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Abstract

Egocentric cameras are being worn by an increasing
number of users, among them many security forces world-
wide. GoPro cameras already penetrated the mass market,
and Google Glass may follow soon. As head-worn cam-
eras do not capture the face and body of the wearer, it may
seem that the anonymity of the wearer can be preserved
even when the video is publicly distributed.

We show that motion features in egocentric video provide
biometric information, and the identity of the user can be
reliably determined from a few seconds of video captured
when the user is walking. The proposed method achieves
more than 90% identification accuracy in cases where the
random success rate is only 3%.

Applications may include theft prevention of wearable
cameras by locking the camera when not worn by its lawful
owner. This work can also provide the first steps towards
searching on video sharing services (e.g. YouTube) for ego-
centric videos shot by a specific person. An important mes-
sage in this paper is that people should be aware that shar-
ing egocentric video will compromise their anonymity, even
when their face is not visible.

1. Introduction
The popularity of head worn Egocentric cameras is in-

creasing. GoPro cameras are now used not only by extreme
sports enthusiasts but also by law enforcement and military
personnel. With the forthcoming release of Google Glass
such cameras will further penetrate the mass market.

Special features of Egocentric video include:

• The camera is worn on the user, and is continuously
recording while the user performs normal activities.

• The camera moves together with the user’s head.

• The camera does not record images of the user. We
show however that users can sometimes be identified.

As shown in social media (Fig. 1), users feel secure that
sharing their egocentric videos does not compromise their

identity. Police forces routinely release footage of officer
activity, and commando operations recorded by cameras
worn on soldiers heads are widely published on YouTube.
Some have even recorded and published their own crimes.
A consequence of our work is that the user identity of such
videos can be found from camera motion in many cases.

It has previously been established that people can be dis-
tinctly identified by biometric characteristics such as height,
stride length, walking speed, etc. Much research has been
performed to extract and compare gait information from a
video observing a walking person [10, 15, 4]. Unlike these
methods, we identify the user from video recorded by a
camera that he wears. The user is of course not visible in
the video.

Gait analysis from non-visual devices such as ac-
celerometers [19] and pressure-sensors [1] yields good per-
formance on identification and verification tasks. Egocen-
tric video can serve as a head mounted 2D visual gyroscope
and can exploit similar information. Instead of requiring
that users carry special-purpose measurement devices, we
use gait information that is embedded in motion of the ego-
centric video published by the user.

Specifically we use sparse optical flow vectors (50 flow
vectors per frame) taken over a few steps (4 seconds). This
results in a set of time-series, one for each component of
each optical flow vector. In Fig 2 we show the temporal
Fourier Transform of one flow vector for three different se-
quences, showing visible differences between different peo-
ple.

As a first approach for determining user identity, we
computed LPC (Linear Predictive Coding 1) [5] coefficients
for each of the optical flow time series. All LPC coefficients
of all optical flow sequences were used as a descriptor. Per-
son identification using a non-linear SVM trained on the
LPC descriptor gave 81% identification accuracy (vs. ran-
dom 3%) and verification EER (Equal Error Rate) of 10%.

Our second approach learns the descriptor and classi-
fiers using a Convolutional Neural Network (CNN) which

1The LPC coefficients of a time series are k values that when scalar
multiplied with the last k measurements of the time series, will optimally
predict the next measurement.
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a) b) c)
Figure 1. a) A GoPro video uploaded to YouTube allegedly capturing a crime from the POV of the robber. Can the robber be identified? b)
A GoPro video uploaded by US soldiers in combat. Are their identities safe? c) Combating theft of egocentric devices.

Figure 2. Comparison of the temporal frequency spectra for three
videos. Two videos were recorded using camera D1 by users A
and B, the third video was recorded by user A using camera D2. It
is readily seen that the spectra of the two videos recorded by user
A are very similar to each other despite being recorded by differ-
ent cameras and at different times. This suggests that a person’s
physique is expressed in the motion observed in his video.

includes layers corresponding to gait descriptor extraction
and to classification. The CNN is trained on the optical-flow
features described above. Using CNN improves the results
over the LPC coefficients, yielding 90% identification rate
(vs. random 3%) and verification EER (Equal Error Rate)
of 8%.

