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EgoSampling: Wide View Hyperlapse From
Egocentric Videos

Tavi Halperin, Yair Poleg, Chetan Arora, and Shmuel Peleg

Abstract— The possibility of sharing one’s point of view makes
the use of wearable cameras compelling. These videos are often
long, boring, and coupled with extreme shaking, as the camera is
worn on a moving person. Fast-forwarding (i.e., frame sampling)
is a natural choice for quick video browsing. However, this accen-
tuates the shake caused by natural head motion in an egocentric
video, making the fast-forwarded video useless. We propose
EgoSampling, an adaptive frame sampling that gives stable,
fast-forwarded, hyperlapse videos. Adaptive frame sampling is
formulated as an energy minimization problem, whose optimal
solution can be found in polynomial time. We further turn the
camera shake from a drawback into a feature, enabling the
increase in field of view of the output video. This is obtained
when each output frame is mosaiced from several input frames.
The proposed technique also enables the generation of a single
hyperlapse video from multiple egocentric videos, allowing even
faster video consumption.

Index Terms— Egocentric video, fast-forward, hyperlapse,
video stabilization.

I. INTRODUCTION

WHILE the use of egocentric cameras is on the rise,
watching raw egocentric videos is unpleasant. These

videos, captured in an “always-on” mode, tend to be long,
boring, and unstable. Video summarization [1]–[3], temporal
segmentation [4], [5], and action recognition [6], [7] methods
can help browse and consume large amount of egocentric
videos. However, these algorithms make strong assumptions
in order to work properly (e.g., faces are more important than
unidentified blurred images). The information produced by
these algorithms helps the user skip most of the input video.
Yet, the only way to watch a video from start to end, without
making strong assumptions, is to play it in a fast-forward
manner. However, the natural camera shake gets amplified
in naïve fast-forward (i.e., frame sampling). An exceptional
tool for generating stable fast-forward video is the recently
proposed “Hyperlapse” [8]. Our work was inspired by [8], but
take a different, lighter, approach.
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Fig. 1. Frame sampling for Fast-forward. A view from above on the camera
path (the line) and the viewing directions of the frames (the arrows) as the
camera wearer walks forward for a couple of seconds. (a) Uniform 5× frames
sampling, shown with solid arrows, gives output with significant changes
in viewing directions. (b) Our frame sampling, represented as solid arrows,
prefers forward-looking frames at the cost of somewhat nonuniform sampling.

Fast-forward is a natural choice for faster browsing of
videos. While naïve fast-forward uses uniform frame sampling,
adaptive fast-forward approaches [9] try to adjust the speed in
different segments of the input video. Sparser frame sampling
gives higher speed-ups in stationary periods, and denser frame
sampling gives lower speed-ups in dynamic periods. In gen-
eral, content-aware techniques adjust the frame-sampling rate
based upon the importance of the content in the video. Typical
importance measures include motion in the scene, scene com-
plexity, and saliency. None of the aforementioned methods,
however, can handle the challenges of egocentric videos, as
we describe next.

Borrowing the terminology of [4], we note that when the
camera wearer is “stationary” (e.g., sitting or standing in
place), head motions are less frequent and pose no challenge
to traditional fast-forward and stabilization techniques. There-
fore, in this paper, we focus only on cases when the camera
wearer is “in transit” (e.g., walking, cycling, and driving), and
often with substantial camera shake.

Kopf et al. [8] recently proposed to generate hyperlapse
egocentric videos by 3D reconstruction of the input camera
path. A smoother camera path is calculated, and new frames
are rendered for this new path using the frames of the original
video. Generated video is very impressive, but it may take
hours to generate minutes of hyperlapse video. Joshi et al. [10]
proposed to replace 3D reconstruction by smart sampling of
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Fig. 2. Output frame produced by the proposed Panoramic Hyperlapse.
We collect frames looking into different directions from the video and create
mosaics around each frame in the video. These mosaics are then sampled to
meet playback speed and video stabilization requirements. Apart from being
fast-forwarded and stabilized, the resulting video now also has a wide FOV.
The white lines mark the different original frames. The proposed scheme turns
the problem of camera shake present in egocentric videos into a feature, as the
shake helps to increase the FOV.

the input frames. They bias the frame selection in favor of the
forward-looking frames, and drop frames that might introduce
shake.

We model frame sampling as an energy minimization prob-
lem. A video is represented as a directed acyclic graph whose
nodes correspond to input video frames. The weight of an edge
between nodes corresponding to frames t and t + k indicates
how “stable” the output video will be if frame t +k will imme-
diately follow frame t . The weights also indicate if the sampled
frames give the desired playback speed. Generating a stable
fast-forwarded video becomes equivalent to finding a shortest
path in this graph. We keep all edge weights nonnegative,
and note that there are numerous polynomial time algorithms
for finding a shortest path in such graphs. The proposed
frame sampling approach, which we call EgoSampling, was
initially introduced in [11]. We show that sequences produced
with EgoSampling are more stable and easier to watch than
traditional fast-forward methods.

