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Abstract

An online approach is proposed for Video registration
of dynamic scenes, such as scenes with dynamic textures,
moving objects, motion parallax, etc. This approach has
three steps: (i) Assume that a few frames are already reg-
istered. (ii) Using the registered frames, the next frame is
predicted. (iii) A new video frame is registered to the pre-
dicted frame.

Frame prediction overcomes the bias introduced by dy-
namics in the scene, even when dynamic objects cover the
majority of the image. It can also overcome many system-
atic changes in intensity, and the “brightness constancy”
is replaced with “dynamic constancy”.

This predictive online approach can also be used with
motion parallax, where non uniform image motion is
caused by camera translation in a 3D scene with large
depth variations. In this case a method to compute the
camera ego motion is described.

Unlike video synthesis methods that generate dynamic
video for display purposes, predictive alignment and regis-
tration can be done quickly and efficiently.

1 Introduction
When a video sequence is captured by a moving cam-

era, motion analysis is required for many video editing and
video analysis applications. Most methods for image align-
ment assume that a dominant part of the scene is static, and
also assume brightness constancy. These assumptions are
violated in many natural scenes, which consist of moving
objects and dynamic background, cases where most regis-
tration methods are likely to fail.

A pioneering attempt to deal with dynamic scenes was
suggested in [8]. In his work, the entropy of an auto re-
gressive process was minimized with respect to the motion
parameters of all frames. But the implementation of this
approach may be impractical for many real scenes. First,

the auto regressive model is restricted to scenes which can
be approximated by a stochastic process, and it can not deal
with dynamics such as walking people. In addition, in [8]
the motion parameters of all frames are computed simul-
taneously, resulting in a difficult non-linear optimization
problem.

Unlike computer motion analysis, humans can distin-
guish easily between the motion of the camera and the in-
ternal dynamics in the scene. For example, we can virtually
align an un-stabilized video of a sea, even when the waves
are moving with the wind. The key to this human ability is
an assumption regarding to the simplicity and predictabil-
ity of a natural scene and of its dynamics: It is assumed
that when a video is aligned, the dynamics in the scene be-
come smoother and more predictable. This allows humans
to track the motion of the camera even when no apparent
registration information exists. We therefore try to replace
the “brightness constancy assumption” with a “dynamics
constancy assumption”.

This predicability assumption is used as a basis for our
online registration algorithm: given a new frame of the se-
quence, it is aligned to best fit the prediction generated
from the preceding frames. The prediction is done using
video synthesis techniques [15, 7, 11], and the alignment is
done using common methods for parametric motion com-
putation [2, 9]. Alternating between prediction and reg-
istration results in a robust online registration algorithm
which can handle complex scenes, having both dynamic
textures and moving objects.

There is a major difference between the prediction step
in our approach and previous work on video completion or
on dynamic textures. In these approaches the goal was to
create a good looking video. Making a video to look good
is not only difficult, but also makes the video less faithful
to the original data. In our case we use the prediction only
for motion computation. While this requires that many im-
age regions will be correctly predicted, other regions may
not be predicted accurately. In general the predicted image



does not have to look “perfect”, and the prediction process
allows us to use simpler and faster prediction schemes, as
will be explained in more details in Sec. 2. Even when the
frame prediction step does not give a perfect prediction of
the next frame, the registration algorithm can still find the
correct image motion since the error is mostly unbiased

Predictive alignment assumes that out of the entire
video sequence, a few frames can be registered using ex-
isting methods. E.g. a few frames where the camera was
static, or when enough static objects exist. The initial
alignment is used as ”synchronization”, and the motion pa-
rameters of the remaining frames are computed using the
proposed predictive alignment scheme.

An even more accurate video prediction can be made
when a model for the scene dynamics is available. An ex-
ample for such a model is motion parallax. In this case
the video sequence will be represented in a space-time vol-
ume (or anepipolar volume), constructed by stacking all
input images into anx-y-t volume (as was introduced by
Bolles et. al. [3]). Frame prediction is possible in the
space time volume, since when the camera moves at a con-
stant velocity, image points move on straight lines in the
space-time volume. Extending these straight lines accord-
ing to the motion of the camera is a good prediction for the
next frame.

