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Abstract. Image stitching is used to combine several individual im-
ages having some overlap into a composite image. The quality of image
stitching is measured by the similarity of the stitched image to each of
the input images, and by the visibility of the seam between the stitched
images.
In order to define and get the best possible stitching, we introduce several
formal cost functions for the evaluation of the quality of stitching. In
these cost functions, the similarity to the input images and the visibility
of the seam are defined in the gradient domain, minimizing the disturbing
edges along the seam. A good image stitching will optimize these cost
functions, overcoming both photometric inconsistencies and geometric
misalignments between the stitched images.
This approach is demonstrated in the generation of panoramic images
and in object blending. Comparisons with existing methods show the
benefits of optimizing the measures in the gradient domain.

1 Introduction

Image stitching is a common practice in the generation of panoramic images and
applications such as object insertion, super resolution [1] and texture synthesis
[2]. An example of image stitching is shown in Figure 1. Two images I1,I2 capture
different portions of the same scene, with an overlap region viewed in both
images. The images should be stitched to generate a mosaic image I. A simple
pasting of a left region from I1 and a right region from I2 produces visible
artificial edges in the seam between the images, due to differences in camera
gain, scene illumination or geometrical misalignments.

The aim of a stitching algorithm is to produce a visually plausible mosaic
with two desirable properties: First, the mosaic should be as similar as possible
to the input images, both geometrically and photometrically. Second, the seam
between the stitched images should be invisible. While these requirements are
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Input image 11 Pasting of I1 and I2

Input image I2 Stitching result

Fig. 1. Image stitching. On the left are the input images. ω is the overlap region. On
top right is a simple pasting of the input images. On the bottom right is the result of
the GIST1 algorithm.

widely acceptable for visual examination of a stitching result, their definition as
quality criteria was either limited or implicit in previous approaches.

In this work we present several cost functions for these requirements, and
define the mosaic image as their optimum. The stitching quality in the seam
region is measured in the gradient domain. The mosaic image should contain a
minimal amount of seam artifacts, i.e. a seam should not introduce a new edge
that does not appear in either I1 or I2. As image dissimilarity, the gradients of
the mosaic image I are compared with the gradients of I1, I2. This reduces the
effects caused by global inconsistencies between the stitched images. We call our
framework GIST: Gradient-domain Image STitching.

We demonstrate this approach in panoramic mosaicing and object blending.
Analytical and experimental comparisons of our approach to existing methods
show the benefits in working in the gradient domain, and in directly minimizing
gradient artifacts.

1.1 Related Work

There are two main approaches to image stitching in the literature, assuming that
the images have already been aligned. Optimal seam algorithms[3,2,4] search for
a curve in the overlap region on which the differences between I1, I2 are minimal.
Then each image is copied to the corresponding side of the seam. In case the
difference between I1, I2 on the curve is zero, no seam gradients are produced in
the mosaic image I. However, the seam is visible when there is no such curve,



Seamless Image Stitching in the Gradient Domain 379

for example when there is a global intensity difference between the images. This
is illustrated on the first row of Figure 2. In addition, optimal seam methods are
less appropriate when thin strips are taken from the input images, as in the case
of manifold mosaicing [5].

The second approach minimizes seam artifacts by smoothing the transition
between the images. In Feathering [6] or alpha blending, the mosaic image I
is a weighted combination of the input images I1, I2. The weighting coefficients
(alpha mask) vary as a function of the distance from the seam. In pyramid
blending[7], different frequency bands are combined with different alpha masks.
Lower frequencies are mixed over a wide region, and fine details are mixed in a
narrow region. This produces gradual transition in lower frequencies, while re-
ducing edge duplications in textured regions. A related approach was suggested
in [8], where a smooth function was added to the input images to force a con-
sistency between the images in the seam curve. In case there are misalignments
between the images[6], these methods leave artifacts in the mosaic such as double
edges, as shown in Figure 2.

