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opposite to the classical ones based on the commonly ac- 
cepted belief that when A l l  = 0, no penetration has taken 
place and l?2,0 = 0. 

I',) > 20 mN m-l. Under these conditions the predicted 
composition of the mixed VBLS + EL monolayer x 2  = 0.2 
corresponds to 1/4 VBLS/EL (mol/mol), and the molar 
free energy of EL molecules is 1.7 kcal/mol superior to that 
in the pure monolayer. These conclusions are qualitatively Registry No. VBLS, 143-67-9. 
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Computerized image analysis techniques are developed for fractal analysis of boundary lines of objects 
possessing irregular surfaces. The objeds analyzed are proteins, a catalyst, macroporous silica gel, simulated 
colloidal flocs, and a carbon black aggregate. Application to stylus profilometry is demonstrated. It is 
shown that the standard fractal line analyses are insensitive and may lead to questionable interpretations. 
More sensitive methods are presented and used to reanalyze previous reports and to investigate the 
applicability of the concept of self-similarity in nonstatistical analyses. Conditions under which line fractal 
dimension is indicative of surface roughness are briefly discussed. 

1. Introduction 
Chemical processes a t  interfaces are governed by three 

main parameters: (a) the chemical and physical properties 
of the functional groups at  the surface (these functional 
groups may vary from a plethora of species such as found 
at  the surfaces of carbon blacks to the relatively simple 
chemistry found at the surfaces of many metal oxides), (b) 
the distribution of active (not necessarily catalytic) sites 
a t  the surface (here one can mention the on-going debate 
regarding clustering of silanols a t  the surface of silica),' 
(c)  the geometry of the surface. The first parameter, and 
to a certain extent the second one, has been studied so far 
by tools that have long been developed for homogeneous 
solutions. The extrapolation from solutions to surfaces was 
possible in this case, since the chemistry of, say, an OH 
group is basically the same whether this group is part of 
a solvent molecule or a surface moiety. This straightfor- 
ward extrapolation is not possible, however, for the third 
parameter, surface geometry: in solution, a solute molecule 
is surrounded by a spherical symmetric solvent shell and 
its translational movements are governed by Brownian 
collisions, by concentration gradients, and by convections. 
In contradistinction to solution, surface cage properties and 
surface translation are strongly dependent on geometry. 
"Solvation" on a surface is nonisotropic, the fEed-geometry 
cage has no dynamical character of formation, and diffu- 
sion is governed by the wiggles of the surface. Investigation 
of the geometrical problem is further complicated by the 
fact that unless special precautions and procedures are 
taken,2 material surfaces do not possess a simple flat 
two-dimensional geometry. In contrast, the majority of 
surfaces are fractured, stepped, convoluted, and very ir- 
regular. The need for a practical, simple yet powerful tool 
for characterization of surface irregularity is emphasized 
by the impressive list of surface phenomena that are 
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strongly dependent on this geometric factor: adsorp- 
tion/desorption hysteresis loops, catalysis, conformation 
of adsorbates, diffusion on surfaces, crystal growth, drug 
dissolution, spectral properties of adsorbates (e.g., en- 
hanced Raman spectrum), scattering of irradiation and 
projectiles, and chromatography-to mention just a few. 

The classical treatment of surface irregularity has been 
to regard it as a deviation from an ideal reference, e.g., a 
plane,3 or to regard i t  as superposition of regular periodic 
functions (Fourier transforms4). Mandelbrot has sug- 
gested recently a different approach to natural irregularity 
in general, an approach that has an inherent appeal-it 
does not treat the irregularity as a pathological deviation 
but takes it as a starting point.5 By this approach the 
degree of irregularity is given by the fractal dimension, 1 
5 D < 2 for lines and 2 I D < 3 for surfaces, so that the 
higher D is, the more wiggly the object is. D is obtained 
from a resolution analysis: the rate of appearance of new 
features of the irregularity as a function of the size of the 
probing yardstick (or degree of magnification) is measured. 
An object is a fractal if this rate is given by the power law 

where n is the number of yardsticks of size r needed to 
measure the total length of the wiggly line. For a smooth 
curve, eq 1 becomes the familiar n a r-l; for a wiggly line, 
see Figure 1 for visualization of the equation. Equation 
1 has been widely interpreted as reflecting scaling self- 
similarity (ref 5 and most of the fractal analyses cited 

n a rD (1) 
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Figure 1. Visualization of eq 1. For a wiggly surface boundary, 
the total length grows faster than n a r-l (n, the number of discs; 
r ,  disc radius). 

below). The generality of this interpretation is questioned 
in this article with respect to nonstatistical analyses. 

