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Abstract� A robust method is introduced for computing the camera
motion �the ego�motion� in a static scene	 The method is based on de

tecting a single planar surface in the scene directly from image intensities�
and computing its �D motion in the image plane	 The detected �D mo

tion of the planar surface is used to register the images� so that the planar
surface appears stationary	 The resulting displacement �eld for the entire
scene in such registered frames is a
ected only by the �D translation of
the camera� which is computed by �nding the focus
of
expansion in the
registered frames	 This step is followed by computing the �D rotation to
complete the computation of the ego
motion	
This �D motion computation is based on a motion computation scheme
which handles the di�cult case when multiple image motions are present	
This multiple motion analysis is performed together with object segmen

tation by using a temporal integration approach	

� Introduction

A method for detecting and tracking multiple moving objects� using both a large
spatial region and a large temporal region� is described� When the large spatial
region of analysis has multiple moving objects� the motion parameters and the
locations of the objects are computed for one object after another� The method
has been applied successfully to �D a�ne and projective motions in the image
plane�

The �D detection and tracking algorithm is used for estimating the camera
motion �ego�motion� in general static �D scenes� Once a single planar surface in
a general static scene is detected in the image� and its �D motion parameters
computed� we use this data for estimating the entire �D scene structure and the
�D motion performed by the camera� The registration of an image region which
corresponds to a planar surface in the scene� and examining the motion in the
registered sequence� helps to overcome the ambiguities in computing �D motion
only from the image motion of a planar surface 	�� 
���

Sect� � describes brie
y a method for detecting and tracking the di�erently
moving objects in the sequence� Sect� � describes the method for computing the
�D motion of the camera �the ego�motion� in a static scene� More details can be
found in 	
�� 
�� 
�� 
���
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� Multiple Motions in Image Sequences

To detect di�erently moving objects in an image pair� a single motion is �rst
computed� and a single object which corresponds to this motion is identi�ed�
We call this motion the dominant motion� and the corresponding object the
dominant object� Once a dominant object has been detected� it is excluded from
the region of analysis� and the process is repeated on the remaining image regions
to �nd other objects and their motions� Temporal integration is then used to
track detected objects throughout the image sequence� More details can be found
in 	
���

It is assumed that the projected �D motions of the objects can be approxi�
mated by some �D parametric transformation in the image plane� This assump�
tion is valid when the di�erences in depth caused by the motions are small
relative to the distances of the objects from the camera� We have chosen to use
an iterative� multi�resolution� gradient�based approach for motion computation
	�� �� ��� The parametric motion models used in our current implementation are�
pure �D translation �� parameters�� �D a�ne transformation �� parameters�
	�� ��� and projective transformation �� parameters 	
� ����

Detecting the First Object� The motion parameters of a single object in the
image plane can be recovered by applying the iterative detection method to the
entire region of analysis� This can be done even in the presence of other di�erently
moving objects in the region of analysis� and with no prior knowledge of their
regions of support 	�� 
��� Once a motion has been determined� we would like to
identify the region having this motion� To simplify the problem� the two images
are registered using the detected motion� The motion of the corresponding region
is therefore canceled� and the problem becomes that of identifying the stationary
regions� Detection of stationary regions is described in 	
���

Tracking by Temporal Integration� Once an object has been detected� it
can be tracked throughout the image sequence� This is done by using temporal
integration of images registered with respect to the tracked motion� The tempo�
rally integrated image serves as a dynamic internal representation image of the
tracked object�

Let fI�t�g denote the image sequence� and let M �t� denote the segmentation
mask of the tracked object computed for frame I�t�� using the segmentation
method described in 	
��� Initially� M ��� is the entire region of analysis� The
temporally integrated image is denoted by Av�t�� and is constructed as follows��

Av���
def
� I���

Av�t � 
�
def
� �
� w� � I�t � 
� � w � register�Av�t�� I�t � 
��

where register�P�Q� denotes the registration of images P and Q by warping
P towards Q according to the motion of the tracked object computed between
them� and � � w � 
 �currently w � ����� An example of a temporally integrated
image is shown in Fig� 
�



a� b�

Fig� �� Temporal integra

tion	
a� A single frame from a se

quence which contains four
moving objects	
b� The temporally integrated
image� where the tracked mo

tion is that of the ball	 Other
regions blur out	

When the motion model approximates well enough the temporal changes of
the tracked object� shape changes relatively slowly over time in registered images�
Therefore� temporal integration of registered frames produces a sharp and clean
image of the tracked object� while blurring regions having other motions� Fig� 

shows a temporally integrated image of a tracked rolling ball� Comparing each
new frame to the temporally integrated image rather than to the previous frame
gives the algorithm a strong bias to keep tracking the same object� Since additive
noise is reduced in the the average image of the tracked object� and since image
gradients outside the tracked object decrease substantially� both segmentation
and motion computation improve signi�cantly�

In the example shown in Fig� �� temporal integration is used to detect and
track the �rst and second object� In this sequence� taken by an infrared camera�
the background moves due to camera motion� while the car moves di�erently� It is
evident that the tracked object in Fig� ��c is the background� as the background
maintains its sharpness� while all other regions in the image are blurred by their
motion� and that the tracked object in Fig� ��e is the car�

� Ego�Motion in Static Scenes

Direct estimation of �D motion is a di�cult and ill�conditioned problem� due to
the very large number of variables � the �D motion parameters of the camera
plus the depth at each point� �D motion estimation� on the other hand� is a
numerically stable problem� because the �D problem is highly overdetermined
�only six unknowns in the a�ne model� eight unknowns in the projective model��

Previous works on �D motion estimation use the optical or normal 
ow �eld
derived between two frames 	
� �� �� 
�� 
�� �
� ���� or the correspondence of pre�
viously extracted distinguished features �points� lines� contours� 	

� ���� Meth�
ods for computing the ego�motion directly from image intensities were also sug�
gested 	
�� 
�� ���� but each method has its limitations�

In this section we propose the following scheme in order to use the robustness
of the �D motion computation for computing �D motion�


� The �D image motion of a single planar surface is computed �Sect� ���



a� b� c�

d� e� f�

Fig� �� Detecting and tracking multiple moving objects using temporal integration	
a
b� The �rst and last frames	 Both the background and the car are moving	
c� The temporally integrated image of the �rst tracked object �background�	 The car
blurs out	
d� Segmentation of the �rst tracked object �background�	 White regions are those not
belonging to the tracked region	
e� Tracking the second object �the car�	 The background blurs now	
f� Segmentation of the second tracked object	

�� The two frames are registered according to the computed �D motion param�
eters of the detected plane� This cancels the rotational component of the �D
camera motion� and the �D translation of the camera can be computed from
the two registered frames�

�� The �D rotation of the camera is computed from the previously computed
�D translation of the camera and from the �D motion parameters of the
detected plane�

�� The �D scene structure can then be reconstructed from the computed �D
motion parameters of the camera �using a scheme similar to that suggested
in 	
����

��� Projected �D Motion

When the �eld of view is not very large and the rotation is relatively small 	
�� a
�D motion of the camera between two image frames creates a �D displacement
�u� v� of an image point �x� y� in the image plane� which can be expressed by 	���
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where� �X�Y� Z� denote the Cartesian coordinates of the scene point projected
onto �x� y�� �TX � TY � TZ� and ��X � �Y � �Z� are the �D motion parameters of
the camera �translation and rotation� respectively�� and fc is the focal length of
the camera�

��� Reducing General Motion to Translation

Let �u� v� denote the �D displacement �eld between f� and f�� and let �us� vs�

denote the �D motion parameters of a single �D plane in the scene� Let fReg�

denote the frame obtained by warping frame f� towards f� according to �us� vs��

f
Reg
� and f� will be registered over regions of the projected �D plane within
the image� and unregistered over other image regions� The �D motion between
the registered frames �fReg� and f�� is therefore� �uReg� vReg� � �u� us� v� vs��
Using Eq� �
� we get�

�
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where� Zs � Zs�x� y� is the depth function of the �D plane at pixel �x� y�� and
Z � Z�x� y� is the real depth at that pixel�

This registration cancels the rotation parameters ��X � �Y � �Z� in Equa�
tion ���� leaving the original translation parameters �TX � TY � TZ� between the
registered images� with new scene depths ZReg�x� y� de�ned by� �

ZReg�x�y� �
�

Z�x�y� �
�

Zs�x�y�
� Note that ZReg�x� y� may also be negative� as opposed to the

original scene�
In Fig� �� the optical 
ow is displayed before and after registration of two

frames according to the computed �D motion parameters of the wall at the back
of the scene� After registration the optical 
ow points towards the FOE�

a� b� c� d�

Fig� �� The optical �ow before and after registration of the image region corresponding
to the wall	 The optical �ow is given only for display purposes� and is not used for
registration	
a� The �rst frame	
b� The second frame� taken after translating the camera by ����cm����cm� ��cm� and
rotating it by ��������������	
c� Optical �ow between Figs	 �	a and �	b �before registration�� overlayed on Fig	 �	a 	
d� Optical �ow after registration of the wall	 It is induced by pure translation� and
points to the correct FOE �marked by ��	



Once the rotation is cancelled by the registration of the plane� the ambiguity
between image motion caused by rotation and that caused by translation no
longer exists� When only �D translation exists� the induced image motion is
directed towards the FOE �Focus of Expansion�� The computation of the �D
translation therefore becomes a highly overdetermined and a numerically stable
problem �as there are only two unknowns to the problem � the location of the
FOE in the image plane��

��� Computing �D Rotation

Assuming that the detected parametric surface is planar� �i�e�� �X�Y� Z� lies on
a planar surface in the �D scene�� it can be described by Z � A�B �X �C �Y �
By perspective projection� this yields� �

Z
� � � � � x � � � y where� �x� y� are

image coordinates� and � � �
A
� � � � B

fcA
� � � � C

fcA
� Therefore� Eq� �
� can

be rewritten as 	
� ����
us
vs

�
�

�
a � b � x � c � y � g � x� � h � xy
d � e � x � f � y � g � xy � h � y�

�
���

where�
a � �fc�TX � fc�Y e � ��Z � fc�TY
b � �TZ � fc�TX f � �TZ � fc�TY
c � �Z � fc�TX g � ��Y

fc
� �TZ

d � �fc�TY � fc�X h � �X
fc

� �TZ

���

The parameters �a� b� c� d� e� f� g� h� are the �D motion parameters of the detected
�D plane� computed as described in Sect� �� Given these �D motion parameters
and the �D translation parameters of the camera �TX � TY � TZ�� then the �D rota�
tion parameters of the camera ��X � �Y � �Z� �as well as the surface parameters
��� �� ��� can be obtained by solving the set ��� of eight linear equations in six
unknowns�

ExperimentalResults� The cameramotion between Figure ��a and Figure ��b
was� �TX � TY � TZ� � �
��cm� ���cm� 
�cm� and ��X � �Y � �Z� � �����
���������
The computation of the motion parameters yielded� �TX � TY � TZ� � �
���cm� ��
�cm� 
�cm�
and ��X � �Y � �Z� � ���������
������������ �The translation magnitude can�
not be determined� only its direction� TZ was therefore set to the correct size

�cm� and the other parameters were then scaled accordingly��

Once the �D motion parameters of the camera were computed� the �D scene
structure was reconstructed using a scheme similar to that suggested in 	
��� In
Fig� �� the computed inverse depth map of the scene � �

Z�x�y�� is displayed�

� Concluding Remarks

A method is introduced for computing ego�motion in static scenes� At �rst� a
planar surface in the scene is detected� and its pseudo �D projective transforma�
tion between successive frames is computed� This plane is detected by temporal



a� b�

Fig� �� The inverse depth map	
a� First frame	
b� The obtained inverse depth map	
Bright regions correspond to close ob

jects	 Dark regions correspond to dis

tant objects	 The depth was not com

puted near the the image boundaries	

integration of registered images� The temporal integration proves to be a power�
ful approach to motion analysis� enabling human�like tracking of moving objects�
The tracked object remains sharp while other objects blur out� which enables
accurate segmentation and motion computation�

Detection of a single planar surface with its �D motion parameters is used for
computing the �D motion parameters of a camera �the ego�motion� in a static
scene This is done by registering the image sequence using the motion of the
detected planar surface� This registration cancels the rotational component of
the �D camera motion for the entire scene� and reduces the problem to pure
�D translation� The �D translation �the FOE� is computed from the registered
frames� and then the �D rotation is computed by solving a small set of linear
equations�

References

�	 G	 Adiv	 Determining three
dimensional motion and structure from optical �ow
generated by several moving objects	 IEEE Trans� on Pattern Analysis and Ma�

chine Intelligence� ������������� July ����	
�	 G	 Adiv	 Inherent ambiguities in recovering �D motion and structure from a noisy

�ow �eld	 IEEE Trans� on Pattern Analysis and Machine Intelligence� �����������
May ����	