In our approach we compute the mosaic image I by an optimization process
that uses image gradients. Computation in the gradient domain was recently used
in compression of dynamic range[9], image editing [10], image inpainting [11] and
separation of images to layers [12,13,14,15]. The closest work to ours was done
by Perez et. al. [10], who suggest to edit images by manipulating their gradients.
One application is object insertion, where an object is cut from an image, and
inserted to a new background image. The insertion is done by optimizing over
the derivatives of the inserted object, with the boundary determined by the
background image. In sections 4, 5 we compare our approach to [10].

2 GIST: Image Stitching in the Gradient Domain

We describe two approaches to image stitching in the gradient domain. Sec-
tion 2.1 describes GIST1, where the mosaic image is inferred directly from the
derivatives of the input images. Section 2.2 describes GIST2, a two-steps ap-
proach to image stitching. Section 2.3 compares the two approaches to each
other, and with other methods.

2.1 GIST1: Optimizing a Cost Function over Image Derivatives

The first approach, GIST1, computes the stitched image by minimizing a cost
function Ep. Ep is a dissimilarity measure between the derivatives of the stitched
image and the derivatives of the input images.
Specifically, let I1, I2 be two aligned input images. Let τ1 (τ2 resp.) be the region
viewed exclusively in image I1 (I2 resp.), and let ω be the overlap region, as
shown in Figure 1, with τ1 ∩ τ2 = τ1 ∩ ω = τ2 ∩ ω = ∅. Let W be a weighting
mask image.
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Inp. image 11 Inp. image 12 Feathering Pyr. blending Opt. Seam GIST

Fig. 2. Comparing stitching methods with various sources for inconsistencies between
the input images. The left side of I1 is stitched to right side of I2. Optimal seam
methods produce a seam artifact in case of photometric inconsistencies between the
images (first row). Feathering and pyramid blending produce double edges in case of
horizontal misalignments (second row). In case there is a vertical misalignments (third
row), the stitching is less visible with Feathering and GIST.

The stitching result I of GIST1 is defined as the minimum of Ep with respect
to Î:

Ep

(
Î; I1, I2, W

)
= dp(∇Î ,∇I1, τ1 ∪ ω, W ) + dp(∇Î ,∇I2, τ2 ∪ ω, U − W ) (1)

where U is a uniform image, and dp(J1, J2, φ, W ) is the distance between J1, J2

on φ:
dp(J1, J2, φ, W ) =

∑
q∈φ

W (q) ‖ J1(q) − J2(q) ‖p
p (2)

with ‖ · ‖p denoting the �p-norm.
The dissimilarity Ep between the images is defined by the distance between

their derivatives. A dissimilarity in the gradient domain is invariant to the mean
intensity of the image. In addition it is less sensitive to smooth global differences
between the input images, e.g. due to non-uniformness in the camera photometric
response and due to scene shading variations. On the overlap region ω, the cost
function Ep penalizes for derivatives which are inconsistent with any of the
input images. In image locations where both I1 and I2 have low gradients, Ep

penalizes for high gradient values in the mosaic image. This property is useful
in eliminating false stitching edges.

The choice of norm (parameter p) has implications on both the optimization
algorithm and the mosaic image. The minimization of Ep (Equation 1) for p ≥ 1
is convex, and hence efficient optimization algorithms can be used. Section 3
describes a minimization scheme for E2 by existing algorithms, and a novel fast
minimization scheme for E1. The mask image W was either a uniform mask (for
E1) or the Feathering mask (for E2), which is linear with the signed-distance
from the seam. The influence of the choice of p on the result image is addressed in
the following sections, with the introduction of alternative stitching algorithms
in the gradient domain.
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Optimal seam Optimal seam on the gradients

Pyramid blending Pyramid blending on the gradients

Feathering GIST1

Fig. 3. Stitching in the gradient domain. The input images appear in Figure 1, with
the overlap region marked by a black rectangle. With the image domain methods
(top panels) the stitching is observable. Gradient-domain methods (bottom panels)
overcome global inconsistencies.