The predictive approach to motion parallax can also be
extended to handle�� camera translations and also cam-
era rotations. Setups describing camera motions which are
applicable to this work are shown in Fig. 6. These cases
can be used for view synthesis [14].

2 Video Alignment with Dynamic Scenes
Video motion analysis traditionally aligns two succes-

sive frames. This approach works well for static scenes,
where one frame predicts the next frame up to their rela-
tive motion. But when the scenes are dynamic, the motion
between the frames is not enough to predict the succes-
sive frame, and motion analysis between such two frames
is likely to fail. We propose to replace the assumptions of
static scenes and brightness constancy with a much more
general assumption of consistent image dynamics: “What
happened in the past is likely to happen in the future”. In
this section we will describe how the next frame can be
predicted from prior images, and how this prediction can
be used for image alignment.

2.1 Predictive Video Assumption

Let a video sequence consist of frames�� � � � �� . A
space-time volume� is constructed from this video se-
quence by stacking all the frames along the time axis,
� �� 	 
 	 ��  �� �� 	 
 �. The “consistent image dynamics”
assumption implies that when the volume is aligned (e.g.,
when the camera is static), we can predict a large por-

tion of each image��  � �� 	 
 	 � � from the preceding
frames�� � � � ����. We will denote the space-time vol-
ume constructed by all the frames up to the��� frame by
� �� 	 
 	 �

�
� �. According to the “consistent image dynam-

ics” assumption, we can find a prediction function over the
preceding frames such that

�� �� 	 
 �  � �� 	 
 	 � � � � ������ �� �� 	 
 	 ���
�� � ��� � (1)

� ������ is a non parametric extrapolation function, pre-
dicting the value of each pixel in the new image given the
preceding space-time volume. This prediction should use
the consistent image dynamics assumption, and will be de-
scribed in the next section.

When the camera is moving, the image transformation
induced by the camera motion should be added to this
equation. Assuming that all frames in the space time vol-
ume� �� 	 
 	 ���

�� � �� are aligned to the coordinate system of
the �� � ���� frame, the new image�� �� 	 
 � can be pre-
dicted by

�� � �� �� ������ �� �� 	 
 	 ���
�� � ���� � (2)

�� is a�� image transformation between frames���� and
�� , and is applied on the predicted image. Applying the
inverse transformation on both sides of the equation gives

� �� ��� � � � ������ �� �� 	 
 	 ���
�� � ��� � (3)

This relation is used in the predictive registration Scheme.

2.2 Next Frame Prediction

The prediction of the next frame given the aligned
space-time volume of preceding frames is closely related
to dynamic texture synthesis [6, 1]. However, dynamic tex-
tures are characterized by repetitive stochastic processes,
and do not apply to more structured dynamic scenes,
such as walking people. We therefore prefer to use non-
parametric video extrapolation methods [15, 7, 11] for pre-
diction. These methods assume that each small space-time
block has likely appeared in the past, and thus a new im-
age can be predicted by using similar blocks from earlier
video portions. This is demonstrated in Fig. 1. Various
video interpolation or extrapolation methods differ in the
way they enforce spatio-temporal consistency of all blocks
in the synthesized video. However, this problem is not
important for prediction, as our goal is to achieve a good
alignment rather than a pleasing video.

Leaving out the spatio-temporal consistency require-
ment, we are left we the following simple video comple-
tion scheme: Assume that the aligned space time volume
� �� 	 
 	 ���

�� � �� is given, and a new image� �� is to be pre-
dicted. We use the SSD (sum of square differences) as a
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Figure 1. Frame Prediction using Space-Time Block
Search
(a) For all blocks bordering with time�� ���, a best match-
ing block is searched in the space-time volume. Once such
a block is found, the pixel in front of this block is copied to
the corresponding position in the predicted frame� �� �� 	 
 �
(b) The new frame�� is not aligned to Frame����, but to
a predicted frame that can be computed from the preceding
space-time volume.

distance between space-time blocks. The distance� be-
tween each pair of space-time blocks � and� is given
by,

� � � 	� �  ����� ���� � �� 	 
 	 �� � � �� 	 
 	 ���� � (4)

