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ABSTRACT
Sending private data to Neural Network applications raises
many privacy concerns. The cryptography community de-
veloped a variety of secure computation methods to address
such privacy issues. As generic techniques for secure com-
putation are typically prohibitively expensive, efforts focus
on optimizing these cryptographic tools. Differently, we
propose to optimize the design of crypto-oriented neural
architectures, introducing a novel Partial Activation layer.
The proposed layer is much faster for secure computation as
it contains fewer non linear computations. Evaluating our
method on three state-of-the-art architectures (SqueezeNet,
ShuffleNetV2, and MobileNetV2) demonstrates significant
improvement to the efficiency of secure inference on com-
mon evaluation metrics.

Index Terms— Secure Inference; NN Architecture;

1. INTRODUCTION

Deep neural networks are revolutionizing many applications,
but wider use may be slowed down by privacy concerns. As
an example, a hospital may wish to preserve privacy of its data
when using external medical image diagnosis services. On
the other hand, the diagnosis company may not be willing to
share its neural network model with the hospital to safeguard
its intellectual property. Such privacy conflicts could prevent
hospitals from using neural network services for improving
healthcare. The ability to evaluate neural network models on
private data will allow the use of neural network services in
privacy-sensitive applications.

The privacy challenge has attracted significant research in
the cryptography community. Cryptographic tools were de-
veloped to convert any computation to secure computation,
i.e. computation where the view of each involved party is
guaranteed not to reveal any non-essential information on the
inputs of the other parties. The deep learning setting consists
of two parties, one providing the data and the other provid-
ing the neural network model. Secure computation is typi-
cally slower than non-secure computation and requires much
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higher networking bandwidth. Recently, various approaches
were proposed for secure computation of neural networks.
However, due to their computational complexity, these ap-
proaches have been limited to very small networks having
little applicability.

Our Contribution. Instead of using existing architec-
tures and optimizing the cryptographic protocols, we propose
to design new neural network architectures that are crypto-
oriented. As non-linear activations, such as ReLU, are very
expensive for secure computation, we introduce partial acti-
vation layers having fewer non linearities. Each layer is split
into two branches, and non-linear activation is applied only
on one branch. As different activation layers have different
effects on accuracy, ratio of removed activations should be
carefully selected. For layers whose removal makes no signif-
icant impact on accuracy we can use a 0%-partial activation
layer, i.e. removing the activation layer completely.

Using partial activation layers, we present new crypto-
oriented architectures based on three popular (non crytpo-
oriented) efficient neural network architectures: MobileNetV2
[1], ShuffleNetV2 [2] and SqueezeNet [3]. Our new archi-
tectures are significantly more efficient than their non-crypto-
oriented counterparts, with a minor loss of accuracy.

2. BACKGROUND

2.1. Privacy-Preserving Machine Learning

In privacy-preserving machine-learning inference, a pre-
trained neural network is transformed to process (possibly
interactively) encrypted data. The network’s output should
also be encrypted, and only the data owner can decode it.
This enables private data, such as medical records, to be used
with services of external model providers.

Existing privacy-preserving inference methods use three
cryptographic approaches, developed by the cryptography
community in the context of secure computation: Homomor-
phic encryption, garbled circuits, and secret sharing.

Given a neural network N with depth k, it can be repre-
sented by a list of composed layers:

N(X) = Fk ◦ Fk−1 ◦ ... ◦ F1(X) (1)

where Fi is the ith layer of the network, and X is the input to



CIFAR-10 / 100 MNIST / FASHION

Model Accuracy Comm. Rounds Runtime Accuracy Comm. Rounds Runtime
CIFAR10 / 100 (MB) (sec) MNIST / FASHION (MB) (sec)

Squeeze-orig 92.49 / 70.41 327.2 393 14.59 99.27 / 94.05 248.07 393 14.36
Squeeze-ours 91.87 / 69.7 149.59 232 9.03 99.08 / 93.29 66.77 152 6.34

Shuffle-orig 92.6 / 70.95 311.63 484 24.37 99.26 / 93.51 249.36 484 23.8
Shuffle-ours 92.5 / 70.07 157.63 294 14.88 99.23 / 93.4 104.3 294 11.4