The above experiments were performed on both a small
(6 person) public dataset [8] (originally collected for Ego-
centric Activity Analysis) and on a new, larger (32 person)
dataset collected by us especially for Egocentric Video Bio-
metrics.

The ability to determine the identity of the user quickly
and accurately can be important for camera theft prevention
and for forensic analysis (e.g. who committed the crime).
Another application is web search for egocentric videos
shot by a given person. Wearing a mask does not reduce
recognition rate, of course.

2. Previous Work

Much work has been done on human biometrics. Some
popular biometric measures are face recognition [29],
speaker voice identification [3] and fingerprint recognition
[18]. A review of biometric measures is presented in [11].

An important and longstanding biometric measure is
Gait, an analysis of a person’s walking style. A pioneering
work by Murray [21] showed that gait is a highly distinctive
biometric measure. Over the last few decades much work
has been done on extracting gait information from videos
obtained by static cameras ([10, 15, 4]). The spatial shape
of the body is commonly used (e.g. [27]). This encodes
measures such as height, width, leg length. Another popular
class of features is temporal based features (e.g. [20]). Such
information encodes information such as step velocity, ac-
celeration and frequency. Several works studied gait analy-
sis from non-visual sensors such as accelerometers [19] and
pressure sensors [1].

Little work has been done on gait obtained from mov-
ing cameras. In a pioneering work, Shiraga et al. [26] have
studied identifying persons from backpack mounted stereo
cameras. By estimating rotation and period of motion us-
ing 3D geometry they were able to identify users with great
accuracy. This however has the disadvantage of requiring
specialized equipment. We instead learn gait features from
widely used standard head-mounted cameras.

Using optical flow for activity recognition from head-
mounted cameras has been done by [13, 23, 25, 16] and
others. Poleg et al. [22] used optical flow vectors for hiding
away the identity of the camera user. Yonateni et al [28]
use head motion to retrieve head-mounted camera users ob-
served in other videos recorded at the same time. We on the
other hand use camera motion to identify users of wearable
cameras across time.

Feature design for time series data has been extensively
studied. It is particularly important for speech recognition
systems ([24]). Speaker verification is a long standing prob-
lem which is related to this work. Linear Predictive Coding
(LPC) [9]-based descriptors were found to be effective for
speaker recognition. Here we show an LPC-based descrip-
tor that is highly effective for user recognition from egocen-
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Figure 3. a) 50 Optical flow vectors are calculated for each frame
(only 12 shown here), and represented as two columns (each of 50
values), for the x and y optical flow components. b) The feature
vector consists of optical flow columns for 60 frames, stacked into
two 50× 60 arrays, for the x and y components of the flow.

x Flow Feature Vector y

x Flow Feature Vector y
Figure 4. Two examples of the flow feature vectors. Each feature
vector consists of 50 optical flow vectors per frame (shown in ver-
tical axis), computed for each of 60 frames (the horizontal axis).
The left and right images show the x and y components of the
optical flow.

tric camera video.
Another approach is learning features along with the

classifier end-to-end, instead of hand designing them. We
perform this using convolutional neural networks (CNN).
For an overview of deep networks see [2]. Learned features
are sometimes better than hand-designed features [14].

3. Identifying Users using Optical Flow
Egocentric video suffers from bouncy and unsteady mo-

tion caused by user head and body motion. Although usu-
ally a nuisance, we show that this motion forms the basis
for accurate person identification methods.

We present our basic features in Sec. 3.1. Two alterna-
tive descriptors and classifiers are described in Sec. 3.2 and
Sec. 3.3.

3.1. Feature Extraction

In the following sections we assume that the video
frames were preprocessed in the following way (see Fig. 3):

1. Frames are partitioned into a small number (mx×my)
of non-overlapping blocks.

2. mx × my optical flow vectors are computed for each
frame using the Lucas Kanade algorithm [17]. We use
10× 5 optical flow vectors per frame.

