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Abstract 
Many natural shapes have chirality (or handedness): for 

instance our hands have a right-hand version and a left-hand ver- 
sion, the two types being mirror images of each other. In chemis- 
tq, for example, molecules and crystals are classified as having 
chirality D or L. Interaction between molecules is dependent on 
their chirality, and chirality may determine chemical characteris- 
tics. For instance, only glucose of D-chirality is sweet, while glu- 
wse of L-chirality is tasteless. 

We study the notion of chirality for two dimensional 
binary shapes, and introduce measures to test whether a shape is 
symmetric. and if not whether it is left-handed or right-handed. 
The measures are based on boundary analysis, and perform well 
even when digital images of left-handed shapes differ from the 
mirror images of right-handed shapes. Such situations may 
occur due to natural variations and digitization errors. The meas- 
ures can also successfully treat partially occluded shapes, and 
provide indications on the change of chirality as resolution 
changes. 

1. Introduction 
Not only body parts have right or left handedness, this 

poperty, chirality , exist almost everywhere. Chirality has spe- 
cial significance in the study of elementary particles [l] whose 
chirality is due to their spin. Likewise molecules can appear in 
two possible configurations, called D (dextro) chirality and L 
(levo) chirality [2]. each having different characteristics. For 
instance. glucose of D-chirality is sweet, whereas glucose of L- 
chirality is tasteless. The first to observe the importance of 
chirality in chemistry were the French chemists Louis Pasteur 
(1822-1895) and Jean Baptiste Biot (1774-1862) who deter- 
mined the connection between crystal’s chirality and the 
deflection of the plane of polarization light passing through them 

One property that characterizes chirality is that an object 
can not be superimposed on its mirror image using translation 
and rotation. A right hand will never be similar to a left hand 
unless we look at one of them through a mirror. Thus, the set of 
all human hands can be divided into two classes, each having its 
own specific chirality. 

The goal of our work is to examine a set of two dimen- 
sional shapes, and reveal whether the objects in the set are 
chiralic. Once shapes are found to be chiralic. we would like to 
classify them according to chirality class. Theoretically, it is 
enough to check whether an object has a reflective symmetry, as 

[31. 

chirality is a form of asymmetry. However, almost no real object 
is exactly symmetric, especially after digitization, therefore we 
must determine weather the lack of symmetry is a dominant 
characteristic of the object. 

Figure 1 exhibits some intuitive properties of this 
analysis. Shape A 1 is symmetric and non chiral since its mirror 
image, A2, can be superimposed on it by using translation and 
rotation. Shape B1, which is obtained by shortening one arm of 
A 1, is chiral. Shape C1. with an even shorter arm. is also chiral to 
a greater degree than B1. Shortening the arm completely to pro- 
duce the straight line D 1 results in a symmetric shape again. 

The rest of this section is devoted to some basic 
definitions. Sections 2 and 3 are a review of conventional 
approaches that seemed theoretically appealing for chirality 
analysis but were not successful. Section 4 describes our new 
appriacl to measure chirality. 
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Figure 1: 
Shape A1 is symmetric, B1 is chiral, C1 even 
more chiral, and D 1 is symmetric. 
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1.1. Chirality 
Let R be the set of points in the plane, and let K cIR be 

a set of points. K will be called chiral iff there are no reflection 
6, translation T, and rotation 6 such that &o(K ) = K .  In other 
words: K is chiral iff it cannot be superimposed on its mirror 
image using only translation and rotation. 

Let K be a chiral set, and let o ( K ) = K ' .  i.e. K' is the 
mirror image of K .  K and K' are called enantiomers and cannot 
be superimposed on each other. 

1.2. Symmetry 
K is symmetric iff there exist an isometry, which is not 

the identity, that transforms K onto itself (An isometry is a dis- 
tance preserving transformation). Therefore, a set which is not 
chiral is symmetric. 
K is asymmetric iff there is no isometry that transforms K onto 
itself. 
K is dissymmetric iff there is no reflection that transforms K 
onto itself. 

Note: A set is chiral iff it is asymmetric or at least dissymmetric. 
There are shapes, like the letter Z, that are symmetric, dissym- 
metric and chiral. 

1.3. Centroid 
Let x: IR + (0.1) be the characteristic function of the 

set K cR, 
1 if (x ,y )~K 
0 otherwise x(x *Y 1 = 

The centroid of K ,  (xayo). is the point such that 

where the summations above are over the entire plane. 
It can be shown that a set K is not chiral iff there is a 

reflection Q that maps K onto itself. In this case the reflection is 
about a line that passes through the centroid of K .  