Mobile-orig 94.49 / 74.8 1926.34 806 41.01 99.23 / 94.51 1517.37 806 38.41
Mobile-ours 93.44 / 72.61 403.52 296 17.11 99.25 / 94.29 250.42 296 16.12

Table 1. Comparison of performance on secure classification using a few known networks (SqueezeNet, ShuffleNetV2, and
MobileNetV2), before and after our proposed crypto oriented modifications. Our modification provides substantial increase of
efficiency with a minor reduction of accuracy. While the accuracy is noted separately for each dataset, the complexity measures
for the two CIFAR datasets are almost the same, as well as for the MNIST and Fashion-MNIST datasets.

the network. Using the above cryptographic tools, each layer
can be transformed into a privacy-preserving layer F̂i such
that given the encoding X̂ of a private input X the output of:

N̂(X) = F̂k ◦ F̂k−1 ◦ ... ◦ F̂1(X̂) (2)

N̂(X) is encrypted as well, and can be decoded only by the
owner of X to compute N(X). Due to the complexity of se-
cure computation, the above approaches are practical mainly
for simple computations.

Homomorphic encryption (HE) [4, 5] allows to com-
pute an arbitrary function f on an encrypted input, without
decryption or knowledge of the private key. HE was used in
the CryptoNets system [6], but this approach significantly in-
creased the overall inference time. Optimized methods based
on HE appear in [7, 8, 9, 10, 11].

Garbled circuits can be roughly viewed as a one-time
variant of HE. For two parties, A and B, where A holds a
function f (corresponding to a single layer of the network)
and B holds an input x, the function f is transformed by A
into a garbled circuit that computes f on a single encoded
input, provided by B [12, 13, 14]. More precise descriptions
appear in [15, 16].

Secret sharing schemes [17, 18] provide the ability to
share a secret between multiple parties, such that all parties
can evaluate a function, e.g. a neural network layer, over their
share [19, 20, 21, 22]. The result can be reconstructed by
combining the shares of any “authorized” subset of parties.

2.2. Efficient Neural Network Architecture Design

Real world tasks require both accuracy and efficiency, some-
times under different constraints, e.g. hardware. Much work
has focused on designing neural network architectures, opti-
mally trading off accuracy and efficiency.

SqueezeNet [3] focused at reducing the number of model
parameters. MobileNetV2 [1] utilizes depthwise separable
convolution to improve efficiency, and proposed the efficient
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Fig. 1. Effects of removing all activation layers on the com-
plexity of inference. (a) Negligible effect on non-secure in-
ference. (b) A drastic reduction of complexity in secure in-
ference. Comparison done on SqueezeNet, ShuffleNetV2 and
MobileNetV2 using all datasets.

inverted residual with linear bottleneck block. ShuffleNetV2
[2] proposed guidelines for the design of efficient deep neural
network architectures and utilizes pointwise group convolu-
tions to reduce complexity and channel shuffle to help infor-
mation flow across feature channels.

3. DESIGNING CRYPTO-ORIENTED NETWORKS

Our goal is to design neural networks that can be computed ef-
ficiently in a secure manner for providing privacy-preserving
inference mechanisms. We propose a novel partial acti-
vation layer that exploits the trade-offs that come with the
complexity of the cryptographic techniques enabling privacy-
preserving inference.

In non-secure computation, the cost of affine operations
like addition or multiplication is almost the same as the cost of
non-linearities such as maximum or ReLU. Efficient network
designs therefore try to limit the number and size of network
layers, not taking into account the number of non-linearities.

The situation is different for privacy-preserving neural
networks, as secure computation of non-linearities is much
more expensive. Homomorphic encryption methods approx-
imate ReLU with polynomials, higher polynomial degrees
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Fig. 2. In Partial Activation layers, the channels are split and
activation is applied only to a subset of the channels, and not
applied to the other channels.

are needed for better accuracy, increasing computational
complexity. Garbled circuits and secret sharing methods
present lighter-weight protocols, but have high communi-
cation and round complexities. As a result, the number of
non-linearities is an important consideration in the design of
efficient privacy-preserving networks.