In a recent series of papers,6 Pfeifer and we have de- 
veloped the use of adsorption data for the determination 
of fractal properties of surfaces at the molecular-size range. 
Our main discovery has been that the surfaces of most 
materials, amorphous and crystalline, porous and nonpo- 
rous, synthetic and natural, are fractals.6e The key idea 
in that investigation was to use molecules as yardsticks of 
varying sizes by methods derived from eq 1. By definition 
then, information that is obtained by these methods on 
geometric irregularity covers the molecular scales. For 
reaction-diffusion studies on fractal surfaces, it becomes 
important, however, to determine the fractal dimension 
at larger scales, e.g., a t  distances that a reactant or an 
excited state diffuses before reacting. Such larger scales 
of roughness are also important for a variety of applications 
such as adhesion, particle rheology, corrosion, and optical 
performance. Whereas good resolution of molecular-size 
features is still beyond the power of most of the contem- 
poral imaging techniques,’ diffusional distances, say of 50 
A and up, do enter the domain of these techniques. 
Consequently we have launched recently8 a project aimed 
at elucidating the fractal dimension of surfaces by analyses 
of (electron) microscope pictures. Magnifications need not, 
of course, be only optical; stylus traces3 and molecular 
models are two other possibilities analyzed below. So far 
we have inferred supramolecular ranges (up to 100 A) only 
indirectly by assuming particle similarity at least down to 
the finest resolution (smallest adsorbate).6c,e*h Image 
analysis techniques have the potential to test directly this 
assumption through partial overlap of the probing ranges 
of the two independent experimental methods. The lim- 
itations of Fourier analysis of irregular lines have been 
discussed elsewhere.6f 

Determination of scaling properties of surface features 
by image analysis requires, in principle, stereoscopic 

(6) (a) Avnir, D.; Pfeifer, P. Nouo. J .  Chim. 1983, 7, 71. (b) Pfeifer, 
P.; Avnir, D.; Farin, D. Surf. Sci. 1983, 126, 569. (c) Pfeifer, P.; Avnir, 
D. J. Chem. Phys. 1983, 79, 3558. (d) Avnir, D.; Farin, D.; Pfeifer, P. J. 
Chem. Phys. 1983, 79, 3566. (e) Avnir, D.; Farin, D.; Pfeifer, P. Nature 
(London) 1984,308, 261. (0 Pfeifer, P. Appl. Surf. Sci. 1984,18,146. (9) 
Pfeifer, P.; Avnir, D.; Farin, D. J.  Stat. Phys. 1984, 36, 699. (h) Avnir, 
D.; Farin, D.; Pfeifer, P. J. Colloid Interface Sci. 1985,103,112. (i) Farin, 
D.; Volpert, A.; Avnir, D. J. Am. Chem. Soc. 1985, 107, 3368-3370. 
(7) For a recent exception, see, e.g.: Hovmuller S.; et al. Nature 

(London) 1984, 311, 238. 
(8) Peleg, S.; Naor, J.; Hartley, R.; Avnir, D. IEEE Trans. Pattern 

Anal. Mach. Intelligence 1984, 6, 518. 

techniques. While these three-dimensional analysis tools 
are still at the developmental stage, useful information is 
already available from reduced dimensionality techniques. 
Fractal resolution analysis of two-dimensional objects (e.g., 
a picture of a three-dimensional object, a texture) are now 
possible; the technique has recently been developeds and 
its application to electron microscope textures will be given 
elsewhere. It is remarkable that useful information on the 
fractal nature of surfaces may be obtained even by cautious 
(see below) analysis of lines. In fact the idea of using a 
trace line, such that is obtained by stilus profilometry, as 
a representative of surface geometry is one of the cor- 
nerstones in the study of surface ro~ghness .~ 

The implementation of fractal analysis of boundary lines 
is spreading fast in many domains of natural sciences. 
Examples are the fractal analyses of the boundaries of rain 
 cloud^,^ of mitochondria membranes,’O and of diffusing 
liquid fingers.ll Three principal methods are used: length 
measurement as a function of resolution (i.e., yardstick size 
and other dilation processes) ,5 perimeter/area analysis at 
fixed res~lut ion,~ and length measurement as a function 
of optical magnifications, measured with a fixed yardst- 
ick.1°J2 Of special interest for the study reported here are 
the line analyses of materials. These include fractures 
surfaces of metals,13J4 quartz particles,15 and a wide variety 
of other particulate materials, as described by Kaye.16 A 
number of authors16-18 found interest in a picture of a 
colloidal carbon floc published by Medalialg (Figure 6a) 
and described it as a fractal object. It is the ease of the 
technique and ita widespread use that prompt us to rein- 
vestigate this analytical tool with special emphasis on 
nonstatistical interpretations. We describe a computerized 
method for the line analyses; we use sensitive straight line 
tests and come to the following conclusions: (a) A 
boundary line that obeys eq 1 need not be self-similar. (b) 
Nonstatistical strict self-similarity is scarce. (c )  Even in 
the absence of self-similarity, the exponent D in eq 1 
carries useful information in the original spirit of Rich- 
ardson coast-line ana lyse^,^^^^ i.e., an empirical relation 
between scales and measured object. However, (d) eq 1 
is quite insensitive for detailed analysis of local, short-range 
resolution variations. It must be replaced by more sen- 
sitive methods, two of which are described below. (e) 
Equation 1 with D C 1.2 describes well virtually all low- 
irregularity lines tested by us and others, even lines that 
are clearly not self-similar. 