3. A block of T seconds of such optical flow vectors is
taken. We used T = 4 seconds, which is long enough
to include a few steps. At 15 fps this results in 60
frames.

4. Each feature vector covers a period of 4 seconds, and
we computed feature vectors every 2 seconds. There is
an overlap of 2 seconds between two successive feature
vectors.

We used optical flow features for user identification,
rather than pixel intensities, as the gait is eventually ex-
pressed by the pixel motion. On the other hand, user iden-
tification should be invariant to the specific objects seen in
the environment, objects that are represented by pixel inten-
sities. CNNs may be able to learn optical flow from pixel
intensities, but learning this will require much more data
than we can collect.

If dense optical flow were used as a feature, the high fea-
ture dimensionality would have lead to overfitting on small
datasets. In looking for the optimal feature size we found
out that a grid size of 10 × 5 optical flow vectors was a
good compromise between overfitting and accuracy. Using
a smaller number of flow vectors gave reduced accuracy.

The feature extraction process is shown in Fig 3. Visual-
ization of two extracted feature vectors is shown in Fig. 4.
Full details are in Sec. 6.3.

3.2. LPC Descriptor + Kernel SVM

LPC [5] is a popular time-series descriptor (e.g. for
speaker verification). LPC assumes the data is generated
by a physical system, here the person’s head and body. It
attempts to learn a linear regression model for its equations
of motion, predicting for each optical flow series the flow
value in the next frame given the flow values of previous k
frames. Given a feature vector, we calculate an LPC model
for each component of each 4s flow time series (100 models
in total). Using too few coefficients yields less accurate pre-
dictions, while too many coefficients causes overfitting. We
found k = 9 to work well for our case. The final LPC de-
scriptor consisted of all coefficients of all time-series mod-
els (100× 9).

An RBF-SVM classifier was used for learning both iden-
tification (classify LPC descriptor into 1 of M known peo-
ple) and verification (classify LPC descriptor into target
person or non-target person). The non-linear (RBF) clas-
sifier was found to out-perform linear SVM in almost all
cases. As mentioned before, person identification using a
non-linear SVM trained on the LPC descriptor gave 81%
identification rate (vs. random 3%), and verification EER
(Equal Error Rate) was 10%.
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Figure 5. A diagram of our CNN architecture for user recognition from a given flow feature vector. The operations on the data are shown
on top, the sizes of subsequent data layers are shown on the bottom. The Neural Network learns the descriptor jointly with the classifier,
therefore automatically creating a descriptor optimal to this task.

3.3. Convolutional Neural Network

In Sec. 3.2 we described a hand-designed descriptor for
identity classification. The LPC descriptor suffers from sev-
eral drawbacks:

• The LPC regression model is learned for each time-
series separately and ignores the dependence between
optical flow vectors.

• The LPC descriptor and SVM classifier are learned in-
dependently, the labels cannot directly influence the
design of the descriptor.

To overcome the above drawbacks, we propose to learn
a CNN model for identity recognition. The CNN learns de-
scriptor and classifier end to end, and is able to take ad-
vantage both of dataset labels and the dependence between
features when calculating filter coefficients. The CNN is
more general architecture, the LPC descriptor is a subset of
descriptors learnable by the network.

Due to the limited number of data points available in our
datasets, we limit our CNN to only 2 hidden layers. Us-
ing more layers increases model capacity but also increases
over-fitting. The architecture is illustrated in Fig. 5.

Our architecture is tailored especially for egocentric
video. As we use sparse optical flow we do not assume
much spatial invariance in the features (differently from
most image recognition tasks). On the other hand the pre-
cise temporal offset of the user’s actions is usually not im-
portant, e.g. the precise time of the beginning of a user’s
step is less important than the time between strides. Our
architecture should therefore be temporally invariant. The
first layer was thus designed to be convolutional in time but
not in space.

The kernel size spans all the blocks across the x and y
components over KT frames (we use KT = 20 which is
a little longer than the typical step duration). The convolu-
tional layer consists of M kernels (we use M = 128). The
outputs of the kernels z1m = Wm ∗ x are passed through
a ReLU non-linearity (max(z1m, 0)). We pool the outputs
substantially in time, as the feature vector is of high dimen-
sion compared to the amount of training data available. To
correspond to the typical time interval between steps we use
kernel length of 20 and stride of 15.