2. Moments 
The basic approach of using moments for shape analysis 

is developed by Hu [4]. Using the fact that a set is not chiral iff it 
is a reflection of itself about a line that passes through its cen- 
troid, we look for such a line. Since the centroid can be found 
easily, we only need to find the angle of this line, and then check 
the reflection about it. 

Given the characteristic function x(x,y), its Mij moment is 
defined by 

Mij = x(x J b i y j  
XY 

M 01 We can find the centroid using x o  = 2 , yo = =. 
From now on we assume that the origin is in the centroid. If the 
axis of reflection coincides with the y -axis then MV = 0 for odd 
i since x(x,y) = x(-x,y). If the reflection axis coincides with 

the x-axis then Mjj = 0 for odd j . We will therefore rotate the 
shape about its origin until M11= 0 .  In this case, if the set is 
symmetric, either the x-axis or the y-axis is the axis of 
reflection. 

The effect of rotation by 8 onM11, yielding M11, can be shown 
tobe 

M 11 = case (Mdine + Mllcose) - sine(Mmse + Mllsine) 

Looking for 8 such that Mll = 0 we get 

The axis we get after moving the origin to the centroid, and then 
rotating by 8 found in (1) is called the principal-axis. If the set 
is symmetric, it is now symmetric in respect to the x-axis or the 
y-axis. as M 11 = 0. If M112 is very small then the y-axis is 
probably the reflection axis. and if M'21 is very small then the 
x-axis is probably the reflection axis (for exact symmetry either 
M a  or Ml2 equals zero). We can now measure the symmetry 
using correlation. If we assume that the y-axis is the axis of 
reflection, the measure is 

W = 0 indicates symmetric objects, and higher values (maxi- 
maly 1) indicate increased chirality. 

Using expression (2) we can theoretically find chiral 
objects, but the results of hiis method on several shapes were 
found to be unreliable. Although theoretically the results should 
be accurate, in practice we used digitized images so that the 
results were not stable, and the method was found not to be 
robust. Furthermore, this analysis does not distinguish between 
enantiomers. 

3. Transform Approach 
Bigun and Granlaund [5 ]  introduced a transform whose 

basis functions are spirals, with varying number of "arms" and 
curvature. Some of the basis functions are shown in Figure 2 . 
As spirals are chiral, they can be used to measure chirality. Left 
spirals and right spirals have opposing chirality, while the border 
situation of "spirals" with straight hands is symmetric. Before 
describing the approach in detail we will mention that it is appli- 
cable to grey-level images as well as to binary images. 

We will transform the shape x(x.y) into polar represen- 
tation, 

xyr ,e) =  cos e.rsin e) 
From now on we will represent our shape by a polar representa- 
tion. 
Let R be a filled circle of radius R , and let f ( r ,e )  and 
g ( r  ,e) be two functions on R . We define the scalar product of 
f and g , 4 .g>,by 

(3) 
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gure 2: 
Bigun's basis functions 

where m,n are integers, and w = . This set is the one 
shown in Figure 2, and its arguments are as follows: 

n - represents the number of arms. 
m - represents the curvature of the arms. 
sgn(m.n) - represents the direction of curvature (left 
spiral vs. right spiral). Due to this feature we need only 
consider n>O. 

The set (3) is a complete orthogonal set. and any continuous 
function on R can be represented by a weighted sum of its 
members. a,,,,, is actually the Fourier functions over the r,0 
domain. 

Let f @,e) be our shape function on R after we have 
transformed it into polar representation; then we can write 

f ( r @ =  C,,,,,@,,,,,(r.e) 
m,n 

where 

C-=<f ,@, , , , ,>=& R 1 ( r  ,0)ei(mw + ne)d  0dr 

We use the coefficients C,,,,, to analyse an object's chirality 
after normalizing the image function such that for pure spirals, 
where f ( r , e ) = a @ u + b  ,then C u = l  andallotherc'sare 
zero. 

The following points should be noted: 

- The results depend strongly on the choice of origin. 
Since we know that if an object is symmetric the sym- 
metry axis passes through its centroid, we will use the 
centroid as the origin. 
- The coefficients C,,,,, are complex. By using their mag- 
nitude, and neglecting the phase, the results are rotation 
invariant. 

To find the chirality with respect to the Origin we use the 
averageof n and m weightedby C,,,,, : 

abs (M) represents the magnitude of the chirality. 
sgn (M) represents the direction of the chirality. 
N indicates the rotational symmetry as represented by the aver- 
age number of arms. 