2. Length Measurements by Computerized Image 

2.1. The Method. Boundary lines were reproduced 

(9) Lovejoy, S. Science (Washington, D.C.) 1982,216, 185. 
(10) Paumgartner, D.; Losa, G.; Weibel, E. R. J. Microsc. (Orford) 

1981, 121, 51. 
(11) Nittmann, J.; Daccord, G.; Stanley, E. Nature (London) 1985,314, 

141. 
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demic Press: New York/London, 1982; pp 127-161. 
(13) Mandelbrot, B. B.; Paasoja, D. E.; Paullay, A. J. Nature (London) 

1984, 308, 721. 
(14) (a) Chermant, J. L.; Coster, M. J. Mater. Sci. 1979, 14,509. (b) 

Coster, M.; Chermant, J. L. Int. Met. Reo. 1983,28, 234. 
(15) Orford, J. D.; Whalley, N. B. Sedimentology 1983, 30,655. 
(16) (a) Kaye, B. H. “Direct characterization of Fine Particles”; Wiley: 

New York, 1981; pp 367-378. (b) Kaye, B. H. In “Modern Methods of 
Fine Particle Characterization”; Beddow, J. K., Ed.; CRC Press: Boca 
Raton, FL, in press. (c) Kaye, B. H. Research Report 21, Institute for 
Fine Particle Research, Laurentian Univ., Sudbury, Ontario, Canada, 
1978. 
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from pictures of the objects. If the object is of one shade 
only and the background of another, boundary line re- 
production is unnecessary. The boundary to be analyzed 
was videophotographed with a camera and digitized on a 
512 X 512 piFel grid using a Grinell image processing 
system linked to a general pukpose computer (Vax, Digital). 
Boundary regions were extracted from the Digital images 
and then represented by a sequence of numbers in the 
range 0-7. Each number represents the relative location 
to the previous point, using the following scheme, relative 
to P: 

3 2 1  
4 P O  
5 6 7  

Thus, the line represented by 0-6-0-2-24-64-2-0-6 is .-. e-. 

I I_! I '7 i 
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I ,  .-. 
Further details of this procedure may be found in ref 21. 

For length measurements, we assume the line is straight 
between any two conskcutive points. Given a yardstick 
length r (r can be any real value), we choose a starting point 
and walk the yardstick along the line. We do the walking 
by moving continuously along the line, until we reach the 
first point P on the line with "aerial" distance r from the 
starting point. We count this as the first step of the 
yardstick and continue again from the point P. Neither 
the starting point nor the point P should be grid points. 
Since in most cases one cannot cover the entire line with 
an integral number of yardsticks, the termination should 
be handled differently. Out of several possible approaches 
we chose to take the straight line segment between the 
current point and the ehd point of the line. We add the 
length of this line segment to the total length, and the ratio 
of its length to the yardstick's length is added to the 
yardstick count. Other methods are possible (see, for ex- 
ample, ref 181, but there is no definite advantage to any 
method. With small yardsticks the termination treatment 
does not make a substantial difference. The fractal di- 
mension is then calculated from eq 1. The smallest 
yardsticks for which the trivial D = 1.0 is obtained were 
omitted. The largest yardstick used did not exceed 20% 
of the object's diameter. A 50-pixel reference line is in- 
dicated in the figures. In case the boundary line has gaps 
(e.g., Figure 3a), the total number for all line fractions w i  
taken. For all yardsticks, r8+'/ri = 1.2. Starting the 
yardstick count at different points or rotating the picture 
did not affect D values. The line thickness causes slight 
changes in D whether the outer or the inner pixels are 
taken. As a standard we took the inner pixels. Hand 
instability a t  the boundary line reproduction stage, does 
not affect D. In order to evaluate how much is lost by the 
imaging process, two objects of known fractal dimension 
were analyzed. The first was a limited Koch curve con- 
structed by six iterations? A theoretical Koch curve yields 
1.26 ...; the limited six iteration curve, constructed as a 
number chain code in the computer memory, resulted in 
an expected lower value of 1.22 f 0.01. Analysis of an 
image of the limited curve gave the same value (Table 3.Cf. 
ref 17,18). The second object was the random hexasquig 
on p 231 in ref 5. image analysis of the figure on that page 
resulted in D = 1.31 f 0.01. The theoretical value is 1.33...5 
2.2 Comments on Some Other Methods of Fractal 

Line Analysis. I t  is beyond the scope of this article to 

(21) Rosenfeld, A.; Kak, A. "Digital Picture Processing"; Academic 
Press: New York, 1981. 