2.2 GIST2: Stitching Derivative Images

A simpler approach is to stitch the derivatives of the input images:

1. Compute the derivatives of the input images ∂I1
∂x ,∂I1

∂y ,∂I2
∂x ,∂I2

∂y .
2. Stitch the derivative images to form a field F = (Fx, Fy). Fx is obtained by

stitching ∂I1
∂x and ∂I2

∂x , and Fy is obtained by stitching ∂I1
∂y and ∂I2

∂y .
3. Find the mosaic image whose gradients are closest to F . This is equivalent

to minimizing dp(∇I, F, π, U) where π is the entire image area and U is a
uniform image.

In stage (2) above, any stitching algorithm may be used. We have experimented
with Feathering, pyramid blending [7], and optimal seam. For the optimal seam
we used the algorithm in [2], finding the curve x = f(y) that minimizes the
sum of absolute differences in the input images. Stage (3), the optimization
under �1, �2, is described in Section 3. Unlike the GIST1 algorithm described
in the previous section, we found minor differences in the result images when
minimizing dp under �1 and �2.
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2.3 Which Method to Use?

In the previous sections we presented several stitching methods. Since stitching
results are tested visually, selecting the most appropriate method may be subject
to personal taste. However, a formal analysis of properties of these methods is
provided below. Based on those properties in conjunction with the experiments
in Section 4, we recommend using GIST1 under �1.

Theorem 1. Let I1, I2 be two input images for a stitching algorithm, and as-
sume there is a curve x = f(y), such that for each q ∈ {(f(y), y)}, I1(q) = I2(q).
Let U be a uniform image. Then the optimal seam solution I, defined below, is
a global minimum of Ep(I; I1, I2, U) defined in Eq.1, for any 0 < p ≤ 1.

I =
{

I1(x, y) x < f(y)
I2(x, y) x ≥ f(y)

The reader is referred to [16] for a proof. The theorem implies that GIST1 under
�1 is as good as the optimal seam methods when a perfect seam exists. Hence
the power of GIST1 under �1 to overcome geometric misalignments similarly to
the optimal seam methods. The advantage of GIST1 over optimal seam methods
is when there is no perfect seam, for example due to photometric inconsistencies
between the input images. This was validated in the experiments.

We also show an equivalence between GIST1 under �2 and Feathering of
derivatives (GIST2) under �2 (Note that feathering derivatives is different from
Feathering the images).

Theorem 2. Let I1, I2 be two input images for a stitching algorithm, and let
W be a Feathering mask. Let ω, the overlap region of I1, I2, be the entire image
(without loss of generality, as W (q) = 1 for q ∈ τ1, and W = 0 for q ∈ τ2). Let
IGist be the minimum of E2(I; I1, I2, W ) defined in Eq. 1. Let F be the following
field:

F = W (q)∇I1(q) + (1 − W (q))∇I2(q)

Then IGist is the image with the closest gradient field to F under �2.

The proof can be found in [16] as well. This provides insight into the difference
between GIST1 under �1 and under �2: Under �2, the algorithm tends to mix
the derivatives and hence blur the texture in the overlap region. Under �1, the
algorithm tends to behave similarly to the optimal seam methods, while reducing
photometric inconsistencies.

3 Implementation Details

We have implemented a minimization for Equation 1 under �1 and under �2.
Equation 1 defines a set of linear equations in the image intensities, with the

derivative filters as the coefficients. Similarly to [12,13], we found that good re-
sults are obtained when the derivatives are approximated by forward-differencing
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filters 1
2 [1 −1] . In the �1 case, the results were further enhanced by incorpo-

rating additional equations using derivative filters in multiple scales. In our ex-
periments we added the filter corresponding to forward-differencing in the 2nd
level of a Gaussian pyramid, obtained by convolving the filter [1 0 −1] with a
vertical and a horizontal Gaussian filter (1

4 [1 2 1] ). Color images were handled
by applying the algorithm to each of the color channels separately.

The minimum to Equation 1 under �2 with mask W is shown in [16] to be
the image with the closest derivatives under �2 to F , the weighted combination
of the derivatives of the input images:

F =





W (q)∇I1(p) q ∈ τ1
W (q)∇I1(x, y) + (1 − W (q))∇I2(x, y)) q ∈ ω

∇I2(x, y) q ∈ τ2

The solution can be obtained by various methods, e.g. de-convolution [12], FFT
[17] or multigrid solvers [18]. The results presented in this paper were obtained
by FFT.

