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Abstract

A robust approach for super resolution is presented,

which is especially valuable in the presence of outliers.

Such outliers may be due to motion erros, inaccurate blur

models, noise, moving objects, motion blur etc. This ro-

bustness is needed since super-resolution methods are very

sensitive to such errors.

A robust median estimator is combined in an iterative

process to achieve a super resolution algorithm. This pro-

cess can increase resolution even in regions with outliers,

where other super resolution methods actually degrade the

image.

1. Introduction

Super resolution is a method for reconstructing a high

resolution image from several overlapping low-resolution

images. Most super resolution techniques present the pro-

cess in the following way [11, 12, 9, 17, 2, 14, 15]: The low

resolution input images are the result of resampling a high

resolution image. The goal is to �nd the high resolution

image which, when resampled in the lattice of the input im-

ages according to the imaging model, predicts well the low

resolution input images.

The success of super resolution algorithms is highly de-

pendent on the accuracy of the model of the imaging pro-

cess. If, for example, the motion computed for some of the

images is not correct, the algorithm may degrade the image

rather than enhance it.

One solution proposed to handle local model inaccura-

cies and noise is regularization [2, 14, 4, 5]. The super

resolution image is presented as the MAP solution of a

stochastic optimization, and prior smoothness assumptions

are used to reduce the effects of inconsistent measurements.

In most cases the enforced smoothness results in the sup-

pression of high-frequency information, and the results are
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blured. Regularization may be successful when the scene is

strongly restricted, e.g. a binary text image. [5].

Another approach [10] handles the case of moving ob-

jects by motion segmentation. For this approach an accurate

motion segmentation must be available, a segmentation that

is dif�cult to obtain in the presence of aliasing and noise.

In this paper, a robust median-based estimator is used

to discard measurements which are inconsistent with the

imaging model. This can handle local model inconsisten-

cies such as highlights, moving objects, parallax, etc., at a

low computational cost. A bias detection procedure reduces

artifacts due to bias of the median estimator.

Using median in the context of super resolution has been

proposed in the past [6], where the upsampled images were

combined by median, and the result image was convolved

by a high pass �lter. Our method is inherently different, as

it uses all the input data in the super resolution high pass

mechanism.

A robust super resolution algorithm was proposed in the

context of mosaicing [7]. This algorithm minimizes the er-

ror under a norm which is more robust than the commonly-

used `2 norm. In Section 2.1 we refer to this approach.

This paper describes a novel super resolution algorithm

which is robust to outliers casued by model inaccuracies,

moving objects etc. The resolution of the inlier regions (the

background) is enhanced, provided it appears in at least half

of the input images.

The algorithm requires a motion computation step which

is both accurate, and robust to outliers. In our implementa-

tion we have used the algorithm described in Section 4.1.3.

of [1] to compute homographies between the images. Other

methods, e.g. the methods described in [16, 3], can be used

as well.

2 Robust Super Resolution

We follow the notational framework where images are

reordered in column vectors [9]. The basic operations in

the image formation model, such as convolution, sampling

and warping are linear in the image intensities, and thus can
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be represented as matrices operating on these vector images.

Givenn input images g1; ::; gn, the image formation process

of gk from the super resolved image f can be formulated in

the following way [9]:

~Yk = DkCkFk ~X + ~Ek (1)

where:

� ~X is the high resolution image f reordered in a vector.

� ~Yk is the k-th input image gk reordered in a vector.

� ~Ek is the normally distributed additive noise reordered

in a vector.

� Fk is the geometric warp matrix.

� Ck is the blurring matrix.

� Dk is the decimation matrix.

The total squared error of resampling the high resolution

image f (represented by ~X) is:

L( ~X) =
1

2

nX
k=1

k ~Yk �DkCkFk ~X k22 (2)

taking the derivative of L with respect to ~X, the gradient

ofL is the sum of gradients computed over the input images

~Bk = F T
k C

T
k D

T
k (DkCkFk ~X � ~Yk)

rL( ~X) =
Pn

k=1
~Bk

(3)

The simplest gradient-based iterative minimization method

updates the solution estimate in each iteration by

~Xn+1 = ~Xn + �rL( ~X) (4)

where � is a scale factor de�ning the step size in the

direction of the gradient. In the image domain [17], it is a

version of the Iterated Back Projection method [11]. In each

iteration, the high resolution estimate is resampled in the

lattices of the input images. The difference between this re-

sampled image and the input image is projected back to the

high-resolution lattice. Each term ~Bk of the sum in Eqn. (3)

corresponds to such a back-projected difference image.

In order to introduce robustness into the procedure, the

sum of images in Eqn. (3) is replaced with a scaled pixel-

wise median:

rL( ~X)(x; y) � n �medianf ~Bk(x; y)g
n
k=1 (5)

For a symmetric distribution, a median can approximate

the mean quite accurately, given a suf�cient set of samples.

