
Visual Learning of Arithmetic Operations

Yedid Hoshen Shmuel Peleg
School of Computer Science and Engineering

The Hebrew University of Jerusalem
Jerusalem, Israel

Abstract

A simple Neural Network model is presented for
end-to-end visual learning of arithmetic opera-
tions from pictures of numbers. The input con-
sists of two pictures, each showing a 7-digit num-
ber. The output, also a picture, displays the num-
ber showing the result of an arithmetic operation
(e.g., addition or subtraction) on the two input
numbers. The concepts of a number, or of an
operator, are not explicitly introduced. This in-
dicates that addition is a simple cognitive task,
which can be learned visually using a very small
number of neurons.

Other operations, e.g., multiplication, were not
learnable using this architecture. Some tasks
were not learnable end-to-end (e.g., addition with
Roman numerals), but were easily learnable once
broken into two separate sub-tasks: a perceptual
Character Recognition and cognitive Arithmetic
sub-tasks. This indicates that while some tasks
may be easily learnable end-to-end, other may
need to be broken into sub-tasks.

1. Introduction
Visual learning of arithmetic operations is naturally broken
into two sub-tasks: A perceptual sub-task of optical charac-
ter recognition (OCR) and a cognitive sub-task of learning
arithmetic. A common approach in such cases is to learn
each sub-task separately. Examples of popular perceptual
sub-tasks in other domains include object recognition and
segmentation. Cognitive sub-tasks include language mod-
eling and translation.

With the progress of deep neural networks it has become
possible to learn complete tasks end-to-end. Systems now
exist for end-to-end training of image to sentence genera-
tion [17] and speech to sentence generation [6]. But end-to-
end learning may introduce an extra difficulty: sub-tasks do

not have unique training data, but depend on the results of
other sub-tasks.

We examine end-to-end learning from a neural network
perspective as a model for perception and cognition: per-
forming arithmetic operations (e.g., addition) for visual in-
put and visual output. Both input and output examples of
the network are pictures (as in Fig. 1). For each training ex-
ample we give the student (the network) two input pictures,
each showing a 7 digit integer number written in a standard
font. The target output is also a picture, displaying the sum
of the two input numbers.

In order to succeed at this task, the network is required to
implicitly be able to learn the arithmetic operation without
being taught the meaning of numbers. This can be seen as
similar to teaching arithmetic to a person with whom we do
not possess a common language.

We model the learning process as a feed-forward arti-
ficial neural network [2, 7]. The input to the network are
pictures of numbers, and the output is also a picture (of the
sum of the input numbers). The network is trained on a suf-
ficient number of examples, which are only a tiny fraction of
all possible inputs. After training, given pictures of two pre-
viously unseen numbers, the network generates the picture
displaying their sum. It has therefore learned the concept
of numbers without direct supervision and also learned the
addition operation.

Although initially a surprising result, we present an anal-
ysis of visual learning of addition and demonstrate that it is
realizable using simple neural network architectures. Other
arithmetic operations such as subtraction are also shown to
be learnable with similar networks. Multiplication, how-
ever, was not learned successfully under the same setting. It
is shown that the multiplication sub-task is more difficult to
realize than addition under such architecture. Interestingly,
for addition with Roman numerals both the OCR and the
arithmetic sub-tasks are shown to be realizable, but the end-
to-end training of the task fails. This demonstrates the extra
difficultly of end-to-end training.

Our results suggest that some mathematical concepts are
learnable purely from vision. An exciting possible implica-

1

ar
X

iv
:1

50
6.

02
26

4v
2 

 [
cs

.L
G

] 
 2

7 
N

ov
 2

01
5



Example A Example B Failure Example

Input Picture 1

Input Picture 2

Network Output
Picture

Ground Truth
Picture

Figure 1. Input and output examples from our neural network trained for addition. The first two examples show a typical correct response.
The last example shows a rare failure case.

tion is that some arithmetic concepts can be taught visually
across different cultures. It has also been shown that end-
to-end learning fails for some tasks, even though their sub-
tasks can be learned easily. This work deals with arithmetic
tasks, and future research is required to characterize what
other non-visual sub-tasks can be learned visually e.g., by
video frame prediction.