This method was tried on a number of samples, but the 
results were unsatisfying. We found that noise disturbed the 
results. Further, the conversion into polar coordinates of a grid 
sampled image gave rise to inaccuracies. 

4. Rotational Chirality Measures 
Features based on object rotation can be used for chirality 

analysis. As clockwise rotation of an object is identical to coun- 
terclockwise rotation of its mirror image, non-chiral objects, 
which are identical to their mirror-image, will exhibit 
indifference to the direction of rotation. Chiral objects, on the 
other hand, will behave differently for the two directions of rota- 
tion. 

In our scheme we use the following idea: imagine the 
object as rotating in a medium full of tiny particles. Some boun- 
dary segments will "collect" particles. We will use the length of 
these segments as a feature for chirality analysis. An ideal 
spiral, for example, rotated in one direction will have no "col- 
lecting" points, while rotation in the other direction will have all 
it's points "collecting". We will initially perform the rotation 
around the centroid, but eventually use other points. The choice 
of the center of rotation will be discussed later. 

4.1. Boundary Based Measures 
Let K be a set of points (pixels), and let E be the set of 

edge pixels of K , E c K . We will use subsets of the edge 
pixels that "collect" particles, RGP (right-grasp-pixels) and 
LGP (left-grasp-pixels), to define chirality measures. We 
assume that K is simply connected, and define the following: 

Let ( e i ) b l  be the sequence of boundary pixels ordered by 
following the boundary so that the object is to right [6 ] ,  as in 
Figure 3. Let 0 be the axis of rotation. For a boundary pixel 
ei wedefine: 

-i 
- : the vector from 0 to ei . 
-di  : thelengthof ri . 
- 0i : the angle between ri and the x -axis. 
- Adi : d(i+l)mod k - di , the change in distance from 0 
between ei and ei+l . 
- A@ : 0 ( i + l ) d k  - 8 ;  , the change in 8 between 

We represent the angles in the range --A < A&,@ I -A . Figure 
3 shows these definitions. Adi and A0i can be positive, nega- 
tive, or zero. When smoothing is desired, we can use 

-i 

-i 

+ + 
ri and ri+l , the angle (ei ,O,ei+l).  

Adi = (di+l - di-lY2 and A0i = ( @ + I  - 0i-1)/2 . 
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Figure 3: 
some definitions on boundary pixels. 

A boundary segment between ei and ei+l will be on the 
front edge, encountering particles in clockwise rotation, only if 
Adi < 0 (Figures 4.C 4.D) and in counterclockwise rotation 
when Ad; > 0 (Figures 4.A 4.B) The centrifugal power will 
push the particles away from the axis of rotation, unless the 
boundary itself serves as an obstacle when AB( > 0 (Figures 
4.A 4.C). We therefore have 

RGP = (e; I A8i > 0 , Adi < 0) 

and we notice that R G P & G P = 0 ,  and 
LGP vRGP E E . In practice we do not use only the signs of 
AB; and Adi as in definition (5 )  since it can have very noisy 
behavior for small values. Therefore, for a given thresholds ~1 
and ~2 wedetermine 

(6) U P  = (ei I ABi > ~ l l d i  , Ad; > EZ) 

RGP = (ei I A& el/di , Adi < E ~ )  

As chirality measure we use the measure 

Z = -  ILGP I - IRGP I (7) 

where the normalization by IE I serves to make the measure 
independent of size but dependent on the ratio of grasp-pixels to 
edge-pixels. 

In order to develop another measure we adopt the idea of 
torque, which is force times the distance from the axis. Follow- 
ing this paradigm we can get a slightly different chirality meas- 
ure: Let L = di , and R = di , then achirality meas- 

ure will be 
iE&P i G Z p  

L - R  

Figure 5 shows measures (7) and (8) applied to several shapes, 
when the centroid is used as the rotation axis. 

R 

P i  
\ 
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+ O  
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C 
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\ I 
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\ I  
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Figure 4: 
properties of boundary particles in rotation. 
4.A - Edge encountering and grasping particles 
in counter-clockwise rotation (LGP). 
4.B - Edge encountering but pushing away 
particles in counterclockwise rotation. 
4.C - Edge encountering and grasping mic les  
in clockwise rotation (RGP). 
4.D - Edge encountering but pushing away 
particles in clockwise rotation. 