Table I. Fractal Dimensions of Boundary Lines of Some 
Proteins 

fractal 
protein dimensb 

mouse immunoglobulin A Fab front view 1.129 f 0.006 

bottom view 1.145 f 0.007 
bacterial serine protease A 1.088 f 0.002 
chicken lysozyme 1.118 f 0.006 
subtilisin inhibitor, BPN' complex 1.110 f 0.004 

1.133 f 0.007 a-cobratoxin" 
cytochrome C3 1.117 f 0.004 
ribosomal protein L7/L12 bottom view 1.132 f 0.006 

front view 1.102 f 0.007 
right view 1.125 f 0.008 

McPc 603 

dimer 

See Figure 2. *All correlation coefficients: 0.9996-0.9999. 

critically review the many variations of methods for de- 
termination of line fractality. A few comments, however, 
will be made. 

The idea of walking a yardstick along a line dates back 
to Richardson20 and was manually implemented by many 
authors, e.g., Kaye.lG Semiautomated analysis was reported 
by a number of invest igat~rs '~J~J~ who used variations of 
the dilation m e t h ~ d : ~  the line is covered by digital circles 
of radius r ,  and the total covered area is then divided by 
2r to give the measured length. The dilation methods fail, 
however, to measure length of plane-fiig lines, as dilation 
with any circle of positive radius will yield the same area: 
the entire plane. Kaye, in his manual "swing of a compass" 
method,16 takes the first intersection encountered. This, 
too, will fail when lines are plane filling. It should be 
mentioned, however, that for cases of shapes and sets of 
points on the plane, the dilation method6 yields good re- 
sults. Others (e.g., ref 15) have measured distances on the 
analyzed line itself. The paradox is, of course, using the 
object's length to measure its length. Aside from lacking 
theoretical justification, distances along the curve are in- 
accurate and resolution dependent. 

Finally, it should be mentioned that automated image 
analysis has been used in the very active field of fractal 
aggregates.22 The most common method is analysis of 
mass distribution. The fractal dimension thus obtained 
may coincide with the boundary line fractal dimension (the 
hull d i m e n ~ i o n ~ ~ ) ,  under special ~ o n d i t i o n s . ' ~ ~ ~ ~  

3. Standard Fractal Dimension Determination of 
Selected Irregular Surfaces 

By the technique described in section 2, a number of 
irregular surfaces, all of which have been reported and 
described previously, were analyzed. In these analyses it 
is assumed that Dsurface = Dime + l.5 This assumption, 
which has been routinely used also in other s t ~ d i e s , ~ ~ , ' ~  is 
valid only for isotropic objects and is further discussed in 
section 4. 

Proteins. Two research groups have analyzed the ir- 
regular structure of proteins in fractal These 
groups were interested in the fractal dimension of the 
wiggled polypeptide backbone. Our point of view is dif- 
ferent: proteins interact with the environment through 
the iqterface. Therefore surface accessibility of the pro- 
teins26 seems to us of greater relevance to the under- 

(22) E.g.: Matsushita, M.; Sano, M.; Hayakawa, Y.; Honjo, H.; Sa- 

(23) Voss, R. F. J. Phys. A: Math. Gen. 1984, 17, L373. 
(24) Allen, J. P.; Colvin, J. T.; Stinson, D. G.; Flynn, C. P.; Stapleton, 

(25) Yoshinori, I.; Toshyuki, I. J. Phys. SOC. Jpn. 1984, 53, 2162. 

wada, J. Phys. Reu. Lett. 1984, 53, 286. 

H. J. Biophys. J .  1982,38, 299. 
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Figure 2. Number of yardsticks (a), the difference in number 
of yardsticks (b), and local slope (c), as a function of yardstick 
size (in pixels) for a protein (a-cobratoxin) silhouette. 

standing of protein-involved processes (e.g., enzymatic 
catalysis).6d 

Seven proteins were analyzed by taking the silhouettes 
of computerized space-filling models (Figure 2a) as re- 
ported by Feldmanne2' Two of these were analyzed from 
more than one viewpoint. The results are collected in 
Table I. Excellent straight lines are obtained (Figure 2a), 
with D values around 1.1, significantly lower than back- 
bone fractal dimensions."l% The data in Table I is further 
discussed in section 4. Pfeifer et al. have employed re- 
cently section boundary lines of lysozyme in a similar 
approach.28 

Pt Black Catalyst. Barna et ai. have studied the 
morphology of Pt black catalysts.29 Typically for such 
studies, the report is accompanied by many pictures 
showing the morphology of various Pt blacks, as the only 

(26) Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379. 
(27) Feldmann, R. Proceedings of the 7th A n n u l  Katzir-Katchokrky 

Conference, Rehovot and Nof-Ginossar, Israel, 1980. (Protein photo- 
graphs distributed by the author.) 

(28) Pfeifer, P.; Welz, V.; Wippermann, H. Chem. Phys. Lett. 1985, 
113. 535. 

(29) Barna, A.; Barna, P. B.; Toth, L.; Paal, Z.; Tetenyi, P. Appl. Surf. 
SC~. 1982-1983, 14, 85. 
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Figure 3. Number of yardsticks (a) and local slope (b), as a 
function of yardstick size (in pixels) for Pt black catalyst. 

means to present the geometrical features of the catalyst. 
The fractal approach opens the possibility of characterizing 
the irregularity of catalysts by a single number. This is 
exemplified on one of Barna's catalysts (Figure 3a in ref 
29, Figure 3a in this article) for which D = 1.20 f 0.01 
(correlation coefficient, 4.999) is obtained. For a dis- 
cussion of fractal catalysts, see ref 6c,g. 