As for the �1 optimization, we found using a uniform mask U to be sufficient.
Solving the linear equations under �1 can be done by linear programming[19]:

Min :
∑

i(z
+
i + z−

i )
Subject to : Ax + (z+ − z−) = b, x ≥ 0, z+ ≥ 0, z− ≥ 0

The entries in matrix A are defined by the coefficients of the derivative filters,
and the vector b contains the derivatives of I1, I2. x, is a vectorization of the
result image.

The linear program was solved using LOQO[20]. A typical execution time for
a 200 × 300 image on a Pentium 4 was around 2 minutes. Since no boundary
conditions were used, the solution was determined up to a uniform intensity shift.
This shift can be determined in various ways. We chose to set it according to the
median of the values of the input image I1 and the median of the corresponding
region in the mosaic image.

3.1 Iterative �1 Optimization

A faster �1 optimization can be achieved by an iterative algorithm in the image
domain. One way to perform this optimization is described in the following. Due
to space limitation, we describe the algorithm when the forward differencing
derivatives are used with kernel 1

2 [1 −1] . The generalization to other filters
and a parallel implementation appear in [16]. Let Dxj , Dyj be the forward-
differences of input image Ij . The optimization is performed as follows:

– Initialize the solution image I
– Iterate until convergence:

• for all x,y in the image, update I(x, y) to be:

2 ∗ median(∪j{ I(x + 1, y)−Dxj(x, y),I(x − 1, y)+Dxj(x − 1, y),
I(x, y + 1)−Dyj(x, y), I(x, y − 1)+Dyj(x, y − 1)

}) (3)
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For an even number of samples, the median is taken to be the average of the
two middle samples. In regions τj where a single image Ij is used, the median is
taken on the predictions of I(x, y) given its four neighbours and the derivatives
of image Ij . For example, when the derivatives of image Ij are 0, the algorithm
performs an iterated median filter of the neighbouring pixels. In the overlap
region ω of I1, I2, the median is taken over the predictions from both images.

At every iteration, the algorithm performs a coordinate descent and improves
the cost function until convergence. As the cost function is bounded by zero, the
algorithm always converges. However, although the cost function is convex, the
algorithm does not always converge to the global optimum1. To improve the
algorithm convergence and speed, we combined it in a multi-resolution scheme
using multigrid [18]. In extensive experiments with the multi-resolution extension
the algorithm always converged to the global optimum.

4 Experiments

We have implemented various versions of GIST and applied them to panoramic
mosaicing and object blending.

First, we compared GIST to existing image stitching techniques, which work
on the image intensity domain: Feathering [6], Pyramid Blending [7], and ’op-
timal seam’ (Implemented as in [2]). The experiments (Figure 3) validated the
advantage in working in the gradient for overcoming photometric inconsistencies.
Second, we compared the results of GIST1 (Section 2.1), GIST2 (Section 2.2)
and the method by Perez. et. al. [10]. Results of these comparisons are shown,
for example, in Figures 4,5, and analyzed in the following sections.

4.1 Stitching Panoramic Views

The natural application for image stitching is the construction of panoramic
pictures from multiple input pictures. Geometrical misalignments between input
images are caused by lens distortions, by the presence of moving objects, and
by motion parallax. Photometric inconsistencies between input images may be
caused by a varying gain, by lens vignetting, by illumination changes, etc.