The data is then passed through two fully connected
(affine) layers each followed by a sigmoid non-linearity
(σ(z) = 1

1+e−z ). The first fully connected hidden layer
has N1 hidden nodes (we used N1 = 128). The output of
this layer is the learned CNN descriptor.

The second fully connected layer is a linear soft-max
classifier and has the same number of nodes as the num-
ber of output classes: 2 classes for the verification case, and
20-32 classes in the identification cases.

3.4. Joint Prediction from Several Descriptors

Sec. 3.2 and Sec. 3.3 described a method to train an iden-
tity classifier on a short (4 seconds) video sequence. The
video used for classification is usually significantly longer
than 4 seconds.

We split the video into 4 second subsequences
and classify each using LPC or CNN classi-
fiers, We then classify the video into the globally
most likely label, argmaxi

∏
t P (Lt = i|Vt) =

argmaxi
∑

t log(P (Lt = i|Vt)). While this classifier
assumes that feature vectors are IID, we have found that
this requirement is not necessary for the success of the
method. See Fig. 6 for an example on the FPIS dataset.
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a) b) c)
Figure 6. The MAP rule operated on the FPIS dataset: a) Ground
truth labels. b) Raw CNN probabilities. c) MAP rule probabilities
(for T = 12 seconds.). The MAP classifier visibly ’cleaned up’
the prediction.

Figure 7. Classification accuracy vs. video length when one fea-
ture vector covers T = 4 seconds (Using CNN on the FPSI
Dataset). Longer video allows extraction of more feature vectors.
MAP classification consistently beats mode classification. Both
methods can exploit longer sequences and thus improve on 4s se-
quence identification. All methods perform far better than random.

MAP classification has helped boost the identification per-
formance on the EVB dataset to around 90% (an increase
of 13%) over the 4s rate.

4. Results

Several experiments were performed to verify the effec-
tiveness of our method. As there is no standard dataset for
Egocentric Video Biometrics, we use both a small (6 per-
son) public dataset - FPSI [8] that was originally collected
for egocentric activity analysis. For each user - morning se-
quences were used for training, and afternoon sequences for
testing.

In order to evaluate our method under more principled
settings, we collected a new larger (32 person) dataset -
EVB - specifically designed for egocentric user recogni-
tion. In the EVB dataset all users recorded two 7 minute
sequences (from which we extracted around 200 four sec-
ond sequences each) on the same day with different head-
mounted cameras (D1,D2) for training and testing. 20 of the
users also recorded another 7 minute sequence with yet an-
other camera (D3) a week later. Both datasets are described
in detail in Sec. 6.1. The detailed experimental protocol is
described in Sec. 6.2.

Figure 8. CMC rates for same day identification (for 12s se-
quences). LPC accuracy: 81% (Top-1) and 88% (Top-2). The
CNN further improves the performance with 90% (Top-1) and
93% (Top-2). Both methods far outperform the random rate of
3% (Top-1) and 6% (Top-2). Both descriptors also beat the raw
features by a large margin.

Figure 9. CMC rates for identification 1 week later (for 12s se-
quences). LPC accuracy: 76% (Top-1) and 86% (Top-2). The
CNN further improves the performance with 91% (Top-1) and
96% (Top-2). Both methods far outperform the random rate of
5% (Top-1) and 10% (Top-2). Both descriptors also beat the raw
features by a large margin.

4.1. Identification

Fig. 7 presents the person classification test performance
of our network on the FPSI database (6 people). The av-
erage correct classification rate on a single feature vector
(describing only 4 seconds of video) is 76% against the ran-
dom performance of 16.6%.

Usually test videos are longer than 4 seconds, and we
have multiple feature vectors for each person. We com-
bine predictions over a longer video using the MAP rule in
Sec. 3.4. In Fig. 7 we compare the MAP strategy vs. taking
the most frequent 4s prediction in the test video (Mode).
We observe that using longer sequences further improves
the identification performance, reaching around 91% accu-
racy for 50 seconds of video. We can also observe that MAP
classifiers consistently beats the Mode classifier and use it
in all other experiments.