In case of distant outliers, the median is much more robust

than the mean. The median estimate can be biased when

the outlier measurements are organized non-symmetrically

with respect to the mean. This case is handled by the bias-

detection procedure described next. In the Appendix, a

proof of the symmetry of this distribution is given for the

case of translational motion.

If some prior assumptions can be made about the solu-

tion, one can combine this robust scheme in a constrained

optimization algorithm, for example by adding a prior

term [17, 5], or by using the Projection-Onto-Convex-Sets

method [12].

2.1 Why Pixel-wise median ?

A straight-forward approach to make the super resolu-

tion algorithm robust would be to minimize the error under

a different norm which can handle outliers better than the

`2 [7]. This means that large projection errors would have a

small in�uence on the computed solution. Large projection

errors may be due to outliers, but are also related to aliasing

in regions containing high frequencies. Note that aliasing is

the main source of information for resolution enhancement.

As a result, such approach would supress the in�uence of

the most informative measurements. By treating each pixel

in the estimated solution independently, we ensure the en-

hancement of pixels in regions containing high-frequencies.

In addition, minimizing under robust norms is computation-

ally expensive.

In addition to the theoretical analysis in the Appendix,

we have also experimented several robust pixel-wise es-

timators, including median, Least-Median-of-Squares and

Trimmed-mean. The median �lter achieved the best re-

sults. Moreover, in case there were no outliers, the results

achieved using the median estimator were indistinguishable

with respect to the standard algorithm. This is illustrated in

Fig. 3.

2.2 The Bias Detection Procedure

The aim of the bias-detection (BD) procedure is to detect

most of the outlier measurements which may bias the me-

dian estimator. These measurements can be extracted from

the differences between aligned images. Equally important,

the bias detector should not detect image differences due to

aliasing, the main source of information for super resolu-

tion. The result of the BD procedure for every input image

can be a binary mask.

Given the current estimate of the high resolution image

f (j), The BD mask for input image gk in the j-th iteration

is determined from the error images e
j

k:

e
j
k = gk � Pj(f

(j)) (6)

where Pj(f
(j)) is the resampling of f (j) on the lattice of

image gk, composed of blur, warp and decimation opera-

tors, as described in Eqn. (1).

A typical case in which the values of e
j
k are non-zero

due to aliasing and zero-mean noise is presented in Fig. 1.

2
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Figure 1. An example of an error image as described in

Eqn. (6), where positive values are bright, and negative val-

ues are dark. The errors are mainly along the edges of the

car, and their intensities in small regions are symmetric with

respect to zero. An example for an outlier region appears on

the top right corner of the image.

Most of the energy of e
j
k is concentrated near intensity

edges, where every positive value has a neighboring neg-

ative value. A local average on e
j
k will thus be close to zero.

When e
j
k contains non-zero values due to small homo-

geneous outlier regions, then the image e
j
k tends to be non-

symmetric with respect to zero. When e
j
k contains large

values, but it is symmetric with respect to zero, then the

median estimator is expected to be less effected by these

outliers.

Thus detecting local homogeneous regions of gk, with

locally symmetric values of e
j

k helps to discard most of the

outliers while minimizing the effect of aliasing and noise.

The BD mask can be computed by a convolution of e
j

k

with a low pass �lter, such as a local-neighborhood mean

�lter.

It can be further divided by a local measurement of the

variability of gk. This enables to determine a global thresh-

old which is invariant of the local variability of the images.

3 Experiments

To test the quality and robustness of the super resolu-

tion algorithm, the results of four different algorithms were

compared:

1. IBP (Iterated Back Projection) [11].

2. IBP, combined with the Bias Detection procedure, de-

scribed in Sect. 2.2.

3. IBP with a median replacing the sum.

4. IBP with median and Bias Detection.

All the above algorithms used the same initial estimate for

f ; The input images have been enlarged and warped to

a common coordinate system, and their median was com-

puted. In all the experiments the zoom factor was 2, and the

camera was shaking, inducing a planar-projective motion.

The results of the four algorithms on the �Junction� se-

quence are presented in Fig. 2. The results of the mean-

based methods contain more leftovers than the median-

based methods. The �dirty� region in the middle of the road

is observed also in the initial estimate, the median of the

aligned images. This implies that in this region the algo-

rithm assumptions were not valid: The region was occluded

in more than half of the input images. This region can be de-

tected by a Quality Validation module which tests whether

the reprojection error of this region on the input images sat-

is�es the assumptions: Low error in at least half of the input

images.

One can see in Fig. 2-g,h) that in addition to the moving-

objects removal, the algorithm also enhances the resolution.

Another example of the resolution enhancement of the algo-

rithm is shown in Fig. 3.

In Fig. 4 the results of the sum-based IBP algorithm

and the proposed algorithm are compared, in case the algo-

rithm assumption is valid. Leftovers of the moving objects

(pedestrians) are observed in the IBP result. By replacing

the sum with a median, these leftovers are removed.

