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Abstract

A fundamental assumption made in formulating optical-ow algorithms is that mo-
tion at any point in an image can be represented as a single pattern component under-
going a simple translation: even complex motion will appear as a uniform displacement
when viewed through a su�ciently small window.

This assumption fails for a number of situations that commonly occur in real world
images. For example, transparent surfaces moving past one another yield two motion
components at a point. More important, it fails along the boundary between two
di�erently moving image regions. Even local motion analysis must be performed within
a window of �nite size. This window contains two motion components when it falls on
a motion boundary.

We propose an alternative formulation of the local motion assumption in which there
may be two distinct patterns undergoing coherent (e.g., a�ne) motion within a given
local analysis region. We then present an algorithm for the analysis of two-component
motion in which tracking and nulling mechanisms applied to three consecutive image
frames separate and estimate the individual components. Precise results are obtained
even for components that di�er only slightly in velocity, and for a faint component in
the presence of a dominant, masking, component.

We demonstrate that the algorithm provides precise motion estimates for a set of
elementary two-motion con�gurations, and show that it is robust in the presence of
noise.

�Permanent address: Dept. of Computer Science, The Hebrew University of Jerusalem, 91904 Jerusalem,

Israel.
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1 Introduction

The optical ow approach to motion analysis has been based on a single-component model

of local image motion: even a complex moving scene will be indistinguishable from a sin-
gle pattern undergoing simple translation when viewed through a su�ciently small window,
over a su�ciently short interval of time. Therefore, in attempting to solve the optical ow
equation, it is frequently assumed that the image pattern in the immediate neighborhood of
each sample point of an image sequence undergoes simple translation between image frames
[7, 12, 16]. However, a single-component motion model is inadequate for a number of impor-
tant situations that commonly occur in real world image sequences. For example, transparent
surfaces moving past one another yield two motion components at a point. Patterns of light
and shadow moving over a di�erently moving surface also yield two motions. Furthermore,
failures of the single-motion model occur along the boundary between any two di�erently
moving regions in a scene. The area subject to such failures can represent a signi�cant
fraction of the area of a scene. These failures result from the fact that neighborhoods used
in estimating motion cannot always be `su�ciently small'. The neighborhood must be large
compared to the frame-to-frame image displacements, and su�ciently large to encompass ad-
equate pattern detail on which to base estimates of motion. When this neighborhood falls on
a motion boundary the estimated motion typically represents an average of the components
on either side of the boundary. It does not represent either motion accurately.

The single component model is implicit in the \smoothness constraints" used in optical
ow computation[2, 11, 13]. In an e�ort to increase accuracy near boundaries, more recent
approaches have adopted a piecewise smoothness constraint which allows a small number
of discontinuities between smoothly varying regions. In e�ect, a segmentation process is
introduced to locate motion boundaries. Motion analysis is then constrained not to com-
bine local estimates across such boundaries. However, such segmentation presents its own
problems. Often the only information on which to base segmentation is the observed image
motion itself. Thus good quality motion analysis depends on image segmentation, while
segmentation depends in turn on good quality motion information. Methods can be readily
imagined, some of which have been implemented, that alternate between computation of
motion and computation of image segments, relying on successive re�nement to converge
to a stable interpretation of the scene [18, 20]. Examples of this approach include Markov
Random Field models incorporating `line processes' to decouple motion estimation processes
either side of a boundary, and `brittle membrane' models [8]. These techniques tend to be
slow to converge and cumbersome to apply to practical problems. In addition segmentation
based techniques cannot deal with other types of multiple motion such as transparency.

Hough transform and correlation techniques have been used to estimate multiple com-
ponents of motion without segmentation [7, 9]. A direct estimation technique has also been
proposed [21]. These techniques have limited precision, however. Since the di�erently moving
pattern components are not isolated, each component can introduce errors in the estimates
obtained for the other components. It has been demonstrated [1] that rigid motions of
multiple moving objects can be computed from accurate optical ow. However, traditional
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methods to compute optical ow fail in this case of multiple moving objects.
In this paper we introduce an alternative model for describing local motion in an image

in which there may be two distinct, di�erently moving patterns within the neighborhood
of an image point. We further de�ne an algorithm that can obtain precise estimates of the
component motions without explicit segmentation. This two-component motion model allows
analysis of most basic local motion con�gurations which do not conform to the traditional
single-motion model. The algorithm is iterative, alternately estimating one component, then
the other. As each component is estimated, it is largely removed from the image through a
nulling procedure. This allows more precise estimation of the remaining component. Because
we relax the single-motion constraint, analysis can be performed within larger neighborhoods.
This improves signal/noise aspects of the computation, and leads to more precise and robust
motion estimates. Convergence is rapid: in our experience, estimates of both motions are
recovered to an accuracy of 0.01 pixels per frame interval after only a few iterations. The
algorithm uses three frames of a motion sequence to estimate two motions. The time interval
between frames must be small to ensure that any acceleration of the moving components is
negligible. We demonstrate that the algorithm provides precise motion estimates for a set
of elementary two-motion con�gurations, including transparent pattern motion and motion
boundaries, and show that it is robust in the presence of noise.