As shown in Fig. 1, for each pixel�� 	 
 � in image���� we
define a space-time block� �� ���� whose spatial center is
at pixel �� 	 
 � and whose temporal boundary is at time���
(future frames can not be used in an online approach). We
then search in the space time volume� �� 	 
 	 ���

�� � �� for a
space-time block with the minimal SSD to block� �� ����.
Let  �   ��� 	 
� 	 �� � be the most similar block, spa-
tially centered at pixel��� 	 
� � and temporally bounded by�� . The value of the predicted pixel� �� �� 	 
 � will be taken
from � ��� 	 
� 	 �� � ��, the pixel that appeared immedi-
ately after the most similar block. This prediction follows
the “consistent image dynamics” assumption: given that
the two space time blocks are similar, we assume that their
continuations are also similar. While a naive search for
each predicted pixel may be exhaustive, several accelera-
tions can be used as described in Sec. 2.5.

2.3 The Predictive Registration Scheme
The online registration scheme for dynamic scenes uses

the predictions described earlier. As already mentioned,
we assume that the image motion of a few frames can be
estimated with traditional robust image registration meth-
ods [13, 9]. Such initial alignment is used as “synchroniza-
tion” for computing the motion parameters of the rest of the
sequence. In the following we assume that the motion of
the first� frames has already been computed. The predic-
tive registration scheme can be described by the following
steps:

1. Let�  � � �.
2. Align all frames in the space time volume

� �� 	 
 	 ����
�

�� � ��� to the coordinate system of the
frame����.

3. Predict the next image of the sequence given the pre-
vious frames� ��  � ������ �� �� 	 
 	 ����

�
�� � ����.

4. Compute the motion parameters (The�� image
transformation� ��� ) by aligning the new input image
�� to the prediction� �� .

5. Increase� by 1, and return to Step 2. Repeat until
reaching the last frame of the sequence.

The 2D image alignment in Step 2 is performed using
direct methods for parametric motion computation [2, 9].
Outliers are marked during this alignment as described in
the next section.
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2.4 Masking Unpredictable Regions
Real scenes always have a few regions that can not be

predicted. For example, people walking in the street often
change their behavior in an unpredictable way, e.g. rais-
ing their hands or changing their direction. In these cases
the prediction will fail, resulting in outliers. The align-
ment can be improved by estimating the predictability of
each region, where unpredictable regions get lower weights
during the alignment stage. To do so, we incorporate a pre-
dictability score� �� 	 
 	 �� which is estimated during the
alignment process, and is later used for future alignment.

The predictability score� is computed is the follow-
ing way: Given that the input image�� and its prediction
� �� are aligned, the difference between the two images is
computed, and each pixel�� 	 
 � receives a predictability
score according to the frame differences around this pixel.
From this we compute a binary predictability mask which
measures the bias of the prediction,

� �� 	 
 	 � � 
�

� �� � ��� �� �� ��� � ��	� �
 � �� ����� ��� 	 (5)

where the summation is over a window around�� 	 
 �, and� is a threshold (We usually used�  �). This is a con-
servative scheme to mask out pixels in which the residual
energy will likely bias the registration. The predictability
mask� � �� 	 
 �  � �� 	 
 	 � � is used in the alignment of
frame��	 � to frame� ��	 �.
2.5 Accelerating Computation of Frame Prediction

The most expensive stage of the predictive alignment is
the prediction stage. In a naive implementation an exhaus-
tive search is used, making this stage very slow. To enable
fast prediction we have implemented several modifications
which accelerate substantially this stage. Some of these
accelerations are not valid for general video synthesis and
completion techniques, as they may reduce the rendering
quality of the prediction. But rendering quality can be sac-
rificed for registration.

Limited Search Range: Video segments may be very
long, and searching the entire history is impractical. More-
over, the periodicity of most objects is usually of a short
period. We have therefore limited the search for similar
space-time cubes to a small volume in both time and space
around each pixel. Typically, we searched up to 10-20
frames backwards.

Using Pyramids: We assume that the spatio-temporal
behavior of objects in the video can be recognized even in
a lower resolution. Under this assumption, we constructed
a Gaussian pyramid for each image in the video, and used
a multi-resolution search for each pixel. Given an estimate
of the best matching cube from a lower resolution level,
we search only a small spatial area in the higher resolution

level. The multi-resolution framework allows to search a
wide spatial range and to compare small space time cubes.