Frame sampling approaches such as EgoSampling described
above, as well as [8], [10], drop frames to give a stabilized
video, with a potential loss of important information. In addi-
tion, a stabilization postprocessing is commonly applied to
the remaining frames, a process which reduces the field of
view (FOV). We propose an extension of EgoSampling, in
which instead of dropping unselected frames, these frames are
used to increase the FOV of the output video. We call the pro-
posed approach Panoramic Hyperlapse. Fig. 2 shows a frame
from an output Panoramic Hyperlapse generated with our
method. Panoramic Hyperlapse video is easier to comprehend
than [10] because of its increased FOV. Panoramic Hyperlapse
can also be extended to handle multiple egocentric videos
recorded by a group of people walking together. Given a set
of egocentric videos captured at the same scene, Panoramic
Hyperlapse can generate a stabilized panoramic video using
frames from the entire set. The combination of multiple videos
into a Panoramic Hyperlapse enables the consumption of
videos even faster.

The contributions of this paper are as follows: 1) the
generated wide FOV, stabilized, fast-forward videos are

easier to comprehend than only stabilized or only fast-forward
videos and 2) the technique is extended to combine multiple
egocentric video taken at the same scene.

The rest of this paper is organized as follows.
Relevant related work is described in Section II. The
EgoSampling framework is briefly described in Section III.
In Sections IV and V, we introduce the generalized for single
and multiple videos, respectively. We report our experiments
in Section VI, and draw the conclusion in Section VII.

II. RELATED WORK

The related work to this paper can be broadly categorized
into four categories.

A. Video Summarization

Video summarization methods scan the input video for
salient events, and create from these events a concise output
that captures the essence of the input video. While video
summarization of third-person videos has been an active
research area, only a handful of these works address the
specific challenges of summarizing egocentric videos. In [2],
[13], important keyframes are sampled from the input video
to create a story-board summarization. In [1], subshots that
are related to the same “story” are sampled to produce a
“story-driven” summary. Such video summarization can be
seen as an extreme adaptive fast-forward, where some parts are
completely removed while other parts are played at original
speed. These techniques require a strategy for determining the
importance or relevance of each video segment, as segments
removed from summary are not available for browsing.

B. Video Stabilization

There are two main approaches for video stabiliza-
tion. While 3D methods reconstruct a smooth camera path
[14], [15], 2D methods, as the name suggests, use 2D motion
models followed by nonrigid warps [16]–[20]. As noted by [8],
stabilizing egocentric video after regular fast-forward by uni-
form frame sampling, fails. Such stabilization cannot handle
outlier frames often found in egocentric videos, e.g., frames
when the camera wearer looks at his shoe for a second,
resulting in significant residual shake present in the output
videos.

The proposed EgoSampling approach differs from both tra-
ditional fast-forward as well as video stabilization. Rather than
stabilizing outlier frames, we prefer to skip them. However,
traditional video stabilization algorithms [16]–[20] can be
applied as postprocessing to our method, to further stabilize
the results.

Traditional video stabilization crop the input frames to cre-
ate stable looking output with no empty region at the bound-
aries. In attempt to reduce the cropping, Matsushita et al. [21]
suggest to perform inpainting of the video boundary based on
information from other frames.

C. Hyperlapse

Kopf et al. [8] have suggested a pioneering hyperlapse
technique to generate stabilized egocentric videos using a
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Fig. 3. Representative frames from the fast-forward results on “Bike2” sequence [12]. The camera wearer rides a bike and prepares to cross the road.
Top: uniform sampling of the input sequence leads to a very shaky output as the camera wearer turns his head sharply to the left and right before crossing
the road. Bottom: EgoSampling prefers forward-looking frames and therefore samples the frames nonuniformly so as to remove the sharp head motions. The
stabilization can be visually compared by focusing on the change in position of the building (yellow circle) appearing in the scene. The building does not
even show up in two frames of the uniform sampling approach, indicating the extreme shake. Note that the fast-forward sequence produced by EgoSampling
can be postprocessed by traditional video stabilization techniques to further improve the stabilization.

combination of 3D scene reconstruction and image-based ren-
dering techniques. A new and smooth camera path is computed
for the output video, while remaining close to the input
trajectory. The results produced are impressive, but may be
less practical because of the large computational requirements.
In addition, 3D recovery from egocentric video may often fail.
A similar paper to our EgoSampling approach, [10], avoids 3D
reconstruction by posing hyperlapse as frame sampling, and
can even be performed in real time.

Sampling-based hyperlapse such as EgoSampling proposed
by us or [10] bias the frame selection toward forward-looking
views. This selection has two effects: 1) the information
available in the skipped frames, likely looking sideways, is
lost and 2) the cropping, which is part of the subsequent
stabilization step, reduces the FOV. We propose to extend the
frame sampling strategy by Panoramic Hyperlapse, which uses
the information in the side looking frames that are discarded
by frame sampling.

D. Multiple Input Videos

The state-of-the-art hyperlapse techniques address only a
single egocentric video. For curating multiple nonegocentric
video streams, Jiang and Gu [22] suggested spatial–temporal
content-preserving warping for stitching multiple synchronized
video streams into a single panoramic video. Hoshen et al.
[23] and Arev et al. [24] produce a single output stream from
multiple egocentric videos viewing the same scene. This is
done by selecting only a single input video, best representing
each time period. In both the techniques, the criterion for
selecting the video to display requires strong assumptions of
what is interesting and what is not.

We propose Panoramic Hyperlapse in this paper, which
supports multiple input videos, by fusing input frames from
multiple videos into a single output frame having a wide FOV.

III. EGOSAMPLING

The key idea in this paper is to generate a stable fast-
forwarded output video by selecting frames from the input

video having similar forward-viewing direction, which is also
the direction of the wearer’s motion. Figs. 1 & 3 intuitively
describe this approach. This approach works well for forward-
moving cameras. Other motion directions, e.g., cameras mov-
ing sideways, can be accelerated only slightly before becoming
hard to watch.