The two-motion algorithm we describe should be regarded as a basic component of a
larger motion analysis system. It provides a more exible method for estimating motion
within local image regions. Other system components are required to select the local regions
in which to perform analysis, and to assemble results into an overall interpretation of scene
motion.

2 Elementary Motion Con�gurations

As we have observed, the estimation of motion at a point in an image must be based on
pattern information in a neighborhood of that point. We will refer to this neighborhood as
the motion analysis region.

The size of the motion analysis region is a critical factor in motion estimation. It is
important that it be small, so that motion within the region can be described by a simple
model. But the region cannot be too small or it may not encompass su�cient pattern detail
to permit reliable motion estimation. The appropriate size is dictated by such factors as the
size and velocity of objects in the scene.

These observations lead to two questions: how can we determine the `optimal' size for
the analysis region, and what motion con�gurations may be expected to occur within regions
that have this appropriately selected size? The answer to the �rst question is beyond the
scope of the present paper, except to note that `foveation' [5], or split-and-merge procedures
[19] might be used to control region size.

In answer to the second question we have assembled a small set of elementary motion

con�gurations, as shown in Figure 1. The most common con�guration is undoubtedly a
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Figure 1: Elementary local motion con�gurations. a) Uniformmotion
of a single surface. b) Motion boundary. c) Transparent surfaces in
motion. d) `Picket fence' motion. e) Masking. f) Two-component
aperture e�ect.

single pattern undergoing coherent motion (Figure 1a), but there are a number of commonly
occurring con�gurations involving two motion components (Figures 1b-f). More than two
components can also occur, but these are relatively rare. Existing motion algorithms typically
can deal with only one or two of these con�gurations adequately. Our objective in formulating
a new motion analysis algorithm is that it should estimate correct motions in all of the
con�gurations shown in this �gure.

The elementary local motion con�gurations are:

1. Single Surface. The analysis region contains a single pattern undergoing coherent (e.g.,
a�ne) motion.

2. Motion Boundary. The region contains two di�erently moving patterns separated by
a distinct boundary.

3. Transparent Surfaces. The region contains two di�erently moving image patterns that
appear superimposed. Examples include moving shadows, spotlights, reections in a
pond etc., as well as actual transparent objects.

4. `Picket Fence'. The region contains small or thin foreground objects that move in front
of a di�erently moving background, or the background appears through small gaps in
the foreground. Foreground and background move coherently as two groups although
they may be disconnected in the image.
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5. Masking. The region contains a dominant moving pattern and a second pattern that
has low contrast or is small. The dominant pattern may mask the second in the
elementary motion computation. An example is a football partially tracked by the
camera in a sports broadcast.

6. Two-Component Aperture E�ect. The aperture e�ect may be overcome by making
the analysis region su�ciently large to include an entire object, but then it is likely to
contain two, di�erently moving, objects. In addition, features formed by the superpo-
sition of object patterns, such as `T' junctions in this example, may appear to move
di�erently from either object.

This set of elementary motion con�gurations is intended to encompass the important
cases in which two di�erently moving patterns occur within an image region. There may
be other con�gurations of which we are not aware. The algorithm we propose in the next
section can handle each of these and other con�gurations in which the image can be modeled
as a combination of two coherently moving patterns.

3 Models for Local Motion

Motion estimation is based on an assumed model relating motion to observed image inten-
sities. The traditional model used in optical ow computation postulates a single pattern
moving uniformly within any local analysis region. We introduce a new model that postulates
two such components.

3.1 Standard Single-Component Model

Let I(x; y; t) be the observed grayscale image at time t. Let R be the analysis region in
which we wish to estimate motion.

The traditional model used in optical ow analysis [2, 10, 14] assumes that within the
region R the image may be represented as a pattern P (x; y) moving with instantaneous
velocity p(x; y). This motion �eld can be represented by velocity components in x and y:
p(x; y) = (px(x; y); py(x; y)). It is frequently assumed that this motion �eld is constant
within R: the pattern P undergoes a simple rigid translation. More generally, the motion
may be assumed to conform to other smoothly varying coherent motions, such as an a�ne
transformation, that can be described with a small number of parameters. The analysis then
seeks to estimate best values for these parameters. Formally:

I(x; y; 0) = P (x; y);

I(x; y; 1) = P (x� px; y � py) = P p;

and (1)

I(x; y; t) = P (x� tpx; y � tpy) = P tp;
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where P tp denotes the pattern P transformed by the motion tp (see Figure 2a). Here t
is assumed to be a small time interval, so that acceleration can be neglected. This model
can represent only the �rst of the elementary motion con�gurations in Figure 1 because it
assumes that locally there is only one coherent motion.

