
Inherent Vacuity in Lattice Automata?

Hila Gonen and Orna Kupferman

School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.

Abstract. Vacuity checking is traditionally performed after model checking has
terminated successfully. It ensures that all the elements of the specification have
played a role in its satisfaction by the system. The need to check the quality
of specifications is even more acute in property-based design, where the speci-
fication is the only input, serving as a basis to the development of the system.
Inherent vacuity adapts the theory of vacuity in model checking to the setting of
property-based design. Essentially, a specification is inherently vacuous if it can
be mutated into a simpler equivalent specification, which is known, in the case of
specifications in linear temporal logic, to coincide with the fact the specification
is satisfied vacuously in all systems.
A recent development in formal methods is an extension of the Boolean setting to
a multi-valued one. In particular, instead of Boolean automata, which either ac-
cept or reject their input, there is a growing interest in weighted automata, which
map an input word to a value from a semiring over a large domain. A distribu-
tive finite lattice is a special case of a semiring, and lattice automata are used
in several methods for reasoning about multi-valued objects. We study inherent
vacuity in the setting of lattice automata, namely the ability to mutate the value
of a transition in the automaton without changing its language. We define the
concept of inherent vacuity in lattice automata, study the complexity of decid-
ing different types of vacuity, and relate the setting to the one known for linear
temporal logics.

1 Introduction

In recent years, we see a growing awareness to the importance of assessing the quality of
(formal) specifications. In the context of model checking, the quality of the specification
is assessed by analyzing the effect of applying mutations to the formulas. If the system
satisfies the mutated specification, we know that some elements of the specification do
not play a role in its satisfaction, thus the specification is satisfied in some vacuous way
[5, 28]. Vacuity is successfully used in order to improve specifications and detect design
errors [26] and has been a subject of extensive research [4, 5, 10, 18, 28, 31].

Property assurance is the activity of eliciting specifications that faithfully capture
designer intent [7, 33]. Obvious quality checks one may perform for a given specifica-
tion are non-validity and satisfiability [34]. More involved quality checks are studied in
the PROSYD project [32]. As discussed in [33], checking vacuity of the specifications

? The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 278410, and from The Israel Science Foundation (grant no 1229/10).

in the context of property assurance would be of great importance. While early work on
vacuity was done in the context of model checking, researchers have also developed the
concept of “vacuity without design” [13], which is formalized for linear temporal logic
(LTL) formulas in [17], by means of inherent vacuity.

Consider a system S and a formula ϕ. We say that a subformula ψ of ϕ does not
affect the satisfaction of ϕ in S if S also satisfies the formula ∀x.ϕ[ψ ← x], in which
ψ is replaced by a universally quantified proposition. Then, a formula ϕ is vacuously
satisfied in S if ϕ has a subformula that does not affect its satisfaction in S [4]. Now, as
defined in [17], the formula ϕ is inherently vacuous if there exists a subformula ψ of ϕ
such that ϕ ≡ ∀x.ϕ[ψ ← x] or, equivalently, if for every system S, if S |= ϕ, then S
satisfies ϕ vacuously.

The framework in [17] studies specifications given by LTL formulas. A recent de-
velopment in formal methods is an extension of the Boolean setting to a multi-valued
one. In particular, instead of Boolean automata, which either accept or reject their in-
put, there is a growing interest in weighted automata, which map an input word to a
value from a semiring over a large domain [15, 30]. Focusing on applications in formal
verification, the multi-valued setting arises directly in quantitative verification [21] and
in reasoning about quality of systems [1], and indirectly in applications like abstraction
methods, in which it is useful to allow the abstract system to have unknown assignments
to atomic propositions and transitions [35], query checking [11], which can be reduced
to model checking over multi-valued systems, and verification of systems from incon-
sistent viewpoints [23], in which the value of the atomic propositions is the composition
of their values in the different viewpoints.

As mentioned above, in the multi-valued setting, the automata map words to a value
from a semiring over a large domain. A distributive finite lattice is a special case of
a semiring. A lattice 〈A,≤〉 is a partially ordered set in which every two elements
a, b ∈ A have a least upper bound (a join b) and a greatest lower bound (ameet b). Finite
lattices are useful in many of the applications of the multi-valued setting described
above. For example (see Figure 1), in the abstraction application, researchers use the
lattice L3 of three fully ordered values [8], as well as its generalization to Ln [12]. In
query checking, the lattice elements are sets of formulas, ordered by the inclusion order
[9]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean, and
their composition gives rise to products of the Boolean lattice, as in L2,2 [16]. Finally,
when specifying prioritized properties of system, one uses lattices in order to specify
the priorities [3].