Porous Silica Gel. This common adsorbent has been 
the subject of intensive investigation6a,gsh,i from which it 
was concluded that a t  the molecular range, the fractal 
dimension of the surface is close to the limit Dedaw - 3.0. 
Small-angle X-ray scattering results are in agreement.30 
Unger and Gimpel have published a scanning electron 
micrograph, of a novel chromatographic macroporous silica 
(LiChrosphere Si 4000; average pore diameter 4000 A).31 
The boundary line of the pore entrances was reproduced 
and analyzed (Figure 4a), to yield D = 1.36 i 0.03 (cor- 
relation coefficient, -0.997); i.e., Dewface = 2.4 at a range 
which is far beyond molecular scales. 

Sutherland's Simulated Flocs. As mentioned in 
section 2, fractal analyses of aggregation processes and of 
the resulting clusters have gained intensive attention in 
recent  year^.^^.^^ All reports except the very recent study 
by Vossz3 were interested in the scaling properties of the 
mass distribution (e.g., number of particled as a function 

(30) Bale, H. D.; Schmidt, P. W. Phys. Reu. Lett. 1984,53, 596. 
(31) Unger, K. K.; Gimpel, M. G. J. Chromatogr. 1979, 180, 93. 
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Figure 4. Number of yardsticks (a) and local slope (b), as a 
function of yardstick size (in pixels), for macroporous silica gel, 
LiChrosphere Si 4000. \ 

of the distance from the cluster center). Since many high 
surface area materials, such as silica aerogel, are formed 
by clustering and condensation of micro sphere^,^^ it 
seemed to us that fractal analysis of the surface of such 
clusters (the cluster "hull" 5723) is of interest. We chose to 
analyze the perimeter of simulated flocs, as reported by 
S ~ t h e r l a n d . ~ ~  This study is a pre-fractal-era (1967) 
cluster-cluster-aggregation model. I t  is based on 
Schmoluchowski's model in which an i-fold cluster and a 
j-fold cluster yield an (i + j)-fold cluster until there is only 
one big floc. Such a model gives a decreasing weight to 
single-particle addition as the process goes on. Two flocs 
of 601 particles each (Figures 3 and 4 in ref 33; Figure 5a 
in this article) were reproduced and analyzed as described 
in section 2. It is remarkable to find out that eq 1 describes 
the two flocs very well, and that both yield virtually the 
same value: D = 1.29 f 0.01 (left) and D = 1.28 f 0.01 
(right) (correlation coefficient for both, -0.999). 

Medalia's Carbon Black Aggregate. Medalia pub- 
lished more than a decade ago a picture of a carbon black 
aggregate.19 As mentioned above, the boundary line of this 
aggregate was analyzed by three groups. All claim that this 
is a fradal object with a D value of 1.07 and 1.37," 1.13,18 
and 1.19.16 We find (Figure 6a) D = 1.10 f 0.01 (corre- 

(32)  Zarzycki, J.; Parssas, M.; Phalippou, J. J. Mater. Sci. 1982, 17, 

(33)  Sutherland, D. N. J. Colloid Interface Sci.  1967,25, 373. 
3711. 

H 

a 3.a 

0.81 0.81 A- 1 
b 

-l.w 
0.10 0.90 1.40 1.90 2.10 

log yardstick sire 
Figure 5. Sutherland's simulated flocs. (a) Number of yardsticks 
as a function of yardstick size (in pixels) for the left floc. (b) Local 
slopes as a function of yardstick size (in pixels) for the left (I) 
and right (11) flocs. 

Table 11. Effect of Changes in Stylus Radius on Trace 
Length 

length, pixels stylus radius, p m  
2617 2.5 
1731 
790 
401 
389 

50 
280 

1700 
3200 

lation coefficient -0.999) but question below the self-sim- 
ilarity interpretation of this single object. 

Stylus Profilometry. The technique is based on the 
principle of providing a section of the surface by recording 
the trace of the ups and downs of a diamond stylus probing 
a s u r f a ~ e . ~ , ~  This convenient technique is in use in a wide 
variety of applications, as exemplified in our recent work 
on fluorescent silica thin films prepared by the sol/gel 
method.35 It is interesting to notice that this technique 
provides a direct method for fractal analysis by measuring 
the length of the trace as a function of styli radii either 

(34) Radhakrishnan, V. Wear 1970, 16, 325. 
(35)  Avnir, D.; Kaufmann, V. R.; Reisfeld, R. J .  Non-Cryst. Solids, in 

press. 
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Figure 6. Number of yardsticks (a) and local slope (b) as a 
function of yardstick size (in pixels) for Medalia’s carbon particles 
floc. 

by actually replacing the styli or by computing coarser 
traces froni the finest The second possibility is in 
fact equivalent to the procedure described in section 2. 
Radhakrishnan measured the surface face of a milled 
sample with a 2.5-pm stylus and computed the traces ob- 
tained from coarser styli.34 We calculated the fractal di- 
mension by measuring the lengths of the traces from 
Figure 3 in ref 34 as a function of styli radii (Table 11) and 
compared the results to the analysis of the finest trace by 
the method described above. Indeed, virtually the same 
D values were obtained: D = 1.29 f 0.04 for the first 
method and D = 1.25 f 0.02 for the latter. And so, what 
is called “a source of error” (i-e., variations in styli radii, 
p 21 in ref 3) carries in fact useful information. 