Fig. 1 illustrates the remarkable runtime difference be-
tween secure and non-secure inference. We evaluate three
popular architectures - SqueezeNet, ShuffleNetV2 and Mo-
bileNetV2 - on the CIFAR-10, CIFAR-100, MNIST and
Fashion-MNIST datasets. We can see that in the secure case,
removal of all ReLU activations results in more than a 60%
runtime reduction, while in the non-secure case the reduc-
tion is only around 10%. This highlights that the number of
non-linearities must be taken into account in crypto-oriented
neural architecture design.

In the above, ReLU is only used as an illustration. This
applies identically to all other non-linear activation layers
such as Leaky-ReLU, ELU, SELU, ReLU6, although the
exact numerical trade-offs may differ slightly.

Partial activation layers. In order to reduce the number
of non-linear operations we propose a novel partial activa-
tion layer, illustrated in Fig. 2. Partial activation splits the
channels into two branches, and non-linear activations are ap-
plied only on one branch. By using partial activation we can
reduce the number of non-linear operations, while keeping
the non-linearity of the model. Our experiments show that
this operation results in attractive accuracy-efficiency trade-
off, dependent on the amount of non-linear channels. It is also
beneficial to remove complete activation layers where they do
not improve the network accuracy. Linear layers were studied
by [23, 24, 1] and have been shown to even have a positive
effect over the accuracy.

4. EXPERIMENTS

Experiments show that our crypto-oriented architectures have
better trade-offs between efficiency and accuracy in privacy-
preserving inference compared to standard architectures.

Efficiency evaluation metrics. The fundamental com-
plexity measures for secure computations are the communica-
tion and the round complexities. Runtime varies with imple-
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Fig. 3. Comparison between different partial activation ratios
on SqueezeNet, ShuffleNetV2, and MobileNetV2, in terms of
accuracy (a-b) and communication complexity (c). Ratio of
50% is a good balance between accuracy and efficiency.
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Fig. 4. Comparison between partial activation and down-
scaled network width (i.e. removing the no-activation
branch). Results demonstrate that the channels with no ReLU
activation contribute significantly to accuracy.

mentation, and therefore is used in only two cases: removing
all activations in Fig. 1, and using all proposed optimizations
in Table 1.

Implementation details. We examine privacy-preserving
inference, and assume that networks are trained in the clear.
Models are “encrypted” for inference to measure accuracy,
runtime, round complexity and communication complexity
on private data. We use the tf-encrypted framework [25] to
convert trained neural networks to privacy-preserving net-
works. For runtime measurements we used an independent
server for each party in the computation, each consisting of
30 CPUs and 20GB RAM.

We evaluated on the CIFAR-10 and CIFAR-100 datasets.
Experiments were conducted on downscaled versions of
three popular efficient architectures - SqueezeNet [3], Shuf-
fleNetV2 [2] and MobileNetV2 [1].

4.1. Partial Activation

We tested different partial activation ratios between the chan-
nels in the non-linear branch and the total number of channels.
Results are presented in Fig. 3. Activations on 50% of chan-
nels appears to be a good trade-off between efficiency and
accuracy. Round complexity was not used in this compari-
son as we assume that element-wise non-linearities can all be
computed in parallel, giving a constant round complexity for
each layer regardless of the number of its non-linearities.



Model Accuracy Comm. Rounds
CIFAR-10 / 100 (MB)

Squeeze-1 90.54 / 64.72 189.36 233
Squeeze-2 93.15 / 72.37 309.97 313
Squeeze-0.5-1 90.4 / 66.04 180.75 233
Squeeze-0.5-2 92.66 / 70.76 241.05 313
Squeeze-none 86.95 / 60.03 172.13 153
Squeeze-orig 92.49 / 70.41 327.2 393

Shuffle-1 92.83 / 71.02 219.01 294
Shuffle-2 92.9 / 71.37 188.86 324
Shuffle-0.5-1 92.5 / 70.07 157.63 294
Shuffle-0.5-2 92.19 / 69.53 142.55 324
Shuffle-none 83.26 / 46.8 95.25 134
Shuffle-orig 92.6 / 70.95 311.63 484