In a nondeterministic lattice automaton on finite words (LNFW, for short) [27], each
transition is associated with a transition value, which is a lattice element. Intuitively, the
value indicates the truth of the statement “the transition exists”. Each state in the LNFW
is associated with an initial value and an acceptance value, indicating the truth of the
statements “the state is initial/accepting”, respectively. The value of a run r of an LNFW
A is the meet of the values of all the components of r: the initial value of the first state,
the transition values of all the transitions taken along r, and the acceptance value of
the last state. The value of a word w is then the join of the values of all the runs of A
on w. Accordingly, an LNFW over an alphabet Σ and lattice L induces an L-language
L : Σ∗ → L. Note that traditional finite automata (NFWs) correspond to LNFWs over

the lattice L2. In a deterministic lattice automaton on finite words (LDFW, for short),
exactly one state has an initial value that is not ⊥ (the least lattice element), and for
every state q and letter σ, at most one state q′ is such that the value of the transition
from q to q′ with σ is not ⊥. Thus, an LDFW A has at most one run whose value is not
⊥ on each input word, and the value of this run is the value of the word in the language
of A.

Since being introduced in [27], lattice automata have been used in different con-
texts. Fully-ordered lattices are sometimes useful as is (for example, when modeling
priorities [3]), and sometimes thanks to the fact that real values can often be abstracted
to finitely many linearly ordered classes. The power-set lattice models a wide range of
partially-ordered values. For example, as mentioned above, in a setting with inconsis-
tent viewpoints, we have a set of agents, each with a different viewpoint of the system,
and the truth value of an atomic proposition or a formula indicates the set of agents ac-
cording to whose viewpoint the atomic proposition or the formula are true. As another
example, in [2] the authors study a model of incomplete information in the multi-valued
setting using lattice automata. Researchers have also studied theoretical properties of
lattice automata, like their minimization and approximation [19, 20], and a bisimula-
tion relation for them [14].

We study vacuity and inherent vacuity in lattice automata. Essentially, the goal is
to formalize the ability to mutate the value of a transition in the automaton without
changing its language. Consider a transition τ in an LNFW. We say that τ is v-tolerant,
for a value v of the lattice, if changing the value of τ to v does not change the language
of A. We say that a transition τ is universally flexible (∀-flexible, for short) if τ is v-
tolerant for every value v in L. Likewise, τ is existentially flexible (∃-flexible, for short)
if τ is v-tolerant for some value v in L that is different from the value of τ .

Natural decision problems arise from the above definitions. Specifically, the ∀-
FLEXIBILITY problem is to decide, given an LNFW and a transition τ in it, whether τ
is ∀-flexible, and dually for the ∃-FLEXIBILITY problem. Solving the flexibility deci-
sion problems, we distinguish between four classes of LNFWs, induced by the branch-
ing structure of the LNFW (that is, whether it is deterministic or non-deterministic), and
the lattice with respect to which it is defined (that is, whether the lattice is fully or par-
tially ordered). Note that our definition of ∀-flexible is similar to the definition of “does
not affect the satisfaction” for LTL formulas, in the sense that the mutated component
is universally quantified. In the case of LTL, checking whether a sub formula ψ affect
the the satisfaction of a specification ϕ, it is possible to check only the “most challeng-
ing” mutation – one that replaces ψ by true or by false, according to the polarity of ψ
in ϕ [28]. Given a transition τ , in A, deciding whether τ is universally or existentially
flexible can be done by checking all the mutations of the value of τ . An intermediate
question we study is whether it is sufficient to check a single “most challenging” muta-
tion. We show that both universal and existential flexibility are NLOGSPACE-complete
for LDFWs and PSPACE-complete for LNFWs, regardless of the type of the lattice. The
difference between full-order LNFWs and partial-order LNFWs is reflected, however,
in the time complexity of the problems.