2. Arithmetic as Neural Frame Prediction

In this section we describe a visual protocol for learning
arithmetic by image prediction. This is done by training an
artificial neural network with input and output examples.

2.1. Learning Arithmetic from Visual Examples

Our protocol for visual learning of arithmetic is based on
image prediction. Given two input pictures F1, F2, target
picture E is the correct prediction. The learner is required
to predict the output picture, and the predicted picture is
denoted P . The prediction loss is evaluated by the sum of
square differences (SSD) between the pixel intensities of
the predicted picture P and the target picture E.

The input integers are randomly selected in a pre-
specified range (for addition we use the range of
[0,4999999]), and are written on the input pictures. The re-
sult of the arithmetic operation on the input numbers (e.g.,
their sum) is written on the target output picture E. The
numbers were written on the pictures using a standard font,
and were always placed at the same image position. See
Fig. 1 for examples.

Learning consists of training the network with N such
input/output examples (we use N = 150, 000).

2.2. Network Architecture

In this section we present a method to test the feasibil-
ity of learning arithmetic given the protocol presented in

Sec. 2.1. Our simple but powerful learner is a feed-forward
fully-connected artificial neural network as shown in Fig. 2.

The network consists of an input layer of dimensions
Fx×Fy×2 where Fx and Fy are the dimensions of the 2
input pictures. We used Fx×Fy = 15×60 unless specified
otherwise. The network has three hidden layers each with
256 nodes with ReLU activation functions (max(0, x)) and
an output layer (of the same height and width as the input
pictures) with sigmoid activation. All nodes between ad-
jacent layers were fully connected. An L2 loss function is
used to score the difference between the predicted picture
and the expected picture. The network is trained via mini-
batch stochastic gradient descent using the backpropogation
algorithm.

3. Experiments
The objective of this paper is to examine if arithmetic

operations can be learned end-to-end using purely visual
information. To this end several experiments were carried
out:

3.1. Experimental Procedure

Using the protocol from Sec. 2.1 we generated 2 input
pictures per example, each showing a single integer number.
The numbers were randomly generated from a pre-specified
range as detailed below. The output pictures were created
similarly, displaying the result of the arithmetic operation
on the input.

The following arithmetic operations were examined:

• Addition: Sum of two 7 digit numbers, each in the
range [0,4999999].

• Subtraction: Difference between two 7 digit numbers
in the range [0,9999999]. The first number was chosen
to be larger or equal to the second number to ensure a
positive result.

2



Figure 2. A diagram showing the construction of a neural network
with 3 hidden layers able to preform addition using visual data.
Two pictures are used as input and one picture as output. The net-
work is fully connected and uses ReLU units in the hidden layers
and sigmoid in the output layer. The hidden layers have 256 units
each.

• Multiplication: Product of two numbers, each in the
range [0,3160].

• Addition of Roman Numerals: Sum of two numbers
in the range [0,4999999]. Both input and output were
written in Roman numerals (IVXLCDM and another 7
numerals we ”invented” from 5000 to 5000000). The
longest number 9,999,999 was 35 numerals long. The
medieval notation (IV instead of IIII) was not used.

For each experiment, 150,000 input/output pairs were
randomly generated for training and 30,000 pairs were ran-
domly created for testing. The proportion of numbers used
for training is a very small fraction of all possible combina-
tions.

We have also examined robustness to image noise of the
addition experiment. Both input and output pictures were
corrupted with a strong additive Gaussian noise.

A feed-forward artificial network was trained with the
architecture described in Fig. 2. The network was trained
using mini-batch stochastic gradient descent with learning
rate 0.1, momentum 0.9 and mini-batch size was 256. 50
epochs of training were carried out. The network was im-
plemented using the Caffe package [10].