As a measure for forward-looking direction, we find the
Epipolar point between all pairs of frames, It and It+k , where
k ∈ [1, τ ], and τ is the maximum allowed frame skip. Under
the assumption that the camera is always translating (recall that
we focus only on wearer’s in “transit” state), the displacement
direction between It and It+k can be estimated from the
fundamental matrix Ft,t+k [25]. We prefer using frames whose
epipole is closest to the center of the image.

Recent V-SLAM approaches such as [26], [27] provide
camera ego-motion estimation and localization in real time.
However, we found that the fundamental matrix computation
can fail frequently when k (temporal separation between the
frame pair) grows larger. As a fallback measure, whenever
the fundamental matrix computation breaks, we estimate the
direction of motion from the FOE of the optical flow. We do
not compute the FOE from the instantaneous flow, but from
integrated optical flow as suggested in [4] and computed as
follows. We first compute the sparse optical flow between all
consecutive frames from frame i to frame j . Let the optical
flow between frames t and t + 1 be denoted by gt(x, y) and
Gi, j (x, y) = (1/k)

∑ j−1
t=i gt(x, y). The FOE is computed from

Gi, j as suggested in [28], and is used as an estimate of the
direction of motion.

A. Graph Representation

We model the joint fast-forward and stabilization of ego-
centric video as graph energy minimization. The input video
is represented as a graph, with a node corresponding to each
frame in the video. There are weighted edges between every
pair of graph nodes, i and j , with weight proportional to our
preference for including frame j right after i in the output
video. There are three components in this weight.
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Fig. 4. We formulate the joint fast-forward and video stabilization problem
as finding a shortest path in a graph constructed as shown. There is a node
corresponding to each frame. The edges between a pair of frames (i, j)
indicate the penalty for including a frame j immediately after frame i in
the output (please refer to the text for details on the edge weights). The edges
between the source/sink and the graph nodes allow skipping frames from start
and end. The frames corresponding to nodes along the shortest path from the
source to the sink are included in the output video.

1) Shakiness Cost (Si, j ): This term prefers forward looking
frames. The cost is proportional to the distance of the
computed motion direction (epipole or FOE) designated
by (xi, j , yi, j ) from the center of the image (0, 0)

Si, j = ‖(xi, j , yi, j )‖. (1)

2) Velocity Cost (Vi, j ): This term controls the playback
speed of the output video. The desired speed is given
by the desired magnitude of the optical flow, K f low,
between two consecutive output frames

Vi, j =
(

∑

x,y

Gi, j (x, y) − Kflow

)2

. (2)

3) Appearance Cost (Ci, j ): This is the earth mover’s dis-
tance (EMD) [29] between the color histograms of
frames i and j . The role of this term is to prevent
large visual changes between frames. A quick rotation
of the head or dominant moving objects in the scene
can confuse the FOE or epipole computation. This term
acts as an anchor in such cases, preventing the algorithm
from skipping a large number of frames.

The overall weight of the edge between nodes (frames) i
and j is given by

Wi, j = α · Si, j + β · Vi, j + γ · Ci, j (3)

where α, β, and γ represent the relative importance of various
costs in the overall edge weight.

With the problem formulated as above, sampling frames for
stable fast-forward is done by finding a shortest path in the
graph. We add two auxiliary nodes, a source and a sink in the
graph to allow skipping some frames from start or end. To
allow such skip, we add zero weight edges from start node
to the first Dstart frames and from the last Dend nodes to
sink. We then use Dijkstra’s algorithm [30] to compute the
shortest path between source and sink. The algorithm does
the optimal inference in time polynomial in the number of
nodes (frames). Fig. 4 shows a schematic illustration of the
proposed formulation.

B. Second-Order Smoothness

The formulation described in the previous section prefers
to select forward-looking frames, where the epipole is closest
to the center of the image. With the proposed formulation, it
may so happen that the epipoles of the selected frames are
close to the image center, but on the opposite sides, leading
to a jitter in the output video. In this section, we introduce an
additional cost element: stability of the location of the epipole.
We prefer to sample frames with minimal variation of the
epipole location.

To compute this cost, nodes now represent two frames, as
can be seen in Fig. 6. The weights on the edges depend on
the change in epipole location between one image pair to
the successive image pair. Consider three frames It1 , It2 , and
It3 . Assume that the epipole between Iti and It j is at pixel
(xi j , yi j ). The second-order cost of the triplet (graph edge)
(It1, It2 , It3), is proportional to ‖(x23 − x12, y23 − y12)‖.

This second-order cost is added to the previously computed
shakiness cost. The graph with the second-order smoothness
term has all edge weights nonnegative and the running-time
to find an optimal solution to shortest path is linear in the
number of nodes and edges, i.e., O(nτ 2). In practice, with
τ = 100, the optimal path was found in all examples in less
than 30 s. Fig. 5 shows results obtained from both first-order
and second-order formulations.

IV. PANORAMIC HYPERLAPSE OF A SINGLE VIDEO

Sampling-based hyperlapse techniques (hereinafter referred
to as “sampled hyperlapse”), such as EgoSampling, or as
given in [10], drop many frames for output speed and stability
requirements. Instead of simply skipping the unselected frames
that may contain important events, we suggest “Panoramic
Hyperlapse,” which uses all the frames in the video for
building a panorama around selected frames.