Summed Area Tables: Since the prediction uses a sum
of squares of values in sub-blocks in both space and time
(See Eq. 4), we can use summed-area tables [5] to compute
all the distances for all the pixels in the image in� �� ��� � �� � � � � where� is the number of pixels in the image,
and

�� ,
�� and

� � are the search ranges in the�,
 and �
directions respectively. This saves the factor of the window
size (Typically� � � � �) over a direct implementation.
This step cannot be used together with the multi-resolution
search, as the lookup table changes from pixel to pixel, but
it can still be used in the highest resolution level, where the
search range is the largest.

2.6 Handling Alignment Drift
Predictive alignment follows Newton’s First Law: An

object in uniform motion tends to remain in that state. If
we initialize our registration algorithm with a small motion
relative to the real camera motion, predictive registration
will continue this motion for the entire video. In this case
the background will be handled as a slowly moving object.
This is not a bug in the algorithm, but rather a degree of
freedom resulting from the ’predictive video assumption’,
as there is no doubt that a constant moving scene is a pre-
dictable one. To reduce this degree of freedom we incor-
porate a prior bias, and assume that some of the scene is
static.

This is done by aligning the new image to both the pre-
dicted image and the previous image, giving the previous
image a low weight. In our experiments we gave a weight
of 0.1 to the previous frame and a weight of 0.9 to the pre-
dicted frame.

3 Examples: Video Registration of Dynamic
Scenes

In this section we show various examples of video align-
ment for dynamic scenes. A few examples are also com-
pared to regular direct alignment as in [2, 9]. The align-
ment was used for video stabilization, and the results are
best seen in the enclosed video. To show stabilization re-
sults on paper, we have averaged the frames of the stabi-
lized video. The average image of a stabilized video is
sharp, while the average image of video which is not stabi-
lized is blurred.

Figures 2 and 3 compare predictive registration to a tra-
ditional direct alignment [2, 9]. Both scenes include mov-
ing objects and flowing water, and a large portion of the
image is dynamic. In spite of the dynamics, after predic-
tion the entire image can be used for the alignment. In
these examples we did not use any mask to remove unpre-
dictable regions, and used the entire image for alignment.

Figures 4 and 5 show two more examples of apply-
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Figure 2. The water flow in the input movie (up), as well
as the moving pinguin, create a difficult scene for align-
ment. The video was registered using predictive align-
ment, an was compared to regular alignment. An average
of 40 frames in the stabilized sequence is shown. Using a
traditional 2D parametric alignment the sequence is very
unstable, and the average image is very blurry (lower left).
With predictive alignment the registration is much better
(lower right). Videos of the stabilized sequences, are in-
cluded in the attached video.

ing predictive alignment to challenging scenes. In these
scenes, the prediction of some of the regions was not good
enough (Parts of the falls and the fumes in the ’waterfall’
video, and some actions in the ’festival’ video), so pre-
dictability masks (as described in Section 2.4) were used to
exclude unpredictable regions from motion computation.

4 Video Alignment with Motion Parallax
When the camera’s velocity and frame rate are constant,

the time of frame capture is proportional to the location of
the camera along the camera path. In this case, and for
a static scene, the image features are arranged in an EPI
plane (anx-t slice of thex-y-tvolume) along straight lines,
since the projections of each 3D point are only along a
straight line in this plane [3]. Each straight line represents a
different image feature corresponding to a point in the 3D
world, and the slope of this line is inversely proportional
to the depth of that point. Points at infinity, for example,
will create straight lines parallel to the� axis, since their
projection into the image is constant, and does not change
with camera translation. Closer points move faster in the
image, and the straight line representing them will have a
small angle with the� axis.

The space time volume was used in [4] to differentiate
between different depth layers in a video. Object were even
removed from the scene, and the vacated space has been
filled in using the straight-line property of the EPI lines.

Figure 3. In the original video (top) the water and the
bear are dynamic, while the rocks are static. Average im-
ages of 40 frames are shown, with traditional 2D paramet-
ric alignment (lower left) and with the predictive alignment
(lower right). The sharper average shows the superiority of
predictive alignment. Videos of the stabilized sequences,
are given in the attached video.