3.2. Results

The correctness of the test set was measured using an
OCR software (Tesseract [16] ) which was applied to the
output pictures. The OCR results were compared to the de-
sired output, and the percentage of incorrect digits was com-
puted. The effectiveness of the neural network approach has
been tested on the following operations.

Addition: Three results from the test set are shown in
Fig. 1. The input and the output numbers were not included
in the training set. The examples qualitatively demonstrate
the effectiveness of the network at learning addition from

purely visual information. Quantitatively, the network has
been able to learn addition with great accuracy, with incor-
rect digit prediction rate being only 1.9%.

Subtraction: We trained a neural network having identi-
cal architecture to the network used for addition. Subtrac-
tion of a small number from a larger one was found to be of
comparable difficulty to addition. The predicted digit error
rate was around 3.2% which is comparable to addition.

Multiplication: This task was found to be a much more
challenging operation for a feed-forward Neural Network.
The data for this experiment consisted of two input pic-
tures with 4-digit integers, resulting in an output picture
with 7 digit number, and the network used was similar to
the one used for addition. As theoretical work (e.g., [3])
has shown that multiplication of binary numbers may re-
quire two more layers than their addition, we experimented
with adding more hidden layers. The network, even with 5
hidden layers, did not perform well on this task, giving very
large train and test errors. An example input/output pair can
be seen in Fig.3. It can be seen that the least significant digit
and two most significant digits were predicted correctly, as
enumeration of the different possibilities is feasible, but the
network was uncertain about the central 4 digits. The pre-
dicted digit error rate was as high as 71%, and the OCR
engine was often unable to read numbers that had several
blurry (uncertain) digits.

Addition of Roman numerals: It has been hypothesized
by Marr [12] and others (see [13]) that arithmetic using Ro-
man numerals can be more challenging than using Arabic
numerals. We have repeated the addition experiment with
all numbers written as Roman numerals, which can be up to
35 digits long. As is demonstrated quantitatively in Tab. 1
the network was not able to predict the output frame in Ro-
man numeral basis. This suggests that end-to-end visual
learning of addition in Roman numeral basis is more chal-
lenging, in agreement with Marr’s hypothesis. We further
analyze this result in Sec. 5.

Addition with Noisy Pictures: In one experiment we
added a strong Gaussian noise (σ=0.3) to all input and out-
put pictures, as can be seen in Fig.3. The network achieved
very good performance on this task, giving output pictures
that display the correct result, which are also clean from
noise. Failures can occur when the input digits are almost
illegible. In such cases the network generated a ”probabilis-
tic” output digit displaying a mixture of two digits. Mixture
of digits caused problems to our verification using an OCR,
reporting 9.8% digit error rate whereas human inspection
obtained only 3.2% error rate. See Fig.5 for further details.

4. Previous Work
Theoretical characterization of the operations learnable

by neural networks is an established area of research. A
pioneering paper presented by [5] used threshold circuits

3



Subtraction Multiplication Noisy Addition

Input Picture 1

Input Picture 2

Network Output
Picture

Ground Truth
Picture

Figure 3. Examples of the performance of our network on subtraction, multiplication, and addition with noisy pictures. The network
performs well on subtraction and is insensitive to additive noise. It performs poorly on multiplication. Note that the bottom right image is
not the ground truth image, but an example of the type of training output images used in the Noisy Addition scenario.