4. Interpretation of the D Values 
As we have seen in the previous section, the exponent 

D provides usefdl information on the overall degree of 
irregularity. However, since D values are obtained from 
log/log plots which have a known smoothing effect, and 
since the experimental points can occupy only a very lim- 
ited zone in the log n - log r plane (see, e.g., the zone for 
1.0 < D < 1.5 in Figure 7), there is a danger of insensitivity 
which may hide useful information and lead to erroneous 
interpretations. 

As an example we look at  a regular sawtooth (Figure 8a) 
which is obviously not fractal and not self-similar. If this 
object is analyzed by the standard technique, with a rea- 
sonable range of yardsticks, as used for all other objects, 

L 

0 1 
0.81 I 1 I I 

0.00 0.60 I .20 I .EO 2.40 
log yardstick w e  ( p ixels ) 

Figure 7. Low sensitivity of log n vs. log r plots of eq 1 dem- 
onstrated on the left floc in Figure 5. Cf. also the derivative on 
Figure 5b. 
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Figure 8. Number of yardsticks (a), the difference in number 
of yardsticks (b), and local slope (c), as a function of yardstick 
size (in pixels), for a sawtooth. 

a good “fractal dimension” is obtained: D = 1.09 f 0.01 
(correlation coefficient, 4.999). Similarly the early stages 
of the construction of Koch curve ( f i t  iteration, a straight 
line (the initiator); second iteration, the generator A; and 
so on up to the seventh iteration5) yield progressively larger 
D values (Table 111, Figure 9a) approaching the limit 1.26 ... 
It is true that by proper choice of yardsticks (exactly 
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Figure 10. Number of yardsticks (a) and local slope (b), as a 
function of yardstick size (in pixels), for a reference particle taken 
from Orford e t  al.ls 

lag yardstick size 
Figure 9. Number of yardsticks (a), the  difference in number 
of yardsticks (b), and local slope (c), as a function of yardstick 
size (in pixels) for the  seventh construction iteration in a Koch 
curve (Table 111). 

Table 111. D Values for the Early Iterations in the 
Construction of a Koch Curve 

iteration D" 
1.00 f 0.00 
1.04 f 0.01 
1.13 f 0.01 
1.17 d~ 0.01 
1.19 f 0.01 
1.22 f 0.01 
1.22 f 0.01 

m 1.26 ... 
"Yardstick range: 3.5-114.4 pixels. All correlation coefficients, 

4.9990 or better. bLength of initiator: 430 pixels. Smallest edge 
length on the video screen in higher iterations: approximately 1/3, 

lI9, etc., of that value. 

one-third of the initiator, one-ninth, etc.) one would obtain 
the "true" fractal dimension, however, nothing in eq 1 
restricts the choice of experimental yardsticks. It is also 
clear that the computed D values for regular objects like 
Figure 8a and, e.g., the third iteration of Koch curve will 
depend on the range of yardstick chosen and its location 
relative to the regular-feature size. This warning against 

the automatic use of eq 1 on nonrandom objects is nec- 
essary, since a number of authors have done it and ob- 
tained questionable results (see, e.g., the quite regular 
reference particle analyzed in ref 15; Figure IOa in this 
article). 

The fractal dimension and its self-similarity interpre- 
tations are basically statistical concepts. For instance, the 
surface fractal dimension we obtained from adsorption 
studies6 were the result of data collected from the equiv- 
alent of lo6 adsorbent particles X lo5 slices = 10" 
boundary lines per experiment! The question is, then, 
what interpretation should be given to D values obtained 
from analyses of single objects which reveal random ir- 
regularity, like the examples analyzed in section 3 or even 
like the object in Figure l la ,  which yields D = 1.13 f 0.01 
(correlation coefficient, 4.999). 