�	 Y	 Aloimonos and Z	 Duric	 Active egomotion estimation� A qualitative approach	
In European Conference on Computer Vision� pages �������� Santa Margarita
Ligure� May ����	

�	 J	R	 Bergen and E	H	 Adelson	 Hierarchical� computationally e�cient motion es

timation algorithm	 J� Opt� Soc� Am� A�� ����� ����	

�	 J	R	 Bergen� P	 Anandan� K	J	 Hanna� and R	 Hingorani	 Hierarchical model
based
motion estimation	 In European Conference on Computer Vision� pages ��������
Santa Margarita Ligure� May ����	

�	 J	R	 Bergen� P	J	 Burt� K	 Hanna� R	 Hingorani� P	 Jeanne� and S	 Peleg	 Dynamic
multiple
motion computation	 In Y	A	 Feldman and A	 Bruckstein� editors� Arti��
cial Intelligence and Computer Vision� Proceedings of the Israeli Conference� pages
�������	 Elsevier� ����	

�	 J	R	 Bergen� P	J	 Burt� R	 Hingorani� and S	 Peleg	 Computing two motions from
three frames	 In International Conference on Computer Vision� pages ������ Os

aka� Japan� December ����	

�	 P	J	 Burt� R	 Hingorani� and R	J	 Kolczynski	 Mechanisms for isolating component
patterns in the sequential analysis of multiple motion	 In IEEE Workshop on



Visual Motion� pages �������� Princeton� New Jersey� October ����	
�	 R	 Guissin and S	 Ullman	 Direct computation of the focus of expansion from

velocity �eld measurements	 In IEEE Workshop on Visual Motion� pages ����
���� Princeton� NJ� October ����	

��	 K	 Hanna	 Direct multi
resolution estimation of ego
motion and structure from
motion	 In IEEE Workshop on Visual Motion� pages �������� Princeton� NJ�
October ����	

��	 B	K	P	 Horn	 Relative orientation	 International Journal of Computer Vision�
����������� June ����	

��	 B	K	P	 Horn and E	J	Weldon	 Direct methods for recovering motion	 International
Journal of Computer Vision� ����������� June ����	

��	 M	 Irani and S	 Peleg	 Image sequence enhancement using multiple motions anal

ysis	 In IEEE Conference on Computer Vision and Pattern Recognition� Cham

paign� June ����	

��	 M	 Irani� B	 Rousso� and S	 Peleg	 Detecting and tracking multiple moving objects
using temporal integration	 In European Conference on Computer Vision� pages
�������� Santa Margarita Ligure� May ����	

��	 M	 Irani� B	 Rousso� and S	 Peleg	 Computing occluding and transparent motions	
To appear in International Journal of Computer Vision� ����	

��	 M	 Irani� B	 Rousso� and S	 Peleg	 Recovery of ego
motion using image stabiliza

tion	 Technical Report ��
��� Institute of Computer Science� The Hebrew Univer

sity� Jerusalem� Israel� May ����	

��	 A	D	 Jepson and D	J	 Heeger	 A fast subspace algorithm for recovering rigid mo

tion	 In IEEE Workshop on Visual Motion� pages �������� Princeton� NJ� October
����	

��	 D	T	 Lawton and J	H	 Rieger	 The use of di
erence �elds in processing sensor
motion	 In DARPA IUWorkshop� pages ������ June ����	

��	 H	C	 Longuet
Higgins	 Visual ambiguity of a moving plane	 Proceedings of The

Royal Society of London B� ������������ ����	
��	 F	 Meyer and P	 Bouthemy	 Estimation of time
to
collision maps from �rst order

motion models and normal �ows	 In International Conference on Pattern Recog�

nition� pages ������ The Hague� ����	
��	 S	 Negahdaripour and S	 Lee	 Motion recovery from image sequences using �rst


order optical �ow information	 In IEEE Workshop on Visual Motion� pages ����
���� Princeton� NJ� October ����	

��	 F	 Lustman O	D	 Faugeras and G	 Toscani	 Motion and structure from motion
from point and line matching	 In Proc� �st International Conference on Computer

Vision� pages ������ London� ����	
��	 M	A	 Taalebinezhaad	 Direct recovery of motion and shape in the general case by

�xation	 IEEE Trans� on Pattern Analysis and Machine Intelligence� �����������
August ����	

This article was processed using the LaTEX macro package with LLNCS style