Operation Pictures 1-hot Vectors
No.
Layers % Error

No.
Layers % Error

Add 3 1.9% 1 1.7%
Subtract 3 3.2% 1 2.1%
Multiply 5 71.5% 3 37.6%
Roman
Addition 5 74.3 % 3 0.7 %

Table 1. The digit prediction error rates for end-to-end training
on pictures, and for the stripped 1-hot representation described in
Sec. 5. For the purpose of error computation, the digits in the out-
put predicted images were found using OCR. Addition and sub-
traction are always accurate. The network was not able to learn
multiplication. Although Roman numeral addition failed using the
picture prediction network, it was learned successfully for 1-hot
vectors.

as a model for neural network capacity. A line of papers
(e.g., [8, 15, 3]) established the feasibility of the imple-
mentation of several arithmetic operations on binary num-
bers. Recently [4] has addressed implementing Universal
Turing Machines using neural networks. Most theoretical
work in the field used binary representation of numbers,
and did not address arithmetic operations in decimal form.
Notably, a general result (see [14]), shows that operations
implementable by Turing machine in time T (n) can be im-
plemented by a neural network of O(T (n)) layers and with
O(T (n)2) nodes. It has sample complexity O(T (n)2) but
has no guarantees on training time. Research has also not
dealt with visual learning.

Hypotheses about the difference in difficulty of learning
arithmetic using decimal vs. Roman representations was
made by Marr [12] and others. see [13] for a review and
algorithms for Roman numeral addition and multiplication.

Optical Character Recognition (OCR) [11, 9] is a well
studied field. In this work we only deal with a very simple
OCR scenario, dealing with more complex characters and
backgrounds is out of scope of this work.

Learning to execute Python code (including arithmetic)
from textual data has been shown to be possible using
LSTMs by Zaremba and Sutskever [20]. Adding two
MNIST digits randomly located in a blank picture has been
performed by Ba et al. [1]. In [19], Recurrent Neural Net-
works (RNNs) were used for algebraic expression simplifi-
cation. These works, however, required a non-visual repre-
sentation of a number either in the input or in the output. In
this paper we show for the first time that end-to-end visual
learning of arithmetic is possible.

End-to-end learning of Image-to-Sentence [17] and of
Speech-to-Sentence [6] has been described by multiple re-
searchers. A recent related work by Vondrick et al. [18]
successfully learned to predict the objects to appear in a fu-
ture video frame from several previous frames. Our work
can also be seen as frame prediction, requiring the network
to implicitly understand the concepts driving the change be-
tween input and output frames. But our visual arithmetic is
an easier task: easier to interpret and to analyze. The greater
simplicity of our task allows us to use raw frames rather than
an intermediate representation as used in [18].

5. Discussion
In this paper we have shown that feed-forward deep neu-

ral networks are able to learn certain arithmetic operations
end-to-end by purely visual cues. Several other operations
were not learned by the same architecture. In this section
we give some intuition for the method the network employs
to learn addition and subtraction, and the reasons why mul-
tiplication and Roman numerals were more challenging. A

4



(a) (b)

(c) (d)

Figure 4. (a-b) Examples of bottom layer weights for the first
input picture. (a) recognizes ’2’ at the leftmost position, while (b)
recognized ’7’ at the center position. (c-d) Examples of top
layer weights. (c) outputs ’1’ at the second position, while (d)
outputs ’4’ at the leftmost position.

proof by construction of the capability of a shallow DNN
(Deep Neural Network) to perform visual addition is pre-
sented in Sec. 6.

When looking at the network weights for both addition
and subtraction, we can see that each bottom hidden layer
node is sensitive to a particular digit at a given position. Ex-
ample bottom layer weights can be observed in Fig. 4.a-b.
The bottom hidden layer nodes therefore represent each of
the two M -digit numbers as a vector of length 10×M , each
element representing the presence of digit 0− 9 in position
m ∈ [1,M ]. This representation of converting a variable
with D possible values (here 10) as D binary variables all
being 0 apart from a single 1 at the dth position is known as
”1-hot”. The top hidden layer contains a similar representa-
tion of the output number representing the presence of digit
0−9 in positionm ∈ [1,M ] with total size 10×M . The task
of the central hidden layers is mapping between the 1-hot
representations of the input numbers (size 10×M×2) and
the 1-hot representation of the output number (size 10×M ).

The task is therefore split into 2 sub-tasks:

• Perception: learn to represent numbers as a set of 1-hot
vectors.