Figure 4. This waterfall sequence poses a challenging
task for registration, as most of the scene is covered with
falling water. The video was stabilized with predictive
alignment (using a rotation and translation motion model).
An average of 40 frames in the stabilized video is shown to
evaluate the quality of the stabilization. The dynamic re-
gions are blurred only in the flow direction, while the static
region remain relatively sharp after averaging.
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Figure 5. While the dynamic crowd in this festival makes alignment a real nightmare, predictive alignment had no problems.
Three original frames are shown at the top. The panorama is stitched from the video after alignment by frame averaging. The
scene dynamics is visible by ghosting, and the static background is clearly well registered.

We propose to use this straight-line property not only for
filling-in video, but also for enabling image alignment even
in presence of strong parallax.

4.1 Prediction with Parallax

When the velocity of the camera varies, the time of
frame capture is no longer proportional to the location of
the camera. Image features are no longer arranged along
straight lines in the EPI plane. The predictive approach
to the computation of the camera motion assumes that a
few frames are captured with a constant velocity. Only
the correct camera motion can predict the next frame from
the straight space-time lines computed for the preceding
frames.

The Space-Time approach can also be extended to han-
dle �� camera translations and also camera rotations. Se-
tups describing camera motions which are applicable the
proposed analysis are shown in Fig. 6.

Alignment with parallax uses both motion parameters
and shape parameters. The motion parameters are the
translation and rotation of the camera, which vary for each
frame. The shape parameters are represented by the slopes
of the lines in the EPI plane for a camera translating along
a straight line, or the slopes of the planes in the light field
space [12] for a camera translating in a plane. The slopes
of the lines and the planes in the EPI domain are inversely
proportional to the depth of the corresponding 3D points,
and thus they remain constant for each scene point at all
frames.

To compute the locations of the optical centers of the

����������	
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������

�����	�
���

���
�

(a) (b)

Figure 6. Common setups for 1D and 2D camera
motions.
(a) 1D motion - The camera moves along a straight line.
(b) 2D motion - Traditional light field capturing device.
The camera can move to arbitrary locations along the u-v
table.
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Figure 7. Given the shape parameters (EPI slopes), only
the correct motion parameter�� can predict the next frame�� from the space-time volume.

input cameras, such that image features will reside on
straight lines (or on planes), we use the following steps
(to be detailed later):

1. Choose a frame� , and initialize from it a set
�  �� �.

Assume that the shape parameters corresponding to
this image are spatially uniform (scene in infinity).

2. Compute motion parameters (translation components
and optionally rotation components) by aligning a
new frame to the existing set

�
.

3. Add the registered frame to the set
�

.

4. Estimate the shape parameters (the slopes of EPI lines
or the slope of EPI planes) for this set

�
.

5. Return to 2. Repeat until reaching the last frame of
the sequence.

Fig. 7 demonstrates this scheme for the case of a camera
translating along a straight line.

4.2 Estimating the Shape Parameters (EPI slopes)
The shape parameters are needed only for a subset of

image points, as they are used to compute only a few mo-
tion parameters. The process can be formulated in the fol-
lowing way: Let� be the index of the frame for which we
estimate the shape and let�� ��  ��� � �� 	 �� � �� �� be
the translation of the optical center of the camera between
the��� and the��� frames.

Following [10], The shape parameter�  � �� 	 
 	 � � in
the image point�� 	 
 � minimizes the error function:

� �� ���  �
� �� �

� 	� � ����
� �� �� � � ��� �� � �� � �� �� 	 (6)

Where� � is the gradient of the image�� in the point
�� 	 
 �, and is a small window around�� 	 
 �. (A 5x5
window was used). The minimum of this quadratic equa-
tion is obtained by:

�  �� � �� � � 	� � � � �� � � � � �� �� � ��� �� 	 
 � � �� �� 	 
 ��� � �� � � 	� � � � �� �� � � � � ��
(7)

The weights� 	� determine the influence of each frame
on the shape estimation. Most of the weights are set to
zero, except for frames which are close in time or in space
(currently we use the five closest frames).

