpainting with shift-maps are
shown in Figures 8-9-10-11. Fig. 11 uses a sample image
from [18], which suggested that successful removal can be
done only with interactive user guidance. Shift-map ap-
proach makes a good completion with no user intervention.
Inpainting with no user interaction is also done in Fig. 10,
an example taken from [15], which also claimed that user
interaction is needed to propagate the structure.

In addition of simple inpainting, shift map can also be
used for generalized inpainting, where the labels of all pix-
els may be computed, and not only of the pixels in the
neighborhood of the hole. This gives increased flexibility
to reconstruct visually pleasing images when it is easier to
synthesize other areas of the image. However, this approach
may change the overall structure of the image as objects and
areas have flexibility to move. Fig. 11.(d) demonstrates the

155

(a)

(b) (c)
Figure 7. Image Rearrangement: (a) Original image. Kid on the
left should move to the center, baby should move to the left, kid on
the right should remain in place. (b) Shift-map results with user
constraints marked on top. (c) Patch transform results on the same
input.

generalized inpainting approach, where all image pixels can
be shifted. In this example the region of the woman was
deleted, and a new region has been synthesized on the right.
When some areas should not move and other areas should
be removed, user constraints can be added, and inpainting
becomes an image rearrangement problem.

4.4. Image Composition

In the shift-map framework the input can consist of either
a single image, or of a set of images. If there are multiple
input images the shift-map M(u, v) = (tx, ty, tind), where
tind is the index of the input image used for each pixel.
A very similar labeling for the purpose of creating a col-
lage is described in [12]. It is possible to produce an image
rearrangement involving multiple images (selective compo-
sition) as was done in “Interactive Digital Photomontage”
[1]. In [1] labels were specified only for the source image
of each output pixel in the composite image, and therefore
the input images had to be perfectly aligned. The shift-map
approach is more general, as the label of each pixel con-
sists of both shifting and source image selection. Shift-map
can therefore tolerate misalignments between the input im-
ages. The resulting composite image can be a sophisticated
combination of the input images, as various areas can move
differently with respect to their location in the input. An
example for image composition is shown in Fig. 14.

5. Concluding Remarks

Shift-maps are proposed as a new framework to describe
various geometric rearrangement problems that can be com-

(a) (b)

(c) (d) (e)

(f) (h)
Figure 8. Object Removal: (a) The original image “bungee
jumper”, taken from [6]. (b) Mask image: black area need to be
removed. (c) Shift-map inpainting. (d) Comparison to the result
of [6] on the same image. (e) Comparison to the result of [14]
on the same image. (f-h) Final x and y components of shift-map.
Values are scaled for display.

(a) (b) (c)
Figure 9. Inpainting example taken from [6]. (a) Original image.
(b) The black mask indicates region to be removed. (c) Inpainting
removed area by shift-map. The geometric constraints are auto-
matically preserved.

puted as a global optimization.
Images generated by the shift map are natural looking,

as the method combines several desired properties:

• Minimal and intuitive user interaction, with no need
for accurate object selection.

• Distortions that may be introduced by stitching are
minimized due to the global smoothness term.

• The geometric structure of the image is preserved, as
clearly demonstrated in Fig. 9 and Fig. 10.

156

(a) (b)

(c)
Figure 10. Inpainting example taken from [15], where it was
claimed that user interaction is needed to propagate the structure.
Shift-map needs no user interaction. (a) Original image. (b) The
black mask indicates region to be removed. (c) Completion of
removed area by shift-map. The geometric constraints are auto-
matically preserved.

(a) (b)

(c) (d)
Figure 11. Inpainting using shift-map. (a) Original image from
[18]. (b) Black pixels need to be removed. (c) Simple inpainting.
(d) Generalized inpainting, where other image pixels are allowed
to move. A new region was synthesized on the right.

• Large regions can be synthesized. This appears in all
examples, and an isolated demonstration appears in
Fig. 12.