3.2 Proposed Two-Component Model

We introduce an alternative model for local motion, as shown in Figure 2b. This is based
on the same assumption of locally coherent motion as in the standard model, but we now
allow two motion components: Within the analysis region the image is assumed to be a
combination of two distinct image patterns, P and Q, having independent motions of p and
q:

I(x; y; 0) = P (x; y)�Q(x; y)

and (2)

I(x; y; t) = P tp �Qtq:

Here the � symbol represents an operator such as addition or multiplication that combines
the two patterns.

q p

a) b)

R

PQ

R

P
p

Figure 2: Two models for local motion. a) The traditional model with
single motion: pattern P moves with velocity p within the analysis
region R. b) The two-motion model: two patterns, P and Q, move
with velocities p and q.

The proposed two-motion model can represent (at least approximately) all of the ele-
mentary motion con�gurations in Figure 1. For example, a motion boundary, Figure 1b, can
be represented as the sum of two patterns that are de�ned over the entire analysis region,
but that have zero amplitude over complementary portions of the region. If P moves to
the right and its lower half is uniformly zero, and Q moves to the left and its upper half
is uniformly zero, than the sequence I(x; y; t) generated from their sum represents a scene
whose upper half moves right and lower half moves left. Transparent motion of a reection
in a shop window also corresponds to the case in which � is addition, while patterns of
light or shadow moving over a surface correspond to the case in which � is multiplication,
Figure 1c.
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4 Estimating a Single Motion

We now review an algorithm for estimating a single image motion in accordance with the
model of Equation (1). In the next section we show that this procedure for estimating
single-component motion can be applied repeatedly to extract two motion components.

The single motion algorithm combines several techniques to achieve speed and precision.
While individually these techniques are not new, they are reviewed briey here for com-
pleteness. First we describe a basic incremental-motion estimator that can obtain estimates
for motion given that frame-to-frame displacements are small. Second, the precision of the
estimator is enhanced through a successive alignment procedure. Finally, the range of the
estimator is extended by implementing coarse-�ne alignment within a pyramid structure.

4.1 Incremental-Motion Estimator

The problem of estimating the motion of an image region can be complicated and compu-
tationally expensive. However, if we restrict our consideration to small motions, it has been
shown that there exists a simple, closed form estimate [16, 17]. We review one derivation
of this type of motion estimate. From Equation (1), I(x; y; t) can be expressed in terms of
I(x; y; t� 1):

I(x; y; t) = I(x� px; y � py ; t� 1): (3)

(To simplify notation, let the frame interval be one unit of time.)
Adopting the standard `least squared error' approach, we wish to �nd the motion �eld

p = (px; py) that minimizes the squared error:

Err =
X

x;y2R

(I(x; y; t)� I(x� px; y � py; t� 1))2: (4)

Under the assumption that the displacement is small, the above equation can be simpli�ed
through truncated Taylor series expansion of I(x; y; t):

I(x� px; y � py; t� 1) � I(x; y; t)� pxIx(x; y; t)� pyIy(x; y; t)� It(x; y; t); (5)

where

Ix =
@I(x; y; t)

@x
Iy =

@I(x; y; t)

@y
It =

@I(x; y; t)

@t
:

Then
Err =

X
x;y2R

(It + pxIx + pyIy)
2: (6)

The image motion is now obtained by setting the derivatives of Equation (6) with respect to
each of the parameters of the velocity components to zero, and solving the resulting system
of equations [12].
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If the motion is modeled by simple translation, that is p = (ax; ay) where ax and ay are
constants, then the familiar optical ow equations [12, 13, 15] are obtained:

hX
Ix

2
i
ax +

hX
IxIy

i
ay = �

X
IxIt (7)

hX
IxIy

i
ax +

hX
Iy

2
i
ay = �

X
IyIt:

If, instead, we model motion as an a�ne transformation, p has six parameters:

px(x; y) = ax + bxx+ cxy

py(x; y) = ay + byx+ cyy:

If the error in Equation (6) is di�erentiated with respect to each of these parameters a
system of six equation with six unknowns is obtained:
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This system is solved for the coe�cients of the a�ne transformation.

4.2 Alignment

The above estimation method is accurate, in general, only when the frame-to-frame dis-
placements due to motion are a fraction of a pixel, so that the Taylor series approximation is
meaningful. The precision of the estimates can be signi�cantly improved through an iterative
alignment procedure [3, 5]. After an initial estimate of motion is obtained the �rst image
is shifted towards the second to compensate for the estimated displacement. The motion
estimation procedure is then repeated between the shifted �rst image and the original second
image to obtain an estimate of any residual velocity. These shift and estimate steps are iter-
ated to bring the �rst image into alignment with the second, thereby progressively reducing
the frame-to-frame displacement, and creating conditions in which the incremental-motion
estimator is most accurate.