A. Creating Panoramas

For efficiency reasons, we create panoramas only around
carefully selected central frames. The panorama-generation
process starts with the chosen frame as the reference frame.
This is a common approach in mosaicing that reference view
for the panorama should be “the one that is geometrically most
central” [31, p. 73]. In order to choose the best central frame,
we take a window of ω frames around each input frame and
track feature points through this temporal window.

Let fi,t be the displacement of feature point i ∈ {1 . . . n} in
frame t relative to its location in the first frame of the temporal
window. The displacement of frame t relative to the first frame
is defined as

post = 1

n

n∑

i=1

fi,t (4)

and the central frame is

t̄ = argmin
t

{∥
∥
∥
∥
∥

post − 1

ω

ω∑

s=1

poss

∥
∥
∥
∥
∥

}

. (5)



1252 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 28, NO. 5, MAY 2018

Fig. 5. Comparative results for fast-forward from naïve uniform sampling (first row), EgoSampling using first-order formulation (second row) and using
second-order formulation (third row). Note the stability in the sampled frames as seen from the tower visible far away (yellow circle). The first-order formulation
leads to a more stable fast-forward output compared to naïve uniform sampling. The second-order formulation produces even better results in terms of visual
stability.

Fig. 6. Graph formulation, as described in Fig. 4, produces an output
which has almost forward-looking direction. However, there may still be large
changes in the epipole locations between two consecutive frame transitions,
causing jitter in the output video. To overcome this, we add a second-order
smoothness term based on triplets of output frames. Now the nodes correspond
to pairs of frames, instead of single frames in the first-order formulation
described earlier. There are edges between frame pairs (i, j) and (k, l), if
j = k. The edge reflects the penalty for including frame triplet (i, k, l) in the
output. Edges from source and sink to graph nodes (not shown in the figure)
are added in the same way as in the first-order formulation to allow skipping
frames from start and end.

Given the natural head motion alternately to the left and
right, the proposed frame selection strategy prefers forward-
looking frames as central frames.

After choosing the central frame, we align all the frames
in the ω window with the central frame using a homography,
and stitch the panorama using the “Joiners” method [32], such
that central frames are on the top and peripheral frames are
at the bottom. More sophisticated stitching and blending, e.g.,
min-cut and Poisson blending, can be used to improve the
appearance of the panorama, or dealing with moving objects,
etc.

B. Sampling Panoramas

After generating panoramas corresponding to different cen-
tral frames, we sample a subset of panoramas for the hyper-
lapse video. The sampling strategy (Illustrated in fig. 7) is
similar to the process described in Section III, with the
nodes now corresponding to panoramas and the edge weight
representing the cost of the transition from panorama p to

Fig. 7. Panoramic Hyperlapse creation. At the first step, for each input
frame vi , a mosaic Mi is created from frames before and after it. At the
second stage, a Panoramic Hyperlapse video Pi is sampled from Mi using
sampled hyperlapse methods such as [10] or EgoSampling.

panorama q , defined as

Wp,q = α · Sp,q + β · Vp,q + γ · FOVp. (6)

Here, the shakiness Sp,q and the velocity Vp,q are measured
between the central frames of the two panoramas. FOVp

denotes the size of the panorama p, and is counted as the
number of pixels painted by all frames participating in that
panorama. We measure it by warping the four corners of each
frame to determine the area that will be covered by the actual
warped images. In the end, we run the shortest path algorithm
to select the sampled panoramas as described in the previous
section.

Fig. 8 shows the participation of input frames in the panora-
mas for one of the sample sequences. We show in gray the
candidate panoramas before sampling, and the finally selected
panoramas are shown in red. The span of each row shows the
frames participating in each panorama.

C. Stabilization

In our experiments, we performed minimal alignment
between panoramas, using only a rigid transformation between
the central frames of the panoramas. When feature tracking
was lost, we placed the next panorama at the center of the
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Fig. 8. Example for mapping input frames to output panoramas from
sequence “Running.” Rows represent generated panoramas, and columns rep-
resent input frames. Red panoramas were selected for Panoramic Hyperlapse,
and gray panoramas were not used. Central frames are indicated in green.

canvas and started tracking from that frame. Any stabilization
algorithm may be used as a post processing step for further
fine detail stabilization. Since video stabilization reduces the
FOV to be only the common area seen in all frames, starting
with panoramic images mitigates this effect.

D. Cropping

Panoramas are usually created on a canvas much larger than
the size of the original video, and large parts of the canvas are
not covered with any of the input images. In our technique, we
applied a moving crop window on the aligned panoramas. The
crop window was reset whenever the stabilization was reset.
In order to get smooth window movement, while containing
as many pixels as possible, we find crop centers cri , which
minimize the following energy function:

E =
∑

‖cri − mi‖2 + λ
∑

∥
∥
∥
∥cri − cri−1 + cri+1

2

∥
∥
∥
∥

2

(7)

where mi is the center of mass of the i th panorama. This can
be minimized by solving the sparse set of linear equations
given by the derivatives

cri = λ(cri−1 + cri+1) + mi

2λ + 1
. (8)

The crop size is dependent on the camera movement and on λ.
Larger λ will favor less movement of the crop window, and
in order to keep it in the covered part of the canvas, it will
get smaller.