• Cognition: map between the binary vectors as per-
formed by the arithmetic operation.

Note that the second sub-task is different from arithmetic
operations on binary numbers (and is often harder).

In order to evaluate the above sub-tasks separately, we
repeated the experiments with the (input and output) data
transformed to 1-hot representation, thereby bypassing the
visual sub-task. We used the same architecture as in the
end-to-end case, except that we removed the first and last
hidden layers (that are used for detecting or drawing images
of numbers at each location).

The results on the test sets measured as the percent-
age of wrong digits in the output number is presented in
Tab. 1. Addition and subtraction are both performed very
accurately as in the visual case. The network was not able
to learn multiplication due to the difficulty of the arithmetic

Input Picture 1

Input Picture 2

Network Output
Picture

Figure 5. Probabilistic arithmetic for noisy pictures: The third
digit from right in “Input Picture 1” can be either 5 or 8. The
corresponding output digit is a mixture of 1 and 8.

sub-task, in line with the results of the visual case. This is
also justified theoretically as (i) Binary multiplication was
shown by previous papers [15, 3] to require deeper networks
than binary addition. (ii) The Turing Machine complexity of
the basic multiplication algorithm (effective for short num-
bers) is O(n2) as opposed to O(n) for decimal addition (n
is the number of digits). This means [14] that the operation
is realizable only by a deeper (O(n2) vs. O(n) layers) and
larger network (O(n4) vs. O(n2) nodes).

More interesting is the relative accuracy at which Roman
numeral addition was performed, as opposed to the failure
in the visual case. We believe this is due to the high number
of digits for large numbers in Roman numerals (35 digits),
which causes both input and output images to be very high
dimensional. We hypothesize that convergence may be im-
proved with preliminary unsupervised learning of the OCR
tasks (i.e. teaching the network what numbers are by clus-
tering). We conclude that Roman arithmetic can be learned
by DNNs, but visual end-to-end learning is more challeng-
ing due to the difficulty of joint optimization with the OCR
sub-task.

Visual learning when data were corrupted by strong
noise was quite successful. In fact the concepts were
learned well enough that the output pictures were denoised
by the network. The performance on illegible digits is par-
ticularly interesting. We found that on corrupted digits that
could possibly be read as multiple possibilities (In Fig. 5,
digits 8 or 5), the output digit also reflected this uncertainly,
resulting in a mixture of the two possible outputs (In Fig. 5,
digits 1 or 8) with their respective probabilities. In other
experiments (not shown) we have found that visual learning
works for unary operations too (e.g., division by 2).

A significant difference between our model and the cog-
nitive system is its invariance to a fixed permutation of the
pixels. A human would struggle to learn from such images,
but the artificial neural networks manages very well. This
invariance can be broken by slight random displacement of
the training data or by the introduction of a convolutional
architecture.

5



Although Recurrent Neural Networks are generally bet-
ter for learning algorithms (such as multiplication), we have
chosen to use a fully connected architecture for ease of anal-
ysis. We hypothesize that better performance on multipli-
cation can be obtained using an LSTM-RNN (Long Short
Term Memory - Recurrent Neural Network) but we leave
this investigation for future work.

6. Feasibility of a Visual Addition Network
In this section we provide a feasibility proof by construc-

tion of a neural network architecture that can learn addition
from visual data end-to-end. The construction of the net-
work is illustrated in Fig. 6.

We rely on logic gates for simplicity. A logic gate can be
implemented to an arbitrary accuracy by a single sigmoid
or by a linear combination of 2 ReLU units Θ(x > 0) =
(ReLU(x+ δ)−ReLU(x))/δ. Although our reported re-
sults were obtained using a network utilizing ReLU units,
we have also tested our network with ReLU units replaced
by sigmoid units obtaining similar results but much slower
convergence. Logic gates are therefore a sufficiently good
model of our network.