Let pk be the velocity estimate obtained after the kth iteration of the alignment process.
Let p0 be the a priori estimate of velocity before analysis begins. Typically we assume
p0 = 0. Steps of the alignment procedure during the kth iterations(k � 1) are as follows (see
Figure 3):

1. The �rst image, I(x; y; t�1), is shifted, or warped, towards the second image, I(x; y; t),
in accordance with the velocity estimated pk�1 obtained on the previous iteration:

I
k�1

= I(x� pxk�1; y � pyk�1; t� 1):
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2. The incremental-motion estimator is applied to Ipk�1(x; y; t�1) and I(x; y; t) to obtain
an estimate �pk of residual motion.

3. The estimated motion is updated:

pk = pk�1 +�pk:

When initial displacements are within range of the incremental motion estimator, this
alignment procedure generally converges rapidly, usually achieving its limiting accuracy
within two or three iterations.

Incremental-
Motion

Estimator

delay

Warp

I(t)

I     (t-1)I(t-1) pk-

pk-

pk

pk

1

1

Figure 3: Precise motion estimates obtained through feedback and
successive alignment.

4.3 Coarse-Fine Alignment

The range of the motion estimation process can be extended to the general case of large dis-
placements by implementing alignment within a multiresolution (pyramid) structure, (Fig-
ure 4).

A Gaussian pyramid is constructed for each of the source image frames, I(x; y; t�1) and
I(x; y; t). This pyramid is a sequence of copies of the original image in which both resolution
and sample density are reduced by powers of 2. Let Gt;` be the `th pyramid level for image
I(x; y; t). The zero level is identically the source image, i.e. Gt;0 = I(x; y; t); the `th level is
obtained by convolving the `� 1 level with a small kernel �lter, w, followed by subsampling
[4]:

Gt;` = [Gt;`�1 � w]#2:

Here # 2 indicates that the quantity in brackets has been subsampled by 2 in both x and y;
every other row and column are discarded.

9



Motion analysis begins at a low resolution level of the image pyramid. The sample
distance at level ` is 2` times that of the original image. This means correspondingly larger
image velocities can be estimated. At each successive iteration, the shift and estimate steps
are performed on the next higher resolution pyramid level. Thus if level ` is processed at
iteration k, then the shift (or warp) estimated at level `+1 is applied to pyramid levelGt�1;`

to form G
pk�1

t�1;`, and the residual, �pk, is computed between this and the corresponding level
of the second pyramid, Gt;`. Shifting ensures that residual displacements remain less than
a sample distance as the procedure moves to each higher resolution pyramid level, until full
resolution is reached. Thus coarse-�ne tracking can e�ciently estimate velocities of many
pixels per frame time, at accuracies of a small fraction of a pixel [2, 3, 6, 10]. Note that this
process can be represented in terms of the loop in Figure 3, with the addition of a control
process that decreases the scale of analysis at each cycle of the loop.

M

M

M

W

W

W

p1

p0

p2

p3

I(t)I(t-1) I   (t-1)

p2
w

2

w

2

w

2

w

2

Level = 0

Level = 1

Level = 2

p2

p3

p1

Figure 4: Diagram showing the sequence of operations in pyramid
based coarse-�ne alignment.

5 Estimating Two Motions

We now consider the analysis of motion described by the two-component model, Equation (2).
If a direct extension of the least squares estimation technique is attempted, it becomes
necessary to �rst estimate spatial and temporal derivatives of both moving patterns P and
Q. However, these derivatives can only be estimated if the patterns are separated prior to
motion analysis, i.e. the image is segmented.
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Alternative approaches have been proposed that simultaneously estimate two-component
motion without segmentation. Examples include the use of Hough transform techniques,
cross correlation, and `direct' estimation [7, 9, 21]. However, these are computationally di�-
cult and may not provide results of the desired precision. The present approach obviates both
the need for segmentation and the need to estimate two motion components simultaneously.

The key observation for the present approach is that if one of the motion components and
the combination rule � are known, it is possible to remove that component pattern from
the images and compute the other motion using the single-component motion algorithm
without determining patterns P or Q themselves. In what follows we will assume that
the combination operation is addition. The case of multiplication can also be turned into
addition by taking the logarithm of the images.

Suppose, for the moment, that motion p is known, so that only motion q must be
determined. The pattern component P moving at velocity p can be removed from the image
sequence by shifting each image frame by p and subtracting it from the following frame.
The resulting sequence will contain only patterns moving with velocity q.

Let D1 and D2 be the �rst two frames of this di�erence sequence, obtained from three
original frames. From Equation (2):

D1 � I(x; y; 2)� Ip(x; y; 1)

= (P 2p +Q2q)� (P 2p +Qq+p)

= Q2q �Qq+p

= (Qq �Qp)q; (8)

D2 � I(x; y; 3)� Ip(x; y; 2)

= (P 3p +Q3q)� (P 3p +Q2q+p)

= Q3q �Q2q+p

= (Qq �Qp)2q:

The sequence fDng now consists of a new pattern Qq �Qp moving with a single motion
q, that is: Dn = (Qq �Qp)nq. Thus the motion q can be computed from the two di�erence
images D1 and D2 using the single-motion estimation technique described in the previous
section.

