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ABSTRACT

Many speech segments in movies are re-recorded in a studio
during post-production, to compensate for poor sound qual-
ity as recorded on location. We present an audio-to-video
method for automating speech to lips alignment, stretching
and compressing the audio signal to match the lip movements.
This alignment is based on deep audio-visual features, map-
ping the lips video and the speech signal to a shared rep-
resentation. Using this representation we compute the lip-
sync error between every short speech period and every video
frame, followed by the determination of the optimal corre-
sponding frame for each short sound period over the entire
video clip. We demonstrate successful alignment both quanti-
tatively, using a human perception-inspired metric, as well as
qualitatively. The strongest advantage of our audio-to-video
approach is in cases where the original voice in unclear. In
these cases state-of-the-art audio only methods will fail.

Index Terms— Automatic Dialogue Replacement

1. INTRODUCTION

In movie filming, poor sound quality is very common for
speech recorded on location. Maybe a plane flew overhead,
or the scene itself was too challenging to record high-quality
audio. In these cases, the speech is re-recorded in a studio
during post-production using a process called “Automated Di-
alogue Replacement (ADR)” or “looping”. In “looping” the
actor watches his or her original performance in a loop, and
re-performs each line to match the wording and lip move-
ments.

We propose an automatic method to temporally align au-
dio and video of a speaking person by using innovative deep
audio-visual (AV) features that were suggested by Chung and
Zisserman [1]. These features map the lips video and the
speech signal to a shared representation. We use these fea-
tures for dynamic temporal alignment, stretching and com-
pressing the signal dynamically within a clip. This is usually
a three-step process [2]: (i) features are calculated for both
the reference and the unaligned signals; (ii) optimal align-
ment which maps between the two signals is found using dy-
namic time warping (DTW) [3]; (iii) a warped version of the

* Equal contribution. Ariel performed this work while at HUJI.

unaligned signal is synthesized so that it temporally matches
the reference signal [4].

We demonstrate the benefits of our approach over a state-
of-the-art audio-only alignment method [5], and over [1],
using a human perception-inspired quantitative metric. Re-
search has shown that the detectability thresholds of lack of
synchronization between audio and video is +45 ms when the
audio leads the video and -125 ms when the audio is delayed
relative to the video [6]. In order to evaluate the perceptive
quality of our method’s output, our quantitative error measure
is therefore based on these thresholds. It should be noted that
comparison to an audio-only alignment method can only be
performed when a clear reference audio signal exists, which
may not always be the case. In that scenario, audio-to-visual
or visual-to-visual alignment is the only option, a task which,
to the best of our knowledge, has not yet been addressed.

To summarize, our paper’s main contribution is a method
for audio-visual fully automated dialogue replacement (AV-
ADR). We leverage the strength of deep audio-visual speech
synchronization features and suggest a dynamic temporal
alignment method.

1.1. Automatic time alignment of sequences

Dynamic time warping (DTW) [7] uses dynamic program-
ming to find the optimal alignment mapping between two
temporal signals by minimizing some pairwise distance (e.g.
Euclidean, cosine, etc.) between sequence elements. This
algorithm has been used extensively in the area of speech
processing [7, 2, 5] as well as in computer vision for video
[8, 9, 10] for e.g. temporal segmentation and frame sampling,
among many scientific disciplines.

King et al. [5] proposed a noise-robust audio feature for
performing automatic audio-to-audio speech alignment using
DTW. Their feature models speech and noise separately, lead-
ing to improved ADR performance when the reference sig-
nal is degraded by noise. This method of alignment essen-
tially uses audio as a proxy for aligning the re-recorded au-
dio with existing lip movements. When the reference audio
is very similar to the original, this results in accurate syn-
chronization. However, when the reference signal is signifi-
cantly degraded (or unavailable) audio only methods will fail.
Our method overcomes this problem by performing audio-to-
video alignment, resulting in higher-quality synchronization.
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Fig. 1: High-level diagram of our speech to lips alignment: Given unaligned video and speech: (i) SyncNet features are
computed for both; (ii) dynamic time warping is performed for optimal alignment between the features; (iii) A new speech is
synthesized that is now aligned with the video.