E. Removing Lens Distortion

We use the method of [33] to remove lens distortion.
Usually, frames are cropped after the lens distortion removal
to a rectangle containing only valid pixels. However, in the
case of panoramas, the cropping may be done after stitching
the frames. This results in even larger FOV. An example of a
cropped panoramic image after removal of lens distortion is
given in Fig. 9.

We list the steps to generate Panoramic Hyperlapse in
Algorithm 1.

V. PANORAMIC HYPERLAPSE OF MULTIPLE VIDEOS

Panoramic Hyperlapse can be extended naturally to multiple
input videos, as we show in this section.

Fig. 9. Same scene as in Fig. 2. The frames were warped to remove lens
distortion, but were not cropped. The mosaicing was done on the uncropped
frames. Notice the increased FOV compared with the panorama in Fig. 2.

Algorithm 1 Single video Panoramic Hyperlapse
Data: Single video
Result: Panoramic Hyperlapse
for every temporal window do

find the central frame of the window;

for every panorama candidate with center c do
for each frame f participating in the panorama do

Calculate the transformation between f and c;
Calculate the cost for shakiness, FOV and velocity;

Choose panoramas for the output using shortest path in
graph algorithm;
Construct the panoramas;
Stabilize and crop;

A. Correspondence Across Videos

For multivideo hyperlapse, we first find corresponding
frames in all other videos, for every frame in each video.
We define as corresponding frame, the frame having the largest
region of overlap, measured by the number of matching feature
points between the frames. Any pair of frames with less
than ten corresponding points is declared as nonoverlapping.
We used coarse-to-fine strategy, starting from approximate
candidates with skip of ten frames between each pair of
matched images to find a searching interval, and then zeroing
on the largest overlapping frame in that interval. It may be
noted that some frames in one video may not have cor-
responding frame in the second video. Also note that the
corresponding frame relationship is not symmetric.

We maintain temporal consistency in the matching process.
For example, assuming x ′ and y ′ are the corresponding frame
numbers in the second video for frame numbers x and y in the
first video. If x < y, then we drop the match y, y ′ if x ′ > y ′.

B. Creation of Multivideo Panorama

Once the corresponding frames have been identified, we
initiate the process of selecting central frames. This process is
done independently for each video, as described in Section IV
with the difference that for each frame in the temporal
window ω, we now collect all corresponding frames from
all the input videos. For example, in an experiment with n
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Fig. 10. Creating a multivideo Panoramic Hyperlapse. The first three rows
indicate three input videos with frames labeled Vi j . Each frame Pi in the
output panoramic video is constructed by mosaicing one or more of the input
frames, which can originate from any input video.

input videos, up to (n · |ω|) frames may participate in each
central frame selection and mosaic generation process. The
process of panorama creation is repeated for all temporal
windows in all input videos. Fig. 10 outlines the relation
between the Panoramic Hyperlapse and the input videos. Note
that the process of choosing central frames for each camera
ensures that the stabilization achieved in multivideo Panoramic
Hyperlapse is similar to the one that would have been achieved
if there were only a single camera. The mosaic creation can
only increase the sense of stabilization because of increased
FOV.

C. Sampling

After creating panoramas in each video, we perform a
sampling process similar to the one described in Section IV-B,
the difference being that the candidate panoramas for sampling
come from all the input videos. The graph creation process is
the same, with the nodes now corresponding to panoramas
in all the videos. For the edge weights, apart from the costs
as mentioned in the last section, we insert an additional term
called cross-video penalty. Cross-video terms add a switching
penalty, if in the output video there is a transition from
panorama with central frame from one video to a panorama
with central frame that comes from some other video. Note
that the FOE stabilization cost in the edge weight aims to
align the viewing angles of two (or three) consecutive frames
in the output video and is calculated similarly, irrespective of
whether the input frames originated from single or multiple
videos.

The shortest path algorithm then runs on the graph created
this way and chooses the panoramic frames from all input
videos. We show a sample frame from one of the output videos
generated by our method in Fig. 11. Algorithm 2 gives the
pseudocode for our algorithm.

It may be noted that the proposed scheme samples the
central frames judiciously on the basis of EgoSampling , with
the quality of the chosen output mosaics being a part of the
optimization. This is not equivalent to generating mosaics from
individual frames and then generating the stabilized output,
in the same way as in the case of single video scenario,
fast-forward followed by stabilization is not equivalent to
EgoSampling.

Fig. 11. Multivideo output frame. All rectangles with white borders are
frames from the same video, while the left part is taken from another. Notice
the enlarged FOV resulting from using frames from multiple videos.

Algorithm 2 Multivideo Panoramic Hyperlapse
Data: Multiple videos
Result: Panoramic Hyperlapse
Preprocess: temporally align videos (if necessary);
calculate homographies between matching frames in
different videos;
for each video do

Find central frames and calculate cost similar to the
single video case;

Calculate cross-video cost ;
Choose panoramas for the output using shortest path in
graph algorithm;
for each panorama with center c do

for every frame f from c’s video participating in the
panorama do

warp f towards c;
for frames f ′ aligned with f in other videos do

warp f ′ towards c using chained homography
f ′- f -c;

Construct the panoramas;

Stabilize and crop;

VI. EXPERIMENTS

In this section, we give implementation details and show
the results for EgoSampling as well as Panoramic Hyperlapse.
We have used publicly available sequences [12], [34]–[36] as
well as our own videos for the demonstration. The details
of the sequences are given in Table I. We used a modified
(faster) implementation of [4] for the LK [37] optical flow
estimation. We use the code and calibration details given
by [8] to correct for lens distortion in their sequences. Feature
point extraction and fundamental matrix recovery is performed
using VisualSFM [38], with GPU support. The rest of the
implementation (FOE estimation, energy terms, and shortest
path) is in MATLAB. All the experiments have been conducted
on a standard desktop PC.