In an analogous fashion the motion p can be recovered when q is known. The observed
images I(x; y; t) are shifted by q, and a new di�erence sequence is formed:

Dn
0 = I(x; y; n+ 1)� Iq(x; y; n):

This sequence is the pattern P p�P q moving with velocity p: Dn
0 = (P p�P q)np, so p can

be recovered using the single-motion estimation algorithm.
Note that the shift and subtract procedure removes, or \nulls," one moving pattern from

the image sequence without determining what that pattern is, without explicit segmentation.
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If the combination rule in Equation (2) is multiplication then a shift and divide procedure
in Equation (8) would achieve the same nulling function, yielding Dn = (Qq=Qp)nq when p
is known.

In practice, of course, neither motion p or q is known a priori . However, it is possible
to recover both motions precisely if we start with even a very crude estimate of either. It
is generally su�cient to assume p = 0 in order to obtain a �rst estimate of q, if no better
a priori information is available.

Two-component motion analysis can therefore be formulated as an alternating iterative
re�nement procedure, (Figure 5). Let pn and qn be the estimates of motion after the nth

cycle. Estimates alternate between p and q, so if p is obtained on even-numbered cycles, q
is obtained on odd cycles. Steps of the procedure are:

1. Set an initial estimate for the motion p0 of pattern P .

2. Form the di�erence images D1 and D2 as in Equation (8) using the latest estimate of
pn.

3. Apply the coarse-�ne single-motion estimator to D1 and D2 to obtain an estimate of
qn+1.

4. Form new di�erence images D1 and D2 using the estimate qn+1.

5. Apply the single-motion estimator to the new sequenceD1 and D2 to obtain an update
pn+2.

6. If a desired level of precision (stability) has been attained then stop, else repeat starting
at Step 2.

In the cases we have tried, convergence of this process is fast: with arti�cially generated
image sequences, the correct transformations are recovered to within roughly 1% after three
to �ve cycles regardless of the initial guess of p0. We have not attempted to determine
analytically the conditions under which the algorithm is guaranteed to converge.

When this two motion algorithm is applied to a region containing only one moving
pattern, it will detect that motion on the �rst iteration, but will pick up \motion" of noise
in the second. In practice a test will be required to detect this situation. One way of
detecting such a situation is to use the estimated motion to register the di�erence images,
used in the computation, and compare the mean square of the registered images with the
mean square error of the unregistered di�erence images.

6 Examples of Two-Motion Analysis

We have tested the two-motion algorithm with several examples of the elementary motion
con�gurations shown in Figure 1. We have used both arti�cial sequences constructed from
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pn  (qn)

I(1)
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I(2)

Form Difference
Images

Estimate Single
Motion

Figure 5: Two stage computation for recovering two motion compo-
nents from three input images. The loop inside the righthand box
represents the coarse-�ne iteration detailed in Figure 4. The outer
loop increments each time the inner loop completes.

moving random noise patterns and real images of complex natural scenes. In all examples
in this section, the analysis region R was taken to be the entire image and the images were
of size 256� 256 or 256� 200 pixels. In all cases coarse-�ne computations began at pyramid
level three and moved to level zero. The initial motion estimate for both components was
taken to be zero. When arti�cial sequences were used the actual velocities were known and
the accuracy of estimate could be determined. All computations were performed on a Sun
SparcStation 1. Each full iteration of the algorithm described in the previous section required
roughly 10 seconds.

Example 1: Transparent Motion

A synthetic image sequence showing transparent motion was constructed by adding two
random dot patterns, P and Q, one translating (8,0) pixels between successive frames, and
the other (0,8) pixels. The appearance of this sequence is of one transparent textured
surface sliding over a second opaque surface. The two correct translational components of
the original sequences were recovered after 3 cycles of the coarse-�ne process. Other choices
of initial guess produced similar results1. Actual recovered translations were (8:04; 0:01) and

1The importance of the initial motion estimates has not been studied systematically. Clearly convergence

can only be obtained if the error in the initial estimates falls within the range of velocities that can be

detected by the single motion algorithm. This range is large because the algorithm is implemented within a
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(0:01; 8:03). Unfortunately the results of this example can not easily be displayed in a still
image. In a video sequence showing the compensated di�erence images, Dn, it is easily seen
that the two motions have accurately been separated.

a. b. c.

Figure 6: Transparent motion. A sequence of images was obtained as
the camera moved showing a face reected in the glass of a framed
picture. a) One frame from the sequence. b) Di�erence of two con-
secutive frames after registration using the computed motion of the
picture. The picture cancels out, and the face structure is visible. c)
Di�erence of two consecutive frames after registration using the com-
puted motion of the reected face. The face cancels out, and only the
picture structure is visible.