Hierarchical optimization resulted in a very fast com-
putation, especially in comparison to related editing ap-
proaches. The applicability of shift map to retargeting, in-
painting, and image rearrangement was demonstrated and
compared to state of the art algorithms.

Although shift-map editing performs well on a large va-
riety of input, it may miss user’s intensions. Effects can

Figure 12. Image expansion using shift-map as texture synthesis.
Input images included several rotations of original image. Left:
Original; Right: Synthesized.

(a) (b)

(c)

(d) (e) (f)
Figure 14. Image Composition. User constrains are given by speci-
fying output locations of selected regions, and other output regions
are generated automatically. (a-b) Original images. (c) An image
composed from both (a) and (b). (d-e-f) The regions used as user
constraints for creating (c) from (a) and (b).

be controlled by using saliency maps, or by performing the
algorithm in several steps.

Extending shift-map to use multiple source images, as
described in shift map composition, can also be used for
inpainting. Input images can include transformations of the
original input image like rotation, scaling etc.

References

[1] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,
A. Colburn, B. Curless, D. Salesin, and M. Cohen. Interac-
tive digital photomontage. In SIGGRAPH, pages 294–302,
2004.

[2] S. Avidan and A. Shamir. Seam carving for content-aware
image resizing. ACM Trans. Graph., 26(3):10, 2007.

157

(a) (b) (c) (d) (e)
Figure 13. Comparison to other methods: reducing width by 50%. Soft copy can be magnified for better viewing. (a) Original image. (b)
Improved Seam Carving [13]. (c) Video-retargeting [19]. (d) Optimized scale-and-stretch [16]. (e) Shift-map.

[3] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEET-PAMI, 26(9):1124–1137, Sept 2004.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-
mate energy minimization via graph cuts. IEEET-PAMI,
23(11):1222—1239, 2001.

[5] T. Cho, M. Butman, S. Avidan, and W. Freeman. The patch
transform and its applications to image editing. In CVPR’08,
2008.

[6] A. Criminisi, P. Pérez, and K. Toyama. Object removal by
exemplar-based inpainting. In CVPR’03, volume 2, pages
721–728, 2003.

[7] J. Hays and A. Efros. Scene completion using millions of
photographs. CACM, 51(10):87–94, 2008.

[8] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? In ECCV’02, pages 65–81, 2002.

[9] N. Komodakis. Image completion using global optimization.
In CVPR’06, pages 442–452, 2006.

[10] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: image and video synthesis using graph
cuts. In SIGGRAPH’03, pages 277–286, 2003.

[11] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel
banded graph cuts method for fast image segmentation. In
ICCV’05, volume 1, pages 259–265, 2005.

[12] C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake. Autocol-
lage. In SIGGRAPH’06, pages 847–852, 2006.

[13] M. Rubinstein, A. Shamir, and S. Avidan. Improved seam
carving for video retargeting. In SIGGRAPH’08, pages 1–9,
2008.

[14] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summa-
rizing visual data using bidirectional similarity. In CVPR’08,
2008.

[15] J. Sun, L. Yuan, J. Jia, and H. Shum. Image completion with
structure propagation. In SIGGRAPH’05, pages 861–868,
2005.

[16] Y. Wang, C. Tai, O. Sorkine, and T. Lee. Optimized scale-
and-stretch for image resizing. ACM Trans. Graph., 27(5):1–
8, 2008.

[17] Y. Wexler, E. Shechtman, and M. Irani. Space-time video
completion. CVPR’04, 1:120–127, 2004.

[18] M. Wilczkowiak, G. Brostow, B. Tordoff, and R. Cipolla.
Hole filling through photomontage. In BMVC, pages 492–
501, 2005.

[19] L. Wolf, M. Guttmann, and D. Cohen-Or. Non-homogeneous
content-driven video-retargeting. In ICCV’07, 2007.

158