Experiments were conducted replacing the proposed

pixel-wise median with two other robust estimators. Least-

Median-Of-Squares (LMeds) [13], and Trimmed-Mean. In

order to achieve up-to-50% robustness, the Trimmed-Mean

was computed by sorting the error values by their magni-

tude, and discarding the top 50%. The LMeds estimator can

also be computed very ef�ciently on 1-D data. [13]. The re-

sults of the different estimators are shown in Fig.3. While

the result of using the median is almost identical to the re-

sult of using the mean, both the LMeds and Trimmed-Mean

introduce artifacts due to bad estimation of the mean.

4 Summary

A robust approach for super resolution has been pre-

sented, in which a median estimator was used to robustly

estimate a sum in an iterative framework. This resulted

with an increased robustness at a low computational cost,

and with no distinguishable loss of accuracy.

Future research of robust super resolution may expand

this work to reconstructing a high resolution video [8], in

the presence of model inaccuracies such as moving objects

and highlights.
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a) b) c)

d) e) f)

g) h)

Figure 2. The results on the �Junction� sequence. a) One of the input images. b) The median of the aligned images, the initial

estimate of the SR algorithms. c) IBP. d) IBP with Bias Detection. e) Median IBP. f) Median IBP with Bias Detection. g) Enlarged

region from the input image. h) Enlarged region from (f). See Section 3 for further analysis.
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Figure 3. The results on the �Text� sequence. a) One of the input images. b) The result of the proposed algorithm, without bias

detection. c-f) are enlarged images. c) is the result of using Mean, as in the original IBP algorithm. d) The proposed algorithm,

replacing the mean by a median. e) Using LMeds. f) Using Trimmed Mean. It can be seen that both e) and f) are more noisy than

d).

a)

b)

c

Figure 4. The results on the �University� sequence. a) A

patch from one of the input images. b) The IBP algorithm.

c) The proposed median IBP algorithm.

Appendix: The Symmetry of the Re-

projected Error.

In the proposed algorithm, we estimate the average of a

set of images with a scaled pixel-wise median. In order to

statistically justify this step, we show that for every location

in the high-resolution image the distribution of re-projected

error is symmetric. Thus a median can be used to estimate

the mean of this distribution. The proof is given for 1-D

signals with a random translation.

Let f 2 <2n be the super resolution solution, and let f̂ 2
<2n be the current estimate of the solution. Let gu 2 <n be

an input image such that

gu = f � k � Æ(u) #

where � marks convolution, k is the camera non-perfect

low-pass �lter, Æ(u) is a u-translation operator, and # marks

decimation. The re-projected error from image gu is:

du = (gu � f̂ � k � Æ(u) #) " �Æ(�u) � k̂ =

(f � f̂) � k � Æ(u) #" �Æ(�u) � k̂
(7)

Where "marks up-sampling by zero-padding, and k̂ is a the

�ipped kernel of k [17](for a symmetric kernel, k̂ = k).

Theorem 1 Let px(u) = du(x), and assume u distributes

uniformly in the range [-1,1). Then px(u) distributes

symmetrically about its expectancy i.e. 8�; P (px(u) =
Eu(px)� �) = P (px(u) = Eu(px) + �)

5
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Proof: Wemark the Fourier transform of a signal by the cor-

responding upper-case letter, e.g. F = F(f);K = F(k).
Eqn (7) can be rewriten in the frequency domain:

Du(w) = [(F (w)�F̂ (w))e
2�iwu

2n K(w)] #F e
�2�iwu

2n K̂(w)
(8)

Where #F is the frequency folding occurring due to low-

rate sampling followed by zero padding:

G(W ) #F=

�
G(w) +G(w � n) 0 � w � n

G(w) +G(w + n) �n � w < 0
(9)

Let s : < ! f�1; 1g be the sign function , and let �w =
w � s(w)n. Plugging Eqn.( 9) in Eqn. (8):

Du(w) = (F (w) � F̂ (w))e
2�iwu

2n K(w)e
�2�iuw

2n K̂(w)+

(F ( �w)� F̂ ( �w))e
2�iu �w

2n K( �w)e
�2�iuw

2n K̂(w) =

(F (w) � F̂ (w))K(w)K̂(w)+
(F ( �w)� F̂ ( �w))K( �w)e��ius(w)K̂(w)

The �rst term does not depend on u. Let Tu(w) be the sec-
ond term. In order to complete the proof, it is suf�cient to

show that tu(x) = F�1(Tu(w)) distributes symmetrically

about 0.

Lemma 1 8x;80 � u � 1; tu�1(x) = �tu(x). Since

u distributes uniformly in [-1,1), it follows that tu(x) dis-

tributes symmetrically about 0.

Proof:

Tu�1(w) = (F ( �w)� F̂ ( �w))K( �w)e��i(u�1)s(w)K̂(w) =
(F ( �w)� F̂ ( �w))K( �w)e��ius(w)K̂(w)e�is(w) = �Tu(w)

Applying the inverse Fourier transform, tu�1(x) = �tu(x).
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