A second example involving additive transparency is shown in Figure 6. In this case a
sequence was captured with a moving video camera showing a face reected in the glass
covering a print of Escher's \Three Worlds". A single frame from this sequence is shown
in Figure 6a. As the camera moved, the image reected in the glass and the image in the
print moved di�erently. These two motions were computed from this sequence and used
to produce the compensated di�erence images (frames from Dn) shown in Figure 6b and
Figure 6c. In Figure 6b the reected image (barely visible in Figure 6a) is revealed showing
that the other component was registered accurately. In Figure 6c, the reected image has
been nulled.

Example 2: Motion Boundary

The second example demonstrates motion estimation at a boundary. This sequence was
also constructed from two random noise �elds, now not transparent but forming foreground

pyramid structure.
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a. b. c. d.

Figure 7: Motion boundary. A sequence of frames was constructed in which regions of
random texture moved as in (a). One image in the sequence is shown in (b). The multiple
motion algorithm was used to recover both motions. When one image is shifted by one of
these motions and a di�erence image is formed, the corresponding moving pattern cancels,
and the boundary is revealed (c). If an optical ow algorithm is applied instead, erroneous
motion estimates are obtained along the boundary, as is apparent when the estimated motion
is used to register successive frames and a di�erence is formed (d).

and background regions. The upper left �eld is in the background, moving with velocity
(6:831; 2:331). The foreground �eld moving with velocity of (�3:863; 1:024) covers a region
in the lower half of the picture. These displacements correspond to a motion parallel to
the boundary for the foreground segment, and a velocity oblique to the boundary for the
background. In this case, the sequence is not precisely the sum of two uniformly moving
patterns because a small area of the background is hidden, or occluded, by the foreground
object on each frame. In spite of this minor violation of the sequence structure assumed in the
two-component motion model, the algorithm successfully recovers the motion components.
The translation components determined by the algorithm after 2 iterations are (6:828; 2:322)
and (�3:845; 1:041). The result of compensating for one of the estimated displacements and
subtracting successive frames is displayed Figure 7c. It can be seen that the estimated
displacement corresponds very accurately to the motion in one of the two regions, resulting
in that region being blank in the compensated di�erence image. In this example, knowledge
of the two motions leads directly to an accurate segmentation of the image. For comparison,
an optical ow computation[3] results in the compensated di�erence image in Figure 7d. Here
the pattern cancels over most of the image area, indicating accurate motion compensation,
but does not cancel near the boundary.

Example 3: Masking

A second sequence of real images was digitized to demonstrate motion recovery when one
motion pattern predominates, and `masks,' the second pattern as in Figure 1e. This sequence
is an \aerial photograph": a small toy tank moves rapidly in front of a large moving back-
ground of toy roads and trees. One frame of this sequence is shown in Figure 8a. Because the
motion of the foreground object is roughly equal to its own size, it would be di�cult to select
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a. b. c.

Figure 8: Masking. A small moving object may be obscured when
viewed against a larger, di�erently moving background. a) One frame
from the sequence. b) Di�erence of two consecutive frames after reg-
istration using the background motion. The background cancels out,
and the tank is visible. c) Di�erence of two consecutive frames after
registration using the tank motion. The tank cancels out, and only
the background structure is visible.

a window within which this motion would dominate. However, the two motion algorithm
obtains accurate estimates of both background and foreground motions. The background
cancellation is shown in Figure 8b and the foreground cancellation in Figure 8c. Note the
absence of the moving vehicle in this last image. Accurate estimation of both motions is
obtained in spite of the fact that the combination of foreground and background components
is not strictly additive.

Example 4: Two-Component Aperture E�ect

An example involving both transparency and a two component aperture e�ect is shown
in Figure 9. The image sequence in this case consists of the sum of two uniform squares
moving diagonally in opposite directions, as in Figure 1f. In this case, the actual motions
were (2:0; 2:0) and (�2:0;�2:0). An optical ow computation[3] results in the ow �eld
is shown in Figure 9c. Note that almost all ow vectors point in directions other than the
direction of actual motion. Some vectors correspond to the well known aperture e�ect, others
to the apparent motion of features formed by the superposition of two di�erently moving
patterns. Clearly it would be very di�cult to recover accurate estimates of object motions
from such a ow �eld. However, when the two component motion algorithm is applied actual
object motions are recovered to machine precision after only two iterations.

Example 5: \Picket Fence"

The �nal example, Figure 10, shows an image sequence in which a crowd of people is viewed
through a complex pattern of tree branches. The camera is translating and rotating, so the
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a. b. c.

Figure 9: Two component aperture e�ects. a) Input con�guration.
b) One frame from sequence. c) Optical ow �eld computed from
two frames of the sequence. Note that the complex pattern of ow
does not correspond to the motion of either object. When the two-
component algorithm is applied both motions are accurately recov-
ered.

foreground trees and background crowd are seen to move di�erently. Because the motions
include dilation and rotation as well as translation we must estimate two a�ne transfor-
mations. This is an example of a `picket fence' con�guration, Figure 1d. In spite of many
violations of the additivity assumption due to occlusion and exposure, convergence is reached
after 4 iterations. In order to demonstrate the accuracy of the foreground and background
motion estimates, we have generated two \temporal average" images after registering the
three input images using the two estimated motions, (Figure 10c and d). In each of these,
the registered areas are sharp, while the rest of the image is blurred due to the image motion.
For reference, an unregistered temporal average is shown in Figure 10b.