To evaluate the classification performance on a larger
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No Stab Stab
Descriptor 4s 12s 4s 12s
LPC 65% 81% 59% 72%
CNN 77% 90% 71% 86%

Table 1. Same-day identification accuracy with and without stabi-
lization.

dataset, we show the performance of our method on our new
dataset - EVB. In this experiment the network was trained
on video sequences for each person using Camera D1 and is
evaluated on video sequences recorded on the same day us-
ing Camera D2 and a week later recorded using Camera D3.
In Fig. 8 and Fig. 9 we present the cumulative match curve
(CMC) for the same day and week later identification re-
sults respectively. We use the Top k notion, indicating that
the correct result appeared within the top k predictions of
the classifier. In addition to LPC and CNN, an RBF-SVM
trained on the raw optical flow features is used as baseline to
evaluate the quality of our descriptors. High accuracy was
achieved in both scenarios, same day CNN identification
accuracy is 90% (top 1) and 93% (top 2). The identification
performance a week later is better with 91% (top 1) and
96% (top 2). The improved performance numbers a week
later are expected due to the smaller dataset size (20 vs 32),
but are nonetheless encouraging as many participants wore
different shoes from the D1 training sequence recorded a
week before. This result shows that our method can obtain
good identification performance on meaningful numbers of
people and across at least a week.

To test the possibility that stabilization would take away
some or all the gait information in the frame motions, the
identification experiments were redone with the following
pre-processing stage: for each frame (50 flow vectors) the
mean framewise vector was calculated and then subtracted
from each of the vectors in the frame. As motion between
frames is small and some lens distortion correction was per-
formed, this is similar to 2D stabilization. Table. 1 shows
that such ”stabilization” degrades performance somewhat
(4-9%), but accuracy still remains fairly high. We note how-
ever that more complex stabilization might remove more
gait information. This investigation is left for future work.

4.2. Verification

We also test the verification performance obtained by our
method. In order to evaluate verification performance by a
single number it is common to use the Equal Error Rate
(EER), the error rate at which the False Acceptance Rate
(FAR) and False Rejection Rate are equal.

The EER for both the CNN and LPC descriptors for
videos of length 4s (one feature vector) and 12s (five feature
vectors) is presented in Table. 2 while the ROC curves are
shown in Fig. 10. A detailed description of our protocol can
be found in Sec. 6. It can be seen from our results that high

Descriptor 4s 12s
LPC 13.6% 9.6%
CNN 11.3% 8.1%

Table 2. Verification equal error rates for LPC and CNN descrip-
tors with 4s and 12s sequence duration.

Figure 10. ROC curves for the verification performance of our
method for LPC and CNN descriptors for 4s and 12s. High ac-
curacy is obtained by both methods, CNNs outperformed LPCs
particularly on short sequences. The EER of each method is given
by the point of intersection between the linear line and its ROC
curve.

a) b)
Figure 11. Examples of a temporal filter for the x and y flow com-
ponents. Horizontal axis is time, and vertical axis is location along
the central line. The x component filter appears to be sensitive for
certain frequencies while the y component filter is sensitive to ro-
tations.

verification rates can be obtained by both descriptors: LPC
14% (4s), 10% (12s) and CNN 11% (4s), 8% (12s). The
CNN obtains better performance for both durations with a
larger improvement for 4s.

It should be noted that all test probe persons apart from
the target user had never been used in training. By modeling
the target user we can separate him from the global popu-
lation. Our results show our method is effective at learning
the target person rather than attempting to model the general
population, and is therefore able to generalize to unseen test
users.

5. Discussion
Analysis of CNN features: In order to analyze the fea-

tures learned by the CNN we visualize the filters learned
by the first layer. Fig. 11 shows the x and y components
of a first layer temporal filter learned by the network. For
illustration purposes, only the weights of the central line of
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a) b) c)
Figure 12. Common failure cases for the 4-second descriptor: a-b)
Sharp turns of the head result in atypical fast motions, sometimes
causing motion blur. c) Large moving objects can also cause atyp-
ical optical flow patterns.

pixels are shown. Looking at the weights, we see that the
x component filter is tuned to respond to some specific fre-
quencies, while the y component looks for sharp rotations.
This behavior appears in several other filters suggesting that
the network might be using both spectral and transitive cues.