It seems to us that for all objects analyzed in section 3, 
the single line analyses provide at least a crude evaluation 
for the fractal dimension of the whole object or of a col- 
lection of similar objects. Thus, the D = 1.20 f 0.01 ob- 
tained for the Pt /C catalyst, from an arbitrarily chosen 
limited zone, carries information on the low irregularity 
of the whole object. Interest in single-object irregularity 
rather than in large assemblies is of course scientifically 
legitimate. More than that, local variations of irregularity 
may be a useful "fingerprint" of the object or of the 
mechanism that formed it, and since the standard analysis 
employed in section 3 seems to be insufficiently sensitive 
for detection of the finer features of a line, it seemd to us 
necessary to develop and use more sensitive tools. 3 f  the 
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Table IV. Fractal Dimensions of Various Objects 
fractal dimens from 

object figure” eq 3 corr coeff eq 1‘ 

m 2.13 
Y 0 .“ 
Y 
u) u L 

r a - 
0 

0 c 
. 1.37 

CI) 0 
I 

0.62 

b 

ni = krLD 

therefore 

ni - ni+l = krLD[ 1 - (?r] 
For a fractal object only, and for a fixed ri+Jri, this be- 
comes 

(3) 
We chose r i+ l / r i  = 1.2 and tested whether eq 3 is obeyed 
in our objects. The increased sensitivity of eq 3 compared 
to eq 1 is immediately evident, e.g., in the sawtooth case 
(Figure 8b) for which the barely visible information around 
r = 10 in Figure 8a is greatly enhanced. The straight line 
is indeed much worse. See Figure 2b, Figure 8b, and Table 
IV. 

(b) Determination of Local Slope.13J4 The local 
“fractal dimension” was calculated for every yardstick by 
fitting a straight line for the values of that yardstick and 
ita smaller and larger neighbors, i.e., dD/dr  vs. r (see all 
figures). Whereas the first method is useful in locating 
regularities, the derivative analysis reveals both regularities 
and drifts in D. Sutherland’s floc shows a D drift from 
D = 1.1 to 1.5 (Figure 5b), Medalia’s floc drifts from D = 
1.0 to 1.25 (Figure 6b), the catalyst drifts from D = 1.0 to 

nj - ni+l = k’rLD 

protein 
(a-cobratoxin)* 

Pt black catalyst 
LiChrospher Si 

floc size 601 (I) 
floc size 601 (11) 
Medalia’s floc 
milled surface 

sawtooth 
Koch. curve 
reference particle 
arbitrary object 

4000 

(profilometr y) 

(rabbit) 

2 

3 
4 

5 
5 
6 

8 
9 

10 
11 

1.11 f 0.03 

1.15 f 0.04 
1.20 f 0.05 

1.20 f 0.03 
1.23 f 0.05 
1.03 f 0.02 
1.27 f 0.09 

1.1 * 0.1 
1.34 f 0.21 
1.2 f 0.1 
1.06 f 0.05 

-0.994 

-0.999 
-0.983 

-0.993 
-0.989 
-0.997 
-0.961 

-0.912 
-0.838 
-0.944 
-0.982 

1.13 f 0.01 

1.20 * 0.01 
1.36 f 0.03 

1.29 f 0.01 
1.28 f 0.01 
1.10 f 0.01 
1.25 f 0.02 

1.09 f 0.01 
1.22 f 0.02 
1.18 f 0.01 
1.13 f 0.01 

Yardstick range: 3.6-114.4 pixels. A 50-pixel reference line is 
displayed in all figures. *All proteins in Table I give virtually the 
same D values from the two equations. ‘All correlation coeffi- 
cients, -0.999; LiChrosphere, -0.997. 

1.2 (Figure 3b), the silica drifts from D = 1.0 to 1.8 (Figure 
4b), and so on. Thus, it seems that self-similarity in these 
objects, as might have been inferred from the analyses in 
section 3, is in fact quite questionable at the single-object 
level. On the other hand, the effect of small changes in 
resolution is clearly displayed by the derivative method. 
The shape of the derivative curve was found to be insen- 
sitive to variations in starting points. It remains to be 
established whether processes, which are local in nature 
and which occur on or in statistical fractal environments, 
are governed by the local non-self-similar or even non- 
fractal properties of the environment or whether they are 
governed by i b  statistical properties. Diffusion on fractal 
surfaces, currently investigated in our laboratory, is an 
example. 

Special care should be taken in the interpretation of 
experimental D < 1.2 values. The examples analyzed in 
this study show how easy it is to get “good” low D values 
for any low irregularity line, even for lines that are neither 
fractals nor self-similar. The original interpretation of 
Richardson,*O i.e., an empirical resolution behavior linking 
yardstick sizes to length, seems to us the safest one to make 
in these cases. 

Finally, we draw attention to two possible error sources 
in the assumption that an irregular boundary line fully 
represents the surface. First, as mentioned above, the 
objects may not be isotropic. Real objects should, in fact, 
always reveal some degree of nonisotropy. This is apparent 
to some degree in mouse immunoglobulin and in the ri- 
bosomal protein (Table I). Similarly, Lysozyme cross- 
section boundary lines vary from D = 1.08 to 1.27.28 
Second, if the boundary line is of a silhouette then it might 
be the sum of overlapping horizons. Such overlapping is 
expected to lower the D values. In the proteins analyses 
the effect probably exists but to a rather limited extent: 
for lysozyme we obtain D = 1.12 f 0.01 compared to 1.17 
f 0.01 from cross-section analysis.28 

Three-dimensional analysis for a more accurate look at 
protein surfaces, as well as the development of stereoscopic 
resolution analysis tools, is in progress. 