A. EgoSampling

We show results for EgoSampling on eight publicly avail-
able sequences. For the four sequences for which we have
camera calibration information, we estimated the motion direc-
tion based on epipolar geometry. We used the FOE estimation
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TABLE I

SEQUENCES USED FOR THE FAST-FORWARD ALGORITHM EVALUATION.
ALL SEQUENCES WERE SHOT IN 30 fps, EXCEPT “RUNNING,” WHICH

IS 24 fps AND “WALKING11,” WHICH IS 15 fps

method as a fallback when we could not recover the funda-
mental matrix. For this set of experiments, we fix the following
weights: α = 1000, β = 200 and γ = 3. We further penalize
the use of estimated FOE instead of the epipole with a constant
factor c = 4. If camera calibration is not available, we used the
FOE estimation method only and changed α = 3 and β = 10.
For all the experiments, we fixed τ = 100 (maximum allowed
skip). We set the source and sink skip to Dstart = Dend = 120
to allow more flexibility. We set the desired speed up factor to
10× by setting Kflow to be ten times the average optical flow
magnitude of the sequence. We show representative frames
from the output for one such experiment in Fig. 5. Output
videos from other experiments are given at the project’s Web
site: http://www.vision.huji.ac.il/egosampling/.

1) Running Times: The advantage of EgoSampling is in its
simplicity, robustness, and efficiency. This makes it practical
for long unstructured egocentric videos. We present the coarse
running time for the major steps in our algorithm below.
The time is estimated on a standard Desktop PC, based on
the implementation details given above. Sparse optical flow
estimation (as in [4]) takes 150 ms per frame. Estimating F-
Mat (including feature detection and matching) between frame
It and It+k , where k ∈ [1, 100] takes 450 ms per input frame
It . Calculating second-order costs takes 125 ms per frame.
This amounts to a total of 725 ms of processing per input
frame. Solving for the shortest path, which is done once per
sequence, takes up to 30 s for the longest sequence in our
data set (≈ 24K frames). In all, running time is more than
two orders of magnitude faster than [8].

2) User Study: We compare the results of EgoSampling,
first- and second-order smoothness formulations, with naïve
fast-forward with 10× speedup, implemented by sampling
the input video uniformly. For EgoSampling the speed is not
directly controlled but is targeted for 10× speedup by setting
Kflow to be ten times the average optical flow magnitude of
the sequence.

We conducted a user study to compare our results with the
baseline methods. We sampled short clips (5–10 s each) from

the output of the three methods at hand. We made sure the clips
start and end at the same geographic location. We showed each
of the 35 subjects several pairs of clips, before stabilization,
chosen at random. We asked the subjects to state which of the
clips is better in terms of stability and continuity. The majority
(75%) of the subjects preferred the output of EgoSampling
with first-order shakiness term over the naïve baseline. On
top of that, 68% preferred the output of EgoSampling using
second-order shakiness term over the output using first-order
shakiness term.

To evaluate the effect of video stabilization on the EgoSam-
pling output, we tested three commercial video stabiliza-
tion tools: 1) Adobe Warp Stabilizer; 2) Deshaker1; and
3) YouTube’s video stabilizer. We have found that YouTube’s
stabilizer gives the best results on challenging fast-forward
videos.2 We stabilized the output clips using YouTube’s sta-
bilizer and asked our 35 subjects to repeat process described
above. Again, the subjects favored the output of EgoSampling.

3) Quantitative Evaluation: We quantify the performance of
EgoSampling using the following measures. We measure the
deviation of the output from the desired speedup. We found
that measuring the speedup by taking the ratio between the
number of input and output frames is misleading, because one
of the features of EgoSampling is to take large skips when
the magnitude of the optical flow is rather low. We therefore
measure the effective speedup as the median frame skip.

An additional measure is the reduction in epipole jitter
between consecutive output frames (or FOE if F-Matrix cannot
be estimated). We differentiate the locations of the epipole
(temporally). The mean magnitude of the derivative gives
us the amount of jitter between consecutive frames in the
output. We measure the jitter for our method as well for naïve
10× uniform sampling and calculate the percentage improve-
ment in jitter over competition.

Table II shows the quantitative results for frame skip and
epipole smoothness. There is a huge improvement in jitter by
our algorithm. We note that the standard method to quantify
video stabilization algorithms is to measure crop and distortion
ratios. However, since we jointly model fast-forward and
stabilization such measures are not applicable. The other
method could have been to postprocess the output video
with a standard video stabilization algorithm and measure
these factors. Better measures might indicate better input
to stabilization or better output from preceding sampling.
However, most stabilization algorithms rely on trajectories and
fail on resampled video with large view difference. The only
successful algorithm was YouTube’s stabilizer, but it did not
give us these measures.

4) Limitations: One notable difference between EgoSam-
pling and traditional fast-forward methods is that the number
of output frames is not fixed. To adjust the effective speedup,
the user can tune the velocity term by setting different values to
Kflow. It should be noted, however, that not all speedup factors
are possible without compromising the stability of the output.