Transfer Learning for Verification: In some scenarios it
may not be possible to train a verification classifier for each
person. In such cases Nearest Neighbors may be a good
alternative. The following approach is taken: An iden-
tification CNN is trained on half the people in the train-
ing dataset. We choose a video by a target person (that
was not used for training the CNN), and extract its CNN
descriptors (as in Sec. 3.3), this set of descriptors forms
our gallery. Similarly we extract CNN descriptors from all
video sequences of persons not used for training the CNN,
this forms our probe set (excluding the sequence used as
gallery). For each probe descriptor we check if the eu-
clidean distance from its nearest neighbor in the gallery is
smaller than some threshold, and if so we classify it as the
target person. We used Camera D1 sequences for training
and D2 sequences for test. 16 randomly selected people
were used for training the CNN, and the rest for verifica-
tion. The same procedure was carried out for LPC (without
training a CNN). Multiple 4s sequence predictions are ag-
gregated using simple voting. The average EER for 12s se-
quences was 15.5% (CNN) and 22%(LPC). Although less
accurate than trained verification, this shows the network
learns identity features that are general and can be trans-
ferred to identify unseen people. Nearest Neighbors on the
optical flow raw features yielded very low performance in
accordance with the findings of [22, 28].

Verification on FPSI: We tried learning a verification
classifier by choosing one person from the FPSI dataset
as target, and 4 other users as negative training data. The
morning sequences of the target person were used for train-
ing and the afternoon for testing. We tested the verification
performance between the afternoon sequences of the target
user and the remaining 6th non-target user from the FPSI
dataset. The network however, fit to the train non-target
users and has not been able to generalize to the unseen probe
user. We therefore conclude that a significant number of
users (such as present in the EVB dataset) is required for
training a verification classifier.

Failure cases: In Fig. 12 several cases are shown where
the 4 second descriptor failed to give correct identification.
Failure can be caused by sharp head movements (sometimes
causing significant blur), by large moving objects, or by
lack of features for optical flow computation. It is likely
that by identifying such cases and removing their descrip-
tors, higher recognition performance may be achieved.

6. Experimental Procedure

In this section we give a detailed description of the ex-
perimental procedure used in Sec. 4.

6.1. Dataset Description

Two datasets were used for evaluation: a public general
purpose dataset (FPSI) and a larger dataset (EVB) collected
by us to overcome some of the weaknesses of FPSI.

6.1.1 FPSI Dataset

The First-Person Social Interactions (FPSI) dataset was col-
lected by Fathi et al. [8] for the purpose of activity analysis.
6 individuals (5 males, 1 female) recorded a day’s worth
of egocentric video each using head-worn GoPro cameras.
Due to battery and memory limitations of the camera, the
users occasionally took the cameras off and put them on
again, ensuring that camera extrinsic parameters were not
kept constant.

In this work we learn human biometrics while walking,
rather than sitting or standing. We therefore extracted the
walking portions of each video using manual labels. It is
possible to use a classifier such as described in [23] to find
the walking intervals.

6.1.2 EVB Dataset

The FPSI dataset suffers from several drawbacks: it con-
tains video only for a small number of users (6) and each
participant wears the same hat and camera all the time. It is
therefore conceivable that learning camera parameters can
help identification. To overcome these issues we collected
a larger dataset - Egocentric Video Biometrics (EVB).

The EVB consists of head-mounted video sequences
collected from 32 participants. Each video sequence was
recorded with a GoPro camera attached to a baseball cap
worn on the participant’s head (as in Fig. 13). Each par-
ticipant was asked to walk normally for around 7 minutes
along the same road. All participants recorded two 7 minute
video sequences on a single day using two different cameras
(and caps). 20 participants also recorded another sequence
a week later. The use of different cameras for different se-
quences came to ensure that motion rather than camera cal-
ibration is learned. No effort was made to ensure that the

7



Figure 13. The apparatus used to record the EVB dataset.

same shoes would be used on both days (and in fact several
persons had changed shoes between sequences).