1.2. Audio-to-video synchronization

Audio-to-video synchronization (AV-sync), or lip-sync, refers
to the relative timing of auditory and visual parts of a video.
Automatically determining the level of AV-sync in a video
has been the subject of extensive study within the computer
vision community over the years, as lack of synchronization
is a common problem. The common denominator of the AV-
sync works is that they attempt to detect and correct a global
lip-sync error, i.e. the global shift of the audio signal relative
to the video.

Several methods have been proposed which attempt to
find audio-visual correspondences, such as [11] and [12] who
use canonical correlation analysis (CCA).

Recently, there has been increased interest in leverag-
ing natural synchrony of simultaneously recorded video and
speech for various tasks. These include predicting a speech
signal or text from silent video [13, 14, 15], and audio-visual
speech enhancement [16, 17, 18]. In a recent pioneering
work [1] have proposed a model called SyncNet, which learns
a joint embedding of visual face sequences and corresponding
speech signal in a video by predicting whether a given pair of
face sequence and speech track are synchronized or not. They
show that the learned embeddings can be used to detect and
correct lip-sync error in video to within human-detectable
range with greater than 99% accuracy. In this work, we lever-
age the audio-visual features of SyncNet to perform dynamic
time alignment, which can stretch and compress very small
units of the unaligned (video or audio) signal to match the
reference signal.

2. METHOD

Our speech to lips alignment is comprised of three main
stages: audio-visual feature extraction, finding an optimal
alignment which maps between audio and video, and synthe-
sizing a warped version of the unaligned signal to temporally
match the reference signal. An overview of our method is
illustrated in Figure 1.

2.1. Audio-Visual Feature Extraction

We use SyncNet [1] to extract language-independent and
speaker-independent audio-visual embeddings. The network
was trained to synchronize audio and video streams which
were recorded simultaneously. This type of synchroniza-
tion is termed ‘linear’ as the audio is shifted by a constant
time delta throughout the entire video. SyncNet encodes
short sequences of 5 consecutive frames with total duration
of 200 ms. or the equivalent amount of audio into a shared
embedding space. We use the network weights provided by
the authors, which were trained to minimize l2 distance be-
tween embeddings of synchronized pairs of audio and video
segments while maximizing distance between non matching
pairs. We define the data term for our Dynamic Programing
cost function to be pairwise distances of these embeddings.

2.2. Dynamic Time Warping for Audio-Visual Alignment

Naturally, as the number of possible mouth motions is lim-
ited, there are multiple possible low cost matches for a given
short sequence. For example, segments of silence in differ-
ent parts of the video are close in embedding space. SyncNet
solves this by averaging time shift prediction over the entire
video. We, however, are interested in assigning per frame
shifts, therefore we use dynamic time warping.

Our goal here is to find a mapping (‘path’) with high-
est similarity between two sequences of embeddings A =
(a1, ..., aN ), B = (b1, ..., bM ), subject to non decreasing time
constraint: if the path contains (ai, bj) then later frames ai+k

may only match later audio segments bj+l. Additional prefer-
ences are (i) audio delay is preferred over audio advance with
respect to reference video (a consequence of the different per-
ception of the two); (ii) smooth path, to generate high quality
audio; (iii) computationally efficient. We will now describe
how we meet these preferences.

We solve for optimal path using Dijkstra’s shortest path
algorithm [19]. We construct a data cost matrix C as pairwise
dot products between embeddings from the reference video
and the embeddings of an unaligned audio. Each matrix ele-
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ment is associated with a graph node, and edges connect node
(i, j) to {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)} so that the non
decreasing time constraint holds.

Classically, the weight on an edge pointed at (i, j) is the
matrix value of the target element Ci,j . To better fit the per-
ceptual attributes of consuming video and audio we mod-
ify the cost to prefer a slight delay by assigning the weight
0.5 ∗Ci,j +0.25 ∗Ci−1,j +0.25 ∗Ci−2,j . Relative improve-
ment which stems from this modification is studied in Section
3.

We assume the two modalities are cut roughly to the same
start and end points, so we find a minimal path from (0, 0) to
(N,M). We experimented with looser constraint by adding
quiet periods on start and end points, and did not find any
significant difference in results.