5. Conclusion 
The use of fractal dimensions to describe natural ir- 

regularities is growing very fast. As is often the case in 
rapidly growing fields, conceptual errors are carried along. 
We feel that this is, to a certain degree, the case in a 
number of recently reported line analyses. Yet, it is evi- 
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dent from these and other reports, as well as from the 
variety of irregular surfaces analyzed here, that the fradal 
approach has the potential of offering a solution to irreg- 
ularity problems. This is certainly true at  least a t  the 
original level of Richardson's interpretation. However, if 
one looks for self-similarity, then more sensitive tests, of 
the kind described in this article or analyses of large as- 
semblies should be employed. The simple message of this 

paper is beware of fractal rabbits (Figure 11). 
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CO and NO Adsorption on NiO: A Spectroscopic 
Investigation 
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The IR spectra of CO and NO adsorbed on NiO polycrystalline samples characterized by values of the 
specific surface area between 100-150 and 1-3 m2 g-' are reported. The spectra become progressively simpler 
with the decrease of the surface area and the increase of the perfection of the individual cubic crystallites 
(as shown by the electron micrographs), and their comparison allows the assignment of the modes associated 
with CO and NO adsorbed on extended (100) faces and geometrical (edges and steps) and atomic defects. 
Examination of the IR spectra obtained at different coverages reveals that dipole-dipole and chemical 
effects (similar to those described for metal surfaces) are responsible for marked frequency shifts of the 
stretching frequency. 

Introduction 
NiO, MgO, and NiO-MgO solid solutions have the same 

crystalline (rock salt) structure, a similar lattice parameter, 
and the same cubic habit: hence they represent an ideal 
family of solids for investigations concerning the surface 
properties of Mg2+ and Ni2+ (both isolated and clustered) 
located in well-defined geometrical situations. The in- 
teraction of CO and NO with MgO and MgO-NiO solid 
solutions has been investigated in detaiP4 by IR spec- 
troscopy and the results can be briefly summarized as 
follows: 

(a) CO. (i) CO does not interact a t  room temperature 
with 5-fold coordinated (both isolated and clustered) ions 
located on (100) facelets of cubic microcrystals; only at 77 
K weak Mg2+-C0 (a) and Ni2+-C0 (a-a) adducts are 
formed which are characterized by stretching frequencies 
in the 2160-2140-cm-' range. (ii) The room temperature 
interaction of CO with the ions located on edges and steps 
(and corners and other defects as well) is much more 
complex because it involves not only the cations but also 
the 02- anions. 

Apparently on both MgO and NiO-MgO solid solutions, 
the interaction mechanism shows a common feature: it 
leads to the simultaneous production of reduced and ox- 
idized species following the parallel schemes 
202- + (n  + 1)co - Co:-& + (co),2- MgO (1) 
202- + Ni2+ + 5CO - 

C032-ada + Nio(C0)4 MgO-NiO (2) 
where the negative species are in close interaction with the 

(1) Guglielminotti, E.; Coluccia, S.; Garrone, E.; Cerruti, L.; Zecchina, 

(2) Zecchina, A.; Spoto, G.; Coluccia, S.; Guglielminotti, E. J. Chem. 

(3) Zecchina, A.; Spoto, G.; Coluccia, S.; Guglielminotti, E. J. Chem. 

(4) Escdona Platero, E.; Spoto, G.; Zecchina, A. J. Chem. SOC., Fara- 

A. J. Chem. SOC., Faraday Trans. 1, 1979, 75, 96. 

SOC., Faraday Trans. 1, 1984,80, 1875. 

SOC., Faraday Trans 1, 1984,80, 1891. 

day Trans 1, in press. 

Mg2+ ions and Ni(C0)4 forms, with a coordinatively un- 
saturated Mg2+02- pair, the surface complex 

MgZt 

whose structure has been characterized by isotopic ex- 
change experiments2 and proved by direct Nio(C0)4 
chemisorption on Mg0.5 

On concentrated solid solutions also reduced polinuclear 
species have been observed. The relative proportion of 
mononuclear and polynuclear species depends not only 
upon the aggregation state of the Ni2+ ions but also upon 
the CO pressure (which favors the formation of the mo- 
nonuclear species). The redox process previously described 
is not the only one occurring on low-coordinated sites: in 
fact, room temperature stable Mg2+-CO (a) is also formed 
in a concerted way. At 77 K the reduction of Ni2+ ions 
located on exposed situations does not occur, and surface 
Ni2+(CO), adducts absorbing at  2100-2050 cm-' are ob- 
served. 

(b) NO. (i) NO does not interact a t  room temperature 
with Mg2+ ions located on (100) faces of both MgO and 
MgO-NiO solid solutions. At 77 K, on the contrary, the 
following process occurs 

? ?  
I I  
Y N  

(5) Guglielminotti, E.; Zecchina, A,; Boccuzzi, F.; Borello, E. In 
"Growth and Properties of Metal Clusters"; Elsevier Scientific: Am- 
sterdam, 1980; p 165. 
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