7 Quantitative Experiments

7.1 Stability Analyses

The examples shown in the preceding section suggest that the algorithm that we have de-
scribed is surprisingly robust with respect to violations of the assumptions about image
sequence structure expressed in Equation (2). Of the examples shown, only Example 1
involving transparency can be exactly represented as the sum of two coherently moving pat-
terns. In the others, some areas appear or disappear from frame to frame. In the case of
the tree scene, Example 5, there are also objects within the analysis region that move with
velocities unrelated to either of the two major coherent components. Nevertheless, the regis-
tration of the major components is fairly accurate. In the case of the synthetic images where
the motions are known exactly, these values are recovered precisely in spite of violations of
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(c)

(a)

(d)

(b)

Figure 10: \Picket fence." A crowd is viewed through the branches of a foreground tree.
The camera is moving so that the foreground and background appear to move in di�erent
directions. a) One frame from the original sequence. b) Averaging three consecutive frames
from the original sequence (no motion compensation). The entire scene is blurred. c) Aver-
aging three frames after registration with the foreground motion. The trees are sharp, while
the background is blurred. d) Averaging three frames after registration with the background
motion. The background remains sharp, while the foreground is blurred.
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assumptions.

7.1.1 Experiments

Two experiments were performed to determine the limits of the algorithm's performance
when applied to image sequences that do not precisely conform to the two-component motion
model. In both cases, the test sequence was the sum of un�ltered Gaussian noise images
with standard deviation equal to 15 gray levels. Each component moved with a speed of 3
pixels per frame, one to the right, the other to the left.

In the �rst experiment, temporally uncorrelated noise was added to the motion sequence.
This simulates the e�ect of image occlusion since regions of the image that appear or disap-
pear from frame to frame produce local changes in intensity that are uncorrelated in time.
In the second experiment a moving uniformly distributed noise pattern was added to the
original two-component sequence. This simulates the e�ect of motions that do not �t the
model of either coherent motion being estimated. Note that noise signals are distributed
uniformly over the analysis region in these experiments although the conditions that these
experiments are designed to simulate (such as occlusion e�ects) are generally localized in
natural images. This di�erence is not critical, however, since the contributions are summed
over the analysis region.

In each experiment, two factors were varied: the amplitude of the interfering signal and
the size of the analysis region. Two characteristics of algorithm performance were measured:
the likelihood that the algorithm successfully isolated the two motion components after 20
cycles of the algorithm (10 for each motion component), and the average RMS error in those
estimates with respect to the true velocities. The region size was varied over a wide range
because increased size may be expected to decrease sensitivity of the algorithm to noise. In
both experiments, only uniform displacement was estimated, rather than a more complex
transformation.

7.1.2 Results

Figure 11a shows the results using uncorrelated noise. On the abscissa is the standard
deviation of the noise. Since the noise was uniformly distributed, the range of the noise is
the standard deviation multiplied by 1.732. On the ordinate is shown the probability that
the two-motions algorithm converged to within 20% of the correct velocities within 10 cycles
of the `estimate-subtract' analysis process. Each probability estimate is based on 30 trials
with the same signal but independent samples of noise. Four curves are shown, representing
window sizes of 16 � 16, 32 � 32, 64 � 64, and 128 � 128 pixels.

A number of characteristics are worthy of note. First, with little or no noise, even a
window size of only 16 � 16 is su�cient for reliable convergence of the algorithm. However,
for this smallest window size the results are sensitive to noise, and by a noise standard
deviation of about 3 gray levels the process is already rather unreliable. This is a relatively
high noise value, corresponding to a signal to noise ratio of 5, since the individual `signal'
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a. b.

Figure 11: Probability of convergence as a function of noise level. The
abscissa shows noise standard deviation. The ordinate shows proba-
bility of convergence to within 20% of the correct motion estimates
within 10 iterations. The error is de�ned as the rms error divided by
the rms amplitude of the velocities, thus convergence requires that
both motions be reasonably well estimated. The various curves cor-
respond to window sizes ranging from 16 � 16 to 128 � 128 for the
uncorrelated noise, and 16 � 16 to 64 � 64 for the moving noise. a)
Uncorrelated Noise: new samples of noise were generated for each
frame. b) Moving Noise: one sample of noise was generated, and
then moved upwards by three pixels on each frame.
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Figure 12: Percentage RMS error when probability of convergence is
above 50%. The abscissa shows the noise standard deviation. Curves
show window sizes ranging from 16 � 16 to 128 � 128.

components have a standard deviation of only 15 gray levels. For larger window sizes,
however, the process is very resistant to the e�ects of uncorrelated noise. It is not until the
signal-to-noise ratio falls well below 1 that the probability of convergence drops below 90%.
Furthermore, for these stimuli at least, there is only a slight bene�t in increasing the window
size above 32� 32.