6.2. Evaluation Protocol

6.2.1 User Identification

User identification sets to identify a user from a closed set of
M people. For this task it is assumed that we have training
data from all users.

We tested our method both on the FPSI the EVB datasets.
In the FPSI dataset we used for each individual the first 80%
of sequences (taken in the morning) for training, and the last
20% sequences recorded in the afternoon for testing. This
is done to reduce overfitting to a particular time or camera
setup. Data were randomly sub-sampled to ensure equal
number of examples for each person in both training and
testing sets. The results are described in Sec. 4.

For the EVB dataset we used sequences from Camera
D1 for training. For testing we use both sequences from
Camera D2 (taken on the same day) and Camera D3 (taken
a week later, when available). The results on each camera
are compared to analyze whether identification performance
degrades within a week.

6.2.2 User Verification

Given a target user with a few minutes of training data, and
negative training examples by other non-target users, we
verify whether a probe test video sequence was recorded
by the target user. Verification on longer sequences is done
by combining the predictions from subsequent short se-
quences. As the FPSI dataset contains only 6 users it was
not suitable for the verification task (this was elaborated
upon in Sec. 5) therefore only the EVB dataset was used for
evaluating performance on this task. For each of 32 partici-
pants: i) participant is designated target user ii) we selected
sequences of the target user and 15 non-target users (ran-
domly selected) for training a binary classifier. All training
sequences were 7 minutes (200 descriptors) long and were
recorded by camera D1. iii) Another sequence recorded by
the target user and the remaining 16 participants that were
not used for training, were used to test the verification clas-
sifier. Test sequences were recorded by camera D2. iv) The
ROC curve and EER ware computed. Average EER and

ROC for all participants is finally obtained. As each se-
quence contained about 200 descriptors this formed a sig-
nificant test set. Care was taken to ensure that all users
(apart from the target user) would appear in the training or
test datasets but not in both. This was done to ensure we did
not overfit to specific non-target users. We replicated posi-
tive training examples to ensure equal numbers of negative
and positive training and test data.

6.3. Implementation Details

Features: In all experiments the optical flow grid size
used was 10 × 5. In the CNN experiments, all optical flow
values were divided by the square-root of their absolute
value, this was found to help performance by decreasing the
significance of extreme values. Feature vectors of length 60
frames at 15 fps (4s) were used. Feature vectors were exa-
tracted every 2s (with a 2s overlap).

Normalization: We followed the standard practice - For
the LPC descriptor, all feature vectors were mean and vari-
ance normalized across the training set before being used
by the SVM. For the CNN, feature vectors were mean sub-
tracted before being input to the CNN.

Training: The SVM was trained using LIBSVM [6]. We
used σ = 1e − 4 and C = 1 for LPC, C = 10 for the
raw features. The CNN was trained by AdaGrad [7] with
learning rate 0.01 on a GPU using the Caffe [12] package.
The mini-batch size was 200.

7. Conclusion

A method to determine the identity of a user from head-
worn egocentric camera video has been presented. We show
that user identity can be found from gait information as ex-
pressed in camera motion when walking. Recognition was
done with both physically motivated hand designed descrip-
tors, and with a Convolutional Neural Network. Both meth-
ods gave good performance for identification and for veri-
fication. The CNN classifier was shown to generalize and
improve on the LPC hand-designed descriptor.

The time-invariant CNN architecture presented here is
quite general and can be used for other video classification
tasks relying on coarse optical flow.

We have tested the effects of simple 2D video stabiliza-
tion on classification accuracy, and found only slight degra-
dation in performance. It is possible that more elaborate
stabilization would have a greater effect.

The implication of our work is that users’ head-worn
egocentric videos give much information away. This
information can be used benevolently (e.g. camera theft
prevention, user analytics on video sharing websites) or
maliciously. Care should therefore be taken when sharing
such video.
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