1http://www.guthspot.se/video/deshaker.htm
2We attribute this to the fact that YouTube’s stabilizer does not depend upon

long feature trajectories, which are scarce in sub-sampled video as ours.
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TABLE II

FAST-FORWARD RESULTS WITH DESIRED SPEEDUP OF FACTOR 10 USING
SECOND-ORDER SMOOTHNESS. WE EVALUATE THE IMPROVEMENT

AS A DEGREE OF EPIPOLE SMOOTHNESS IN THE OUTPUT VIDEO

(COLUMN 5). THE PROPOSED METHOD GIVES A HUGE

IMPROVEMENT OVER NAÏVE FAST-FORWARD IN
ALL BUT ONE TEST SEQUENCE (SEE FIG. 12

FOR THE FAILURE CASE). NOTE THAT THE

ACTUAL SKIP (COLUMN 4) CAN DIFFER
A LOT FROM THE TARGET IN THE

PROPOSED ALGORITHM

Fig. 12. Failure case for the proposed method showing two sample frames
from an input sequence. The frame-to-frame optical flow is mostly zero
because of distant view and (relatively) static vehicle interior. However,
since the driver shakes his head every few seconds, the average optical flow
magnitude is high. The velocity term causes us to skip many frames until the
desired Kflow is met. Restricting the maximum frame skip by setting τ to a
small value leads to arbitrary frames being chosen looking sideways, causing
shake in the output video.

For example, consider a camera that toggles between looking
straight and looking to the left every ten frames. Clearly, any
speedup factor that is not a multiple of 10 will introduce
shake to the output. The algorithm chooses an optimal speedup
factor, which balances between the desired speedup and what
can be achieved in practice on the specific input. Sequence
“Driving” (Fig. 12) presents an interesting failure case.

Another limitation of EgoSampling is to handle long periods
in which the camera wearer is static; hence, the camera is not
translating. In these cases, both the fundamental matrix and
the FOE estimations can become unstable, leading to wrong
cost assignments (low penalty instead of high) to graph edges.
The appearance and velocity terms are more robust and help
reduce the number of outlier (shaky) frames in the output.

B. Panoramic Hyperlapse

In this section, we show experiments to evaluate Panoramic
Hyperlapse for single as well as multiple input videos. To
evaluate the multiple videos case (Section V), we have used
two types of video sets. The first type is the videos sharing
similar camera path on different times. We obtained the data
set of [39] suitable for this purpose. The second type is
the videos shot simultaneously by number of people wearing
cameras and walking together. We scanned the data set of [36]

TABLE III

COMPARING FOV: WE MEASURE CROPPING OF OUTPUT FRAME OUTPUT
BY VARIOUS METHODS. THE PERCENTAGES INDICATE THE AVERAGE

AREA OF THE CROPPED IMAGE FROM THE ORIGINAL INPUT IMAGE,
MEASURED ON TEN RANDOMLY SAMPLED OUTPUT FRAMES FROM

EACH SEQUENCE. THE SAME FRAMES WERE USED FOR ALL
THE FIVE METHODS. THE NAÏVE, EGOSAMPLING (ES), AND

PANORAMIC HYPERLAPSE(PH) OUTPUTS WERE STABILIZED

USING YOUTUBE STABILIZER [16]. REAL-TIME
HYPERLAPSE [10] OUTPUT WAS CREATED USING

THE DESKTOP VERSION OF THE HYPERLAPSE PRO

APP. THE OUTPUT OF HYPERLAPSE [8] IS ONLY

AVAILABLE FOR THEIR DATASET. WE OBSERVE
IMPROVEMENTS IN ALL THE EXAMPLES

EXCEPT “WALKING2,” IN WHICH THE

CAMERA IS VERY STEADY

and found videos corresponding to a few minutes of a group
walking together toward an amusement park. In addition, we
choreographed two videos of this type by ourselves. We will
release these videos upon paper acceptance. The videos were
shot using a GoPro3+ camera. Table I gives the resolution,
FPS, length, and source of the videos used in our experiments.

C. Implementation Details

We have implemented Panoramic Hyperlapse in MATLAB
and run it on a single PC with no GPU support. For tracking,
we use MATLAB’s built in SURF feature points detector
and tracker. We found the homography between frames using
RANSAC. This is a time-consuming step, since it requires
calculating transformations from every frame, which is a
candidate for a panorama center, to every other frame in the
temporal window around it (typically ω = 50). In addition,
we find homographies to other frames that may serve as other
panorama centers (before/after the current frame), in order
to calculate the shakiness cost of a transition between them.
We avoid creating the actual panoramas after the sampling
step to reduce runtime. However, we still have to calculate the
panorama’s FOV as it is part of our cost function. We resolved
to create a mask of the panorama, which is faster than creating
the panorama itself. The parameters of the cost function in (6)
were set to α = 1 · 107, β = 5 · 106, γ = 1 and λ = 15 for
the crop window smoothness. Our cross − video term was
multiplied by the constant 2. We used those parameters both
for the single and multivideo scenarios. The input and output
videos are given at the project’s Web site.

D. Runtime

The following runtimes were measured with the setup
described in the previous section on a 640 × 480 resolution
video, processing a single input video. Finding the central
images and calculating the shakiness cost takes 200 ms per
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Fig. 13. Comparing FOV of hyperlapse frames, corresponding to approximately same input frames from sequence “Bike1.” For best viewing, zoom to 800%.
(a) Original frame and output of EgoSampling. (b) Output of [8]. Cropping and rendering errors are clearly visible. (c) Output of [10] suffering from strong
cropping. (d) Output of our method, having the largest FOV.