An input example is shown in Fig. 1. The first layer of
the network is a dimensionality reduction layer. We choose
weights that correspond to the set of filters containing each
digit n (n ∈ 0..9) at each position m. Our experimental net-
work in fact chooses more complex filters usually concen-
trated between similar digits to increase accuracy of digit
detection (see Fig. 6 for examples). We construct 10×M×2
nodes in the HL1 layer indicating if each of the templates
is triggered. Each first hidden layer node responds to a spe-
cific template, for example T2nm corresponds to the tem-
plate detecting if the digit n is present at the mth position
in picture 2. It has value 1 if a template appears and 0 if it
does not. Similarly the output layer is represented as a set
of templates each corresponding to a digit (0..9) at a given
position (1..M ).

It is worth noticing that given two digits d1m and d2m at
the mth position in numbers 1 and 2 respectively, the mth

digit in the output dmo can be either (dm1 + dm2 )mod10 or
(dm1 +dm2 +1)mod10. For each pair of digits, the arithmetic
problem is to choose the correct result from the possible
two.

In HL2 we compute an indicator function for each digit
m, where node vmi is on when the sum of digits d1 and
d2 and the possible increment from previous digits is larger
than its threshold i (i ∈ 0..19). This is formulated as

vmi = 1
∑m

j=1
(d1m+d2m)∗10j>=i×10m (1)

It is easily implemented for each node vmi with weights
from HL1 nodes T1mn and T2mn with values n ∗ 10j for
j ∈ 1..m, n ∈ 0..9 and threshold i×10m. For later conve-
nience we denote vm20 = 0.

In HL3, output template omn corresponding to the digit
n at position m is turned on if in HL2 indicator vmn = 1 or
vmn+10 = 1 while vmn+1 = 0 or vmn+11 = 0 respectively. This
corresponds to the cases where the summation result of the
numbers up to digitm is n×10m ≤ result < (n+1)×10m

or (n+10)×10m ≤ result < (n+11)×10m. The equation
is therefore:

omn = 1vm
n −vm

n+1
+vm

n+10
−vm

n+11
>0 (2)

Finally the values are projected onto the output picture
using the corresponding digit templates.

By end-to-end training of the network with a sufficient
number of examples the network can arrive at the above
weights (although it is by no means guaranteed to), and in
practice good performance is achieved. End-to-end training
from visual data is therefore theoretically shown and experi-
mentally demonstrated to be able to learn addition with little
guidance. This is a powerful paradigm that can generalize
to visual learning of non-visual concepts that are not easily
directly communicated to the learner.

7. Conclusions
We have examined the capacity of neural networks for

learning arithmetic operations from pictures, using a visual
end-to-end learning protocol. Our neural network was able
to learn addition and subtraction, and was robust to strong
image noise. The concept of numbers was not explicitly
used. We have shown that the network was not able to learn
some other operations such as multiplication, and visual ad-
dition using Roman numerals. For the latter we have shown
that although all sub-tasks are easily learned, the end-to-end
task is not.

In order to better understand the capabilities of the net-
work, a theoretical analysis was presented showing how a
network capable of performing visual addition may be con-
structed. This theoretical framework can help determine if a
new arithmetic operation is learnable using a feed-forward
DNN architecture. We note that such analysis is quite re-
strictive, and hypothesize that experimental confirmation of
the end-to-end learnability of complex tasks will often re-
sult in surprising findings.

Although this work dealt primarily with arithmetic op-
erations, the same approach can be used for general cogni-
tive sub-task learning using frame prediction. The sub-tasks
need not be restricted to the field of arithmetic, and can in-
clude more general concepts such as association. Generat-
ing data for the cognitive sub-task in not trivial, but gen-
erating visual examples is easy, e.g., by predicting future
frames in video.