If other modalities exist, i.e reference audio and unaligned
video, we compute 4 cross distances between embeddings of
reference and unaligned, and assign the matrix element with
the minimal of all four. This helps mitigate effects of em-
bedding noise from e.g face occlusion or sudden disrupting
sounds. We found out that even in the absence of such noise,
combining different modalities improves the alignment.

In terms of our cost matrix, Syncnet’s global shift corre-
sponds to selecting the path as a diagonal on the matrix.

To avoid unnecessary computations, we only compute
costs of nodes and edges in a strip around the ‘diagonal’
(0, 0)→ (N,M).

2.3. Smoothing the Path

While the optimal path between sequences of embeddings is
found, the quality of the generated audio based on that path
may be degraded due to strong accelerations in the alignment.
We first smooth the path with a Laplacian filter, then with a
Gaussian. The amount of smoothing is chosen adaptively so
that the smoothed path will not deviate from the original by
more than a predefined value λ. Usually we set λ < 0.1 sec-
onds, well within the boundaries of undetectable misalign-
ment. This value may be changed for signals with specific
characteristics or for artistic needs. After smoothing, the path
is no longer integer valued, and interpolation is needed for
voice synthesis.

2.4. Synthesis of New Signal

We use a fairly simple phase vocoder [20] to stretch and
compress the audio stream according to the alignment, with-
out affecting the pitch. We used audio sampled at 16KHz,
each STFT bin was computed on a window of size 512, with
1/2 window overlap.The STFT magnitude is time warped,
and phases are fixed to maintain phase differences between
consecutive STFT windows. Since our alignment is based
on video frames, its accuracy is only at time steps of 40 ms,
while the time step between STFT bins 16 ms. We create the

alignment between STFT bin by re-sampling the frame-level
alignment.

3. EXPERIMENTS AND RESULTS

Quantitative evaluation was performed using a human perception-
inspired metric, based on the maximum acceptable audio-
visual asynchrony used in the broadcasting industry. Accord-
ing to the International Telecommunications Union (ITU), the
auditory signal should not lag by more than 125 ms or lead
by more than 45 ms. Therefore, the error metric we use is the
percentage of frames in the aligned signal which fall outside
of the above acceptable range, compared to the ground truth
alignment.

3.1. Alignment of Dually-Recorded Sentences

In this task, given a sentence recorded twice by the same
person—one reference signal, and the other unaligned—the
goal is to find the optimal mapping between the two, and warp
the unaligned audio such that it becomes aligned with the ref-
erence video.

To our knowledge, there are no publicly available audio-
visual datasets containing this kind of dually-recorded sen-
tences, which are necessary for evaluating our method. To
this end, we collected recordings of the same two sentences
(sa1 and sa2 from the TIMIT dataset [21]) made by four male
speakers and one female speaker. The only instruction given
to the speakers was to speak naturally. Therefore, the differ-
ences in pitch and timing between the recordings were no-
ticeable, but not extremely distinct. An example is provided
in our supplementary video1.

The dataset for this experiment was generated by mixing
the original unaligned recordings with two types of noise, at
varying signal-to-noise (SNR) levels. The types of noise we
used, crowd and wind, are characteristic of interferences in
indoor and outdoor recording environments, respectively.

Alignment of each segment is performed using the fol-
lowing dynamic programming setups: (a) Alignment of un-
aligned audio to reference video (A2V); (b) A2V alignment
with the additional delay constraint detailed in Section 2.2
(A2V delay); (c) All four combinations of modality-to-
modality alignment, taking the step with minimum cost at
each timestep (AV2AV); (d) All modality combinations, with
the additional delay constraint (AV2AV delay).

We compare our method to [5], which has been imple-
mented as the Automatic Speech Alignment feature in the
Adobe Audition digital audio editing software [22]. This
method uses noise-robust features as input to a dynamic
time warping algorithm, and obtains good results when the
reference signal is not badly degraded. As a baseline, we
also compare to the method of [1] for finding a global offset
between signals.