TABLE IV

EVALUATION OF THE CONTRIBUTION OF MULTIPLE VIDEOS TO THE FOV.
THE CROP SIZE WAS MEASURED TWICE: ONCE WITH THE SINGLE

VIDEO ALGORITHM, WITH THE VIDEO IN THE FIRST COLUMN AS

INPUT, AND ONCE WITH THE MULTIVIDEO ALGORITHM

frame, each. Calculating the FOV term takes 100 ms per frame
on average. Finding the shortest path takes a few seconds for
the entire sequence. Sampling and panorama creation takes
3 s per panorama, and the total time depends on the speed
up from the original video, i.e., the ratio between number of
panoramas and length of the input. For a typical 10× speed,
this amounts to 300 ms. The total runtime is 1.5–2 s per frame
with an unoptimized MATLAB implementation. In the multi-
input video cases, the runtime grows linearly with the number
of input sequences.

E. Evaluation

The main contribution of Panoramic Hyperlapse to the
hyperlapse community is the increased FOV over existing
methods. To evaluate it we measure the output resolution (i.e.,
the crop size) of the baseline hyperlapse methods on the same
sequence. The crop is a side effect of stabilization: without
crop, stabilization introduces “empty” pixels to the FOV. The
cropping ensures to limit the output frame to the intersection
of several FOVs, which can be substantially smaller than the
FOV of each frame depending on the shakiness of the video.

The crop size is not constant throughout the whole output
video, and hence it should be compared individually between
output frames. Because of the frame sampling, an output frame
with one method is not guaranteed to appear in the output
of another method. Therefore, we randomly sampled frames
for each sequence until we had ten frames that appear in
all output methods. An example is shown in fig. 13. For a
panorama, we considered its central frame. We note that the
output of [8] is rendered from several input frames, and does
not have any dominant frame. We therefore tried to pick frames
corresponding to the same geographical location in the other
sequences. Our results are summarized in Tables III and IV.

Fig. 14. Comparing FOV of panoramas generated from single-video (left) and
multivideo (right) Panoramic Hyperlapse. Multivideo Panoramic Hyperlapse
is able to successfully collate content from different videos for enhanced FOV.

It is clear that in terms of FOV we outperform most of the
baseline methods on most of the sequences. The contribution
of multiple videos to the FOV is illustrated in Fig. 14.

The naïve fast-forward, EgoSampling, and Panoramic
Hyperlapse outputs were stabilized using YouTube stabilizer.
Real-time Hyperlapse [10] output was created using the
desktop version of the Hyperlapse Pro. app. The output of
Hyperlapse [8] is only available for their data set.

a) Failure case: On sequence Walking2 the naïve results
get the same crop size as our method (see Table III). We
attribute this to the exceptionally steady forward motion of
the camera, almost as if it is not mounted on the photographer
head while walking. Obviously, without the shake Panoramic
Hyperlapse cannot extend the FOV significantly.

F. Panoramic Hyperlapse From Multiple Videos

Fig. 14 shows a sample frame from the output generated by
our algorithm using sequences “Walking 7” and “Walking 8.”
Comparison with panoramic hyperlapse generated from single
video clearly shows that our method is able to assemble
content from frames from multiple videos for enhanced FOV.
We quantify the improvement in FOV using the crop ratio
of the output video on various publicly and self-shot test
sequences. Table IV gives the detailed comparison.

Multivideo Panoramic Hyperlapse can also be used to
summarize contents from multiple videos. Fig. 15 shows an
example panorama generated from sequences “Walking 5” and
“Walking 6” from the data set released by [36]. While a lady
is visible in one video and a child in another, both persons
appear in the output frame at the same time.

When using multiple videos, each panorama in the
Panoramic Hyperlapse is generated from many frames, as
much as 150 frames if we use three videos and a temporal
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Fig. 15. Panoramic Hyperlapse: Left and middle: two input spatially neighboring frames from different videos. Right: output frame generated by Panoramic
Hyperlapse. Blue lines: frames coming from the same video as the middle frame (Walking6). White lines: frames from the other video (Walking5). Notice
that while a lady can be observed in one and a child in another, both are visible in the output frames. The stitching errors are due to misalignment of the
frames. We did not have the camera information for these sequences and could not perform lens distortion correction

window of 50 frames. With this wealth of frames, we can
filter out some frames with undesired properties. For example,
if privacy is a concern, we can remove from the panorama all
frames having a recognizable face or a readable license plate.

VII. CONCLUSION

We propose a novel frame sampling technique to produce
stable fast-forward egocentric videos. Instead of the demand-
ing task of 3D reconstruction and rendering used by the
best existing methods, we rely on simple computation of the
epipole or the FOE. The proposed framework is very efficient,
which makes it practical for long egocentric videos. Because of
its reliance on simple optical flow, the method can potentially
handle difficult egocentric videos, where methods requiring
3D reconstruction may not be reliable.

We also present Panoramic Hyperlapse, a method to create
hyperlapse videos that have a large FOV. While in EgoSam-
pling we drop unselected (outlier) frames, in Panoramic
Hyperlapse, we use them to increase the FOV in the output
video. In addition, Panoramic Hyperlapse naturally supports
the processing of multiple videos together, extending the
output FOV even further, as well as allowing the consumption
of multiple such videos in less time. The large number of
frames used for each panorama also allows the removal of
undesired objects from the output.
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