While our experiments use two input pictures and
one output picture, the protocol can be generalized for
more complex operations involving more input and output

6



Figure 6. An illustration of the operation of a 3 hidden layer neural network able to perform addition using visual training. In this
example the network handles only 4 digit numbers, but larger numbers are handled similarly with a linear increase in the number of
nodes. i) The pictures are first projected onto a binary vector HL1 indicating if digit n is present at position m in each of the numbers.
ii) In HL2 we compute indicator variables vmi for each digit 1..M and threshold i = 0..19. The variable is on if the summation result∑m

j=1
(d1m + d2m)×10j exceeds threshold i×10m. iii) In the final hidden layer we calculate if a template is displayed by observing

if the indicator variable corresponding to its digit and position is on but the following indicator variable is off. The templates are then
projected to the output layer.

pictures. For learning non-arithmetic concepts, the pictures
may contain other objects beside numbers.

Acknowledgments. This research was supported by Intel-
ICRC and by the Israel Science Foundation. The authors
thank T. Poggio, S. Shalev-Shwartz, Y. Weiss, and L. Wolf
for fruitful discussions.

References
[1] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object

recognition with visual attention. arXiv:1412.7755,
2014.

[2] C. M. Bishop. Neural networks for Pattern Recogni-
tion. Oxford Univ. Press, 1995.

[3] L. Franco and S. A. Cannas. Solving arithmetic prob-
lems using feed-forward neural networks. Neurocom-
puting, 18(1):61–79, 1998.

[4] A. Graves, G. Wayne, and I. Danihelka. Neural turing
machines. arXiv:1410.5401, 2014.

[5] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and
G. Turan. Threshold circuits of bounded depth. In
Annual Symposium on Foundations of Computer Sci-
ence, pages 99–110. IEEE, 1987.

[6] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Di-
amos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,

A. Coates, et al. Deepspeech: Scaling up end-to-end
speech recognition. arXiv:1412.5567, 2014.

[7] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[8] T. Hofmeister, W. Hohberg, and S. Köhling. Some
notes on threshold circuits, and multiplication in depth
4. In Int. Conf. Fundamentals of Computation Theory,
pages 230–239. Springer, 1991.

[9] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep
features for text spotting. In ECCV’14, pages 512–
528. Springer, 2014.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
arXiv:1408.5093, 2014.

[11] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. E. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation net-
work. In NIPS’89, 1990.

[12] D. Marr. Vision: A Computational Investigation into
the Human Representation and Processing of Visual
Information. W.H. Freeman & Co, 1982.

[13] D. Schlimm and H. Neth. Modeling ancient and mod-
ern arithmetic practices: Addition and multiplication

7



with arabic and roman numerals. In 30th Annual Con-
ference of the Cognitive Science Society, pages 2097–
2102, 2008.

[14] S. Shalev-Shwartz and S. Ben-David. Understanding
Machine Learning: From Theory to Algorithms. Cam-
bridge University Press, 2014.

[15] K.-Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister.
Depth efficient neural networks for division and re-
lated problems. IEEE Trans. Information Theory,
39(3):946–956, 1993.

[16] R. Smith. An overview of the tesseract ocr engine.
In Int. Conf. on Document Analysis and Recognition
(ICDAR), pages 629–633, 2007.

[17] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan.
Show and tell: A neural image caption generator.
arXiv:1411.4555, 2014.

[18] C. Vondrick, H. Pirsiavash, and A. Torralba. An-
ticipating the future by watching unlabeled video.
arXiv:1504.08023, 2015.

[19] W. Zaremba, K. Kurach, and R. Fergus. Learning to
discover efficient mathematical identities. In NIPS’14,
pages 1278–1286, 2014.

[20] W. Zaremba and I. Sutskever. Learning to execute.
arXiv:1410.4615, 2014.

8


	1 . Introduction
	2 . Arithmetic as Neural Frame Prediction
	2.1 . Learning Arithmetic from Visual Examples
	2.2 . Network Architecture

	3 . Experiments
	3.1 . Experimental Procedure
	3.2 . Results

	4 . Previous Work
	5 . Discussion
	6 . Feasibility of a Visual Addition Network
	7 . Conclusions