1https://youtu.be/t7m0yEnBG7M
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Table 1: Comparison to (i) a state-of-the-art audio-to-audio
alignment method, implemented as a feature in Adobe Au-
dition [5], and (ii) SyncNet [1]. The results demonstrate that
even at lower noise levels, our Audio-to-Video (A2V) and our
combined modality (AV2AV) approaches have improved per-
formance over existing methods. The delay is described in
Sec. 2.2.

“Crowd” noise “Wind” noise
Noise dB 0 -5 -10 0 -5 -10

SyncNet [1] 88.4 88.4 88.4 88.4 88.4 88.4
Adobe Audition [5] 4.0 10.2 10.6 4.8 4.9 10.0

A2V 7.2 7.2 7.2 7.2 7.2 7.2
A2V delay 4.1 4.1 4.1 4.1 4.1 4.1
AV2AV 2.0 1.9 2.0 3.7 5.0 5.8
AV2AV delay 0.6 0.8 4.2 1.2 1.2 4.0

Since we have no ground truth mapping between each
pair of recorded sentences, we adopt the method used by [5]
for calculating a “ground truth” alignment. They use con-
ventional Mel-Frequency Cepstral Coefficients (MFCCs) to
calculate alignment between reference and unaligned audio
clips, with no noise added to the reference. Time-aligned
synthesized “ground truth” signals were manually verified to
be satisfactory, by checking audio-visual synchronization and
comparing spectrograms.

Table 1 shows the superiority of our approach.The results
demonstrate that even at lower noise levels, our A2V and
combined modality approaches give improved performance
over existing methods. At extreme noise levels the improve-
ment becomes even more significant.

3.2. Alignment of Synthetically Warped Sentences

In this task, we investigate the limits of our method, in terms
of degradation of both the audio and video parts of the refer-
ence signal. To this end, we use segments from a dataset con-
taining weekly addresses given by former president Barack
Obama, which are synthetically warped using mappings ob-
tained from the dataset we created for the previous experi-
ment. These mappings are representative of the natural vari-
ation in pronunciation when people record the same sentence
twice. The goal in this experiment is to find the optimal align-
ment between the original reference video and the syntheti-
cally warped video.

3.3. Robustness to signal degradation

In order to test the robustness of our method to various forms
of degraded reference signals, we start with 100 same-length
segments from the Obama dataset, and degrade the reference
signals in the following ways: (i) by adding crowd noise at

Table 2: Alignment performance when the reference signal
has undergone several types of degradation: (i) High noise
(-10 dB), (ii) random 2-second silence in audio and (iii) 2-
second blackout of video frames.

Crowd
noise

Random
silence

Random
occlusion

Silence +
occlusions

Unaligned Voice 33.77 34.03 37.87 32.73

A2V 2.63 2.92 16.16 15.17
A2V delay 3.35 2.62 14.17 9.76
AV2AV 2.83 2.71 3.08 5.78
AV2AV delay 5.45 3.14 4.12 5.04

−10 dB; (ii) by silencing a random one-second segment; (iii)
by occluding a random one-second segment of each reference
video sequence with a black frame; (iv) by combining ran-
dom silencing and random occlusions (ii + iii).

Each reference degradation is tested using the dynamic
programming setups used in the previous experiment.We add
the error percentage of frames in the Unaligned signal as a
baseline.

Table 2 shows the results of this experiment. When the
audio is severely degraded with either loud noise or random
silence, performing direct audio-to-video alignment performs
best. When the reference video signal is degraded with occlu-
sions, our method relies more on the audio signal, and com-
bining both the audio and video of the reference video works
best.

3.4. Alignment of Two Different Speakers

Since audio and visual signals are mapped to a joint syn-
chronization embedding space which, presumably, places
little emphasis on the identity of the speaker, we can use
our method to align two different speakers saying the same
text. For this task, we used videos from the TCD-TIMIT
dataset [23].We evaluated our results qualitatively, and in-
cluded an example in our supplementary video, involving
alignment between male and female subjects.

4. CONCLUSION

We presented a method to align speech to lip movements in
video using dynamic time warping. The alignment is based
on deep features that map both the face in the video and the
speech into a common embedding space. Our method makes
it easy to create accurate Audio-Visual Automated Dialogue
Replacement (AV-ADR), and have shown state-of-the-art per-
formance.
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