Notice that the shape in Figure 5.c is chiral. but since 
ILGP I = IRGP I measure (7) fails to find its chirality, while 

measure (8) succeeds. 
When we apply measure (7) to a series of shapes as in 

Figure 1 above, we obtain the predicted results which are shown 
in Figure 6. In Figure 6, (a) and (d) are not chkal, and indeed 
have minimum chirality measure. Examples (b) and (c) are both 
chiral, where (c) has more chirality than (b), and this effect too is 
reflected in the computed measurements. 

4.2. Center of Chirality 
Any chirality measure is greatly dependent on the choice 

of the axis of rotation. The centroid has initially been used as 
axis of rotation, but this choice can be misleading in some cases, 
especially for partially occluded shapes. Even for a spiral the 
centroid will not be the center of the spiral, as shown in Figure 7. 
We therefore define the following : 
ceder of Chirality is a point that maximize the rotational 
chirality measure ( (7) in absolute value) when used as a rota- 
tion axis. Figure 7 shows the center of chirality for several 
shapes. It finds the correct center of the spiral, as well as the real 
center of some partially occluded shapes. 
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Figure 5:  
Application of dflerent rotational chirality 
measures on several shapes. The black squares 
E RGP andthewhitesquares E LGP . 
picture measure (7) measure (8) 
A1 0.02 0.88 
A2 -0.02 -0.80 
B1 0.26 0.94 
B2 -0.27 -0.97 
c1 -0.04 -0.25 
c2 -0.01 0.23 
D1 0.10 0.97 
D2 -0.16 -1 .00 

Figure 6: 
Application of measure (7) to a series of 
shapes around the centroid. 
picture chiralie-measure (7) 
( 4  -0.001584 

(c) -0.006369 
(b) -0.005445 

( 4  0.0 

Figure 7: 
The center of chirality (left) and the centroid 
(right) of some shapes 

In order to reduce the computational complexity involved 
in the computation of the center of chirality, and avoid comput- 
ing the chirality around every point of the image, several heuris- 
tics can be used We could, for example, start searching for the 
maximal chirality at the centroid, examine a small neighborhood 
of the current location, and move to the pixel of highest chirality. 
This iterative search will stop when a point has higher chirality 
than all its neighbors. Simulated Annealing [7] can be used to 
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prevent stopping at local maxima. A faster method to reach the 
center of chirality uses a multiresolution approach, and is dis- 
cussed in the following section. 

5. Mu1 t i resolu t ion A pp roac h 
Define a pyramid [8] as a sequence of reduced resolution 

images. The lowest level of the pyramid, L O ,  will be the origi- 
nal image of side length 2N . L 1 will be a reduce image, having 
a side length of 2N-1, etc. We use the pyramid multiresolution 
structure for speeding-up the computation and for measuring 
resolutiondependent chirality information. 

The computation of the center of chirality in the pyramid 
is very fast. We start by computing the center of chirality at a 
high level using exhaustive search. This is very fast, as such 
level has only a small number of pixels. Let ei be the center of 
chirality at level i . The center of chirality at level i-1 can now 
be computed by projecting ei into level Li-1, and searching for 
maximum chirality only in a small neighborhood around this 
projection. The speed-up introduced in this manner is of order 
0(22N)2, and uses the assumption that details added between 
levels & and Li-l can change the location of the center of 
chirality only by a limited distance. 

Computing the chirality measure at all resolution levels 
not only speeds up computation. but reveals information on the 
shape under consideration. 

"1 
m 
8 

a 

b 

gure 8: 
Multiresolution Chirality Analysis. 
a) DiEerent chirality for general shape at low 
resolution and details at high resolution. 
b) Disconnected object that becomes connect- 
ed at lower resolution level. 

The chirality at lower resolution levels describes a feature of the 
general shape, while chirality at higher resolution levels incor- 
porates the features of the fine details. When the chirality of the 
fine details differs f" the chirality of the general shape, the 
chirality measure can change drastically with resolution as 
shown in Figure 8.a . Figure 8.b shows another benefit of the 
multiresolution approach. 

The pyramid can also help in the analysis of non con- 
nected objects. The rotational measures give desired results only 
on simply connected objects. When fragmented objects are 
given. the reduction of resolution can yield connected object, at 
lower resolution level, where analysis is possible. Figure 8.b 
shows the analysis of non-connected object at lower resolution. 

6. Concluding Remarks 
A m e w e  based on rotational features of two dimen- 

sional objects has been suggested for chirality analysis. This 
measure is robust, and is immune to insignificant deviation and 
some occlusion. It has a drawback in that it works only for sim- 
ply connected binary shapes, as compared to the transform and 
moments methods, which are theoretically applicable to every 
function. However, in its domain it has superior performance 
than the other methods. 
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