Mobile-1 93.92 / 74.35 1168.2 466
Mobile-2 94.13 / 74.17 1003.02 486
Mobile-0.5-1 93.66 / 72.77 706.54 466
Mobile-0.5-2 93.28 / 72.86 623.95 486
Mobile-none 78.45 / 51.45 244.88 146
Mobile-orig 94.49 / 74.8 1926.34 806

Table 2. Effects of the removal of activations in network
blocks. Tested networks are built of blocks having two activa-
tion layers each. In Network-i we keep only the i′th activa-
tion layer in each block, and remove the other activation layer.
In Network-0.5-i we replace the i′th activation layer with a
50% partial activation layer, and remove the other activation
layer. We also show the original blocks and the removal of all
activation layers in each block. The table shows that remov-
ing most of the activations in each block has minimal effect
on accuracy but substantially increase speed.

Scaling down network width, i.e. reducing the num-
ber of channels in each layer (equivalent to dropping the
no-activation branch), has also been tested. Fig. 4 shows that
scaling down is inferior to partial activation on original width,
demonstrating the importance of channels with no activation.

Activation removal Our tested networks consists of
blocks, each block has two activation layers. Table 2 demon-
strates that one activation layer in each block can be removed
with a minimal loss of accuracy. Table 2 also shows that by
also using 50%-partial activation on the remaining layer the
communication and round complexities can be substantially
improved with only a minor change in accuracy.

4.2. Alternative Non-Linearities

In addition to the removal of non-linearities, we investigated
the cost of several commonly used non-linearities and pro-
pose more crypto-oriented alternatives.

Pooling. Previous works show that replacing max pool-
ing with average pooling or strided convolutions has minimal
effect on network accuracy. In secure inference max pooling
is an expensive non-linear operation, while average pooling is

Model Accuracy Comm. Rounds
CIFAR-10 / 100 (MB)

Squeeze-Avg 91.74 / 68.69 234.96 312
Squeeze-Max 92.16 / 68.98 326.51 528

Shuffle-Avg 92.35 / 70.19 310.89 484
Shuffle-Max 92.92 / 70.39 400.92 781

Mobile-Avg 94.58 / 75.33 1925.42 806
Mobile-Max 93.40 / 73.87 2045.94 1022

Squeeze-ReLU 92.49 / 70.41 326.41 393
Squeeze-ReLU6 92.61 / 70.39 538.62 653

Shuffle-ReLU 92.61 / 70.95 310.89 484
Shuffle-ReLU6 92.76 / 70.42 550.04 854

Mobile-ReLU 94.28 / 74.93 1053.79 456
Mobile-ReLU6 94.49 / 74.87 1925.42 806

Table 3. Comparison between alternative non-linearities on
SqueezeNet, ShuffleNetV2 and MobileNetV2, in terms of ac-
curacy and communication and round complexities. Average
pooling has similar accuracy to max pooling, but is much
more efficient. Accuracy for both ReLU and ReLU6 is al-
most identical, while ReLU being less inefficient.

much faster. The effect of using max pooling against average
pooling is shown in Table 3. Average pooling is much more
efficient than max pooling while not affecting accuracy.

ReLU6. A common variant of ReLU is ReLU6 [26],
which limits the activation value to a maximum of 6. The
secure computation of ReLU6, having two comparisons, is
double the cost of standard ReLU. In Table 3 we show that
ReLU vs. ReLU6 has minimal effect on accuracy.

4.3. Crypto-Oriented Neural Architectures

We use our approach to optimize secure inference of the state-
of-the-art architecture MobileNetV2 [1]. Replacing all acti-
vation layers in the inverted residual with linear bottleneck
block with 50%-partial activation layers, removing the first
activation layer completely and replacing the ReLU6 activa-
tion with ReLU, yields an improvement of 79% in communi-
cation complexity and 63.4% in round complexity.

Table 1 presents our results for the crypto-oriented ver-
sions of three state-of-the-art architectures: SqueezeNet [3],
ShuffleNetV2 [2] and MobileNetV2 [1].

5. CONCLUSION

In order to increase efficiency of privacy-preserving secure
neural network inference, we proposed to use partial acti-
vation layers, selective removal of complete activation lay-
ers, and avoiding the use of expensive non-linear variants.
We demonstrate that efficiency is increased substantially with
negligible loss of accuracy.
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