The input images for our experiments were captured from different camera
positions, and were aligned by a 2D parametric transformation. The aligned
images contained local misalignments due to parallax, and photometric incon-
sistencies due to differences in illumination and in camera gain. Mosaicing re-
sults are shown in Figures 3,4,5. Figure 3 compares gradient methods vs. image
domain methods. Figure 4,5 demonstrate the performance of the stitching al-
gorithms when the input images are misaligned. In all our experiments GIST1
under �1 gave the best results, in some cases comparable with other methods: In
Figure 4 comparable with Feathering, and in 5 comparable with ’optimal seam’.
1 Consider an image whose left part is white and the right part is black. When applying

the algorithm on the derivatives of this image, the uniform image is a stationary
point.
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Input image 1 Input image 2 GIST1

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Comparing various stitching methods. On top are the input image and the
result of GIST1 under �1. The images on bottom are cropped results of various meth-
ods. (a)-Optimal seam, (b)-Feathering, (c)-Pyramid blending, (d)-Optimal seam on
the gradients, (e)-Feathering on the gradients, (f)-Pyramid blending on the gradients,
(g)-Poisson editing [10] and (h) GIST1 - �1. The seam is visible in (a),(c),(d),(g).

Whenever the input images were misaligned along the seam, GIST1 under �1
was superior to [10].

4.2 Stitching Object Parts

Here we combined images of objects of the same class having different appear-
ances. Objects parts from different images were combined to generate the final
image. This can be used, for example, by the police, in the construction of a
suspect’s composite portrait from parts of faces in the database. Figure 6 shows
an example for this application, where GIST1 is compared to pyramid blending
in the gradient domain. Another example for combination of parts is shown in
Figure 7.
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Input image 1 Input image 2 GIST1

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. A comparison between various image stitching methods. On top are the input
image and the result of GIST1 under �1. The images on bottom are cropped from
the results of various methods. (a)-Optimal seam, (b)-Feathering, (c)-Pyramid blend-
ing, (d)-Optimal seam on the gradients, (e)-Feathering on the gradients, (f)-Pyramid
blending on the gradients, (g)-Poisson editing [10] and (h) GIST1 - �1. When there are
large misalignments, optimal seam and GIST1 produce less artifacts.

5 Discussion

A novel approach to image stitching was presented, with two main components:
First, images are combined in the gradient domain rather than in the intensity
domain. This reduces global inconsistencies between the stitched parts due to
illumination changes and changes in the camera photometric response. Second,
the mosaic image is inferred by optimization over image gradients, thus reducing
seam artifacts and edge duplications. Experiments comparing gradient domain
stitching algorithms and existing image domain stitching show the benefit of
stitching in the gradient domain. Even though each stitching algorithm works
better for some images and worse for others, we found that GIST1 under �1
always worked well and we recommend it as the standard stitching algorithm.
The use of the �1 norm was especially valuable in overcoming geometrical mis-
alignments of the input images.
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Fig. 6. A police application for generating composite portraits. The top panel shows
the image parts used in the composition, taken from the Yale database. The bottom
panel shows, from left to right, the results of pasting the original parts, GIST1 under �1,
GIST1 under �2 and pyramid blending in the gradient domain. Note the discontinuities
in the eyebrows.

(a) (b) (c) (d)

Fig. 7. A combination of images of George W. Bush taken at different ages. On top
are the input images and the combination pattern. On the bottom left are, from left
to right, the results of GIST1 Stitching under �1 (a) and under �2 (b), the results
of pyramid blending in the gradient domain (c), and pyramid blending in the image
domain(d).
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The closest approach to ours was presented recently by Perez et. al. [10] for
image editing. There are two main differences with this work: First, in this work
we use the gradients of both images in the overlap region, while Perez et. al.
use the gradients of the inserted object and the intensities of the background
image. Second, the optimization is done under different norms, while Perez et.
al. use the �2 norm. Both differences considerably influence the results, especially
in misaligned textured regions. This is shown in Figures 5,4.

Image stitching was presented as a search for an optimal solution to an im-
age quality criterion. The optimization of this criterion under norms �1, �2 is
convex, having a single solution. Encouraged by the results obtained by this ap-
proach, we believe that it will be interesting to explore alternative criteria for
image quality. One direction can use results on statistics of filter responses in
natural images [21,22,23]. Another direction is to incorporate additional image
features in the quality criterion, such as local curvature. Successful results in im-
age inpainting[11,24] were obtained when image curvature was used in addition
to image derivatives.
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