For each window in�� , the computation described
above is repeated iteratively until convergence, where in
each iteration, the relevant regions in all the frames��� �
with � 	�  �

are warped back towards�� according to�� ��
and the current estimate of�.

As we do not need to estimate the shape parameters for
every pixel, only the best points are used:

1. We do not use points with a small gradient in the di-
rection of motion. The threshold is selected according
to the desired number of points to use.

2. We do not use points for which the iterative shape
computation algorithm fails to converge.

4.3 Predictive Alignment with Parallax
The alignment concept is demonstrated in Fig. 7. Given

the shape parameters (EPI slopes) computed from the pre-
viously aligned frames, the motion parameters should be
those that best predict the next frame. This is computed
using a slight modification of the Lucas-Kanade direct��
alignment as described in [2].

Assume that all the images�� � � � ���� have already
been aligned, and let the��� frame be the new video frame.
We also know of the shape parameters� �� 	 
 	 � � for � � �.
To compute the motion parameters of the new frame, we
minimize the following prediction error function: (Some-
times the term�� is used to denote the difference between
images).

� �� �� 	 � �  �
� �� �

� �� ����� �� � ��
�� � � � ��

� 
 � �� � �� �� 	 (8)

where the displacement� 	 � of each point is given by:

� �� 	 
 	 � �  ��� � �� � � � �� 	 
 	 � �� �� 	 
 	 � �  ��� � �� � � � �� 	 
 	 � � � (9)

Note the use of the derivatives� ���� and � ���� which are esti-
mated from�� rather then from�� , since we haven’t com-
puted� �� 	 
 	 � � yet, and therefore we must align frame��
to the rest of the images.
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The coefficients� �� are also used to weight the impor-
tance of each frame in the alignment. For example, frames
which are far off, or contain fewer information should re-
ceive smaller weights. For each image whose location�� ,�� is unknown we set� ��  �

.
Currently we use about three preceding frames to pre-

dict the next frame. When the camera is translating on
a plane we use several additional frames which are not
neighbors in time but whose optical centers are close. In
this way we reduce the drift in the motion computations.

4.3.1 Handling rotations

When the camera can also rotate, image displacements are
a combination of the translational component, which is
depth dependent, and the rotational component which is
depth independent. Assuming small camera rotations and
using the approximation�� �� � � � and��� �� � � � the
following motion model is obtained:

� �� 	 
 	 � �  ��� � �� � � � �� 	 
 	 � � � � � � � 
� �� 	 
 	 � �  ��� � �� � � � �� 	 
 	 � � � �

� � � � � (10)

� and
�

denote the small pan and tilt which induce an ap-
proximately uniform displacement in the image.� denotes
small camera rotation about the� axis. For larger rotations,
or when the focal length is small, full rectification can be
used.

Using Eq. 10 with the error function in Eq. 8, and setting
to zero the derivative with respect to the motion parameters
(camera shift� 	 � and rotational components� 	 � 	 �), gives
a set of five linear equations with five unknowns.

If the camera is restricted to translate along a straight
line (without the loss of generality this line is horizontal),
then��  ��  �

, and we are left with fewer unknowns
- one unknown for translation only, and four unknowns for
translation plus rotation.

4.4 Examples: Predictive Alignment with Parallax
The example in Fig. 8 is from a video that was taken

from a moving car having substantial motion parallax. The
differences between the mosaic images obtained by�� im-
age alignment and the mosaic images obtained by predic-
tive alignment is evident.

5 Concluding Remarks
An approach for video registration of dynamic images

has been presented. The image dynamics can be a result of
dynamics in the scene, or a result of motion parallax. The
frames in such video sequences can be aligned by predict-
ing the next frame from the preceding frames.

Frame prediction for alignment can be done much faster
than other video completion approaches, resulting in a ro-
bust and efficient registration. The examples show good

registration of very challenging dynamic images that were
previously considered impossible to align.

The predictive alignment was also shown to be appli-
cable to motion parallax, when a camera is moving in a
static scene. The stronger assumptions that can me made
for motion parallax result in more accurate alignment.

A possible future challenge can be the development of
predictive alignment when motion parallax and scene dy-
namic are combined. This combination is not simple, as
motion parallax depends on the dynamic of the camera,
which has no relation to the dynamic of the scene.
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