The results of the second experiment are shown in Figure 11b. A third motion component
is introduced moving at the same speed as the original two, (3 pixels per frame), but moving
upward rather than right or left. Again, the abscissa shows the noise component standard
deviation (note the di�erence in scale) and the ordinate shows the probability of convergence
within 20% of the correct signal velocities. For the 16� 16 window size the results are very
similar to those for the uncorrelated noise: the algorithm is rather noise-sensitive. For the
larger window sizes, performance is reliable down to a signal-to-noise ratio of about 2. Beyond
this level, performance decays rapidly. This is not surprising since in these stimuli the signal
components and the noise are almost identical. When the noise component approaches the
signal components in amplitude, the algorithm begins to track the noise instead of one of the
signal components. Thus there is no possibility of correctly estimating the signal velocities
when the signal-to-noise ratio is less than 1. However, it is clear that for moderate levels of
extraneous motion the algorithm continues to provide meaningful estimates.

An additional measure of the robustness of this algorithm is shown in Figure 12, which
shows the RMS deviation of the estimated velocities from the true values for the cases in
which convergence was obtained. Clearly, this is only of interest when the probability of con-
vergence is high, and when the estimated variation is considerably smaller than the criterion
for convergence. The �gure shows values as a function of uncorrelated noise levels for the
four window sizes. For all but the smallest window size, the expected error grows gradually
and smoothly with noise level. Performance overall is highly accurate. Similar precision
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is found in the case of the moving noise when conditions yielding similar probabilities of
convergence and window sizes are compared.

7.1.3 Conclusions

These results suggest that the performance of the algorithm is robust, at least with respect
to the violations of assumptions introduced here. This is of considerable importance since
in real image sequences the assumptions of the two-motions model will never be satis�ed
precisely. These experimental results help explain the good performance of the algorithm
on several of the examples shown in the previous section, particularly those involving real
images.

8 Summary and Comments

Most current approaches to motion analysis are based on a single motion assumption: when
an image sequence is viewed through a su�ciently small analysis window, over a su�ciently
short interval of time, it may be modeled as a single pattern undergoing uniform motion.
This assumption holds, and can lead to accurate motion estimates, within many local regions
of a typical image sequence. It fails, however, when even a small analysis window contains
two or more di�erently moving patterns, such as along the boundary between a moving
object and its background, and where semi-transparent surfaces or patterns of light move
over other surfaces. Such failures lead to the incorrect interpretation of a scene.

Techniques have been proposed to address limitations of the single motion model, but
these introduce other analysis problems. Image segmentation, for example, can be used to
control the placement of local analysis regions to insure that regions do not cross motion
boundaries. But this presents a \chicken-egg" dilemma since segmentation processes must
often rely on motion analysis to detect such boundaries. In addition, conventional segmenta-
tion cannot handle transparency. Methods that simultaneously estimate two motions within
a region may be limited in their ability to distinguish similar motions, since each motion
component constitutes noise in the signal as it is used to estimate the other component.

We propose an alternative approach to the analysis of multiple motions which largely
overcomes limitations of previous methods. The components are not estimated simultane-
ously, but one at a time, using a single motion algorithm. Once an initial estimate of one
component has been obtained, the associated pattern is largely removed from the image
sequence through a shift and subtract procedure. Three frames of the original sequence are
used to prepare two di�erence frames that can be used to estimate the second motion, again
using a single motion algorithm. These steps are then repeated to obtain a more accurate
estimate of the �rst motion. A few iterations generally su�ce to isolate motion components
and obtain highly precise motion estimates. Speed, precision and robustness are obtained
by implementing all computations within a pyramid framework.

We show that the new approach to motion estimation can handle a variety of basic two
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component motion con�gurations in a uni�ed way. The same computation steps can obtain
precise motion estimates at motion boundaries, identify motions of transparent patterns, and
detect small or low contrast moving patterns in the presence of large, high contrast patterns.
The approach does not require explicit image segmentation to obtain precise estimates of
each component motion.

Several issues important to full motion analysis have not been addressed in this paper and
require further research. We assume that motion analysis is performed within local regions
that have been selected to have at most two di�erently moving pattern components. This
relaxes the single motion constraint imposed in most past approaches, and means that the
analysis regions can generally be much larger than is possible with conventional approaches.
However, when more than two motions occur within a given region it is then necessary to
reposition and/or reduce the size of the region. We have not addressed the problem of how
to detect that more than two motions have occurred, or the problem of how to automatically
select new analysis regions. Again, an advantage of the present approach is that it does not
require segmentation to obtain precise motion estimates of two pattern components. This
should provide a powerful starting point for subsequent segmentation.

Finally it should be noted that our approach assumes that both moving pattern compo-
nents have constant velocity over the three frames used in analysis. This can be a signi�cant
restriction if objects are accelerating and the frame rate is low.
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