As done in [17] for LTL formulas, we introduce and compare two definitions of
inherent vacuity for lattice automata. Given two LNFWs A and A′, we say that the

language of A′ is contained in the language of A, denoted L(A′) ≤ L(A), if for every
word w ∈ Σ∗, we have L(A′)(w) ≤ L(A)(w). For two LNFWs A and A′ such that
L(A′) ≤ L(A), we say that a transition τ in A does not affect the containment of
L(A′) in L(A), if for every v ∈ L, the inequality L(A′) ≤ L(A) holds also when
changing the value of τ in A to v. Also, A′ is vacuously contained in A if there is a
transition τ inA that does not affect the containment ofL(A′) inL(A). Now, an LNFW
A is inherently vacuous if there exists a ∀-flexible transition in A, which we show to
be equivalent to a definition according to which A is inherently vacuous if for every
LNFWA′, if L(A′) ≤ L(A), thenA′ is vacuously contained inA. Thus, as in the case
of LTL formulas, the two definitions coincide.

Due to the lack of space, some proofs are missing and can be found in a full version,
in the authors’ URLs.

2 Preliminaries

2.1 Lattices

Let 〈A,≤〉 be a partially ordered set, and let P be a subset ofA. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A,≤〉 is a lattice if for every two elements a, b ∈ A both
the least upper bound and the greatest lower bound of {a, b} exist, in which case they
are denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is fully ordered
if every two elements in it are comparable. Note that w.l.o.g. every fully-ordered lattice
corresponds to the lattice 〈{0, . . . , n},≤〉 for some n. For ease of presentation, from
now on we assume that every fully-ordered lattice is the lattice 〈{0, . . . , n},≤〉 for
some n. We use a < b to indicate that a ≤ b and a 6= b. We say that a is a child of b,
denoted a ≺ b, if a < b and there is no c such that a < c < b. A lattice is complete
if for every subset P ⊆ A both the least upper bound and the greatest lower bound of
P exist, in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A

and
∧
A are denoted> (top) and⊥ (bottom), respectively. A lattice 〈A,≤〉 is finite ifA

is finite. Note that every finite lattice is complete. A lattice 〈A,≤〉 is distributive if for
every a, b, c ∈ A, we have a∧(b∨c) = (a∧b)∨(a∧c) and a∨(b∧c) = (a∨b)∧(a∨c).

Consider a lattice L = 〈A,≤〉. We sometimes abuse notation and refer to L also
as a set of elements, and thus talk about elements l ∈ L (rather than l ∈ A). A join
irreducible element l ∈ L is a value, other than⊥, such that for all a, b ∈ L, if a∨ b ≥ l
then either a ≥ l or b ≥ l. We denote the set of join irreducible elements of L by
JI(L). By Birkhoff’s representation theorem for finite distributive lattices, in order to
prove that a = b it is sufficient to prove that for every join irreducible element l, it holds
that a ≥ l iff b ≥ l.

In Figure 1 we describe some finite lattices. The elements of the lattice L2 are the
usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1. The lattice Ln contains
the values 0, 1, . . . , n− 1, with the order 0 ≤ 1 ≤, . . . ,≤ n− 1. The lattice L2,2 is the
Cartesian product of two L2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′.

Fig. 1. Some lattices.

Finally, the lattice 2{a,b,c} is the power set of {a, b, c} with the set-inclusion order. In
this lattice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = >, and
{a, c} ∧ {b} = ⊥. Note that the join irreducible elements of the lattice Ln are all the
elements in the lattice except for⊥. In the case of the lattice 2{a,b,c}, the join irreducible
elements are all the singletons, that is, JI(L) = {{a}, {b}, {c}}.

We define the graph of L as the undirected graph 〈A,E≺〉 in which E≺(v, v′) iff
v ≺ v′ or v′ ≺ v. The distance between two elements a, b ∈ L, denoted dist(a, b), is
the shortest path from a to b in the graph of L. For example, in the fully-ordered lattice
L, we have dist(i, j) = |i − j|, and in the power-set lattice, the distance coincides
with the Hamming distance, thus dist(X1, X2) = |(X1 \ X2) ∪ (X2 \ X1)|. When
dist(a, b) = 1, we say that a and b are neighbors. Note that a and b are neighbors iff
a ≺ b or b ≺ a. For two elements i and j in a fully-ordered lattice, we define i + j as
min{>, i+ j} and i− j as max{⊥, i− j}.

For a set X of elements, an L-set over X is a function S : X → L assigning to
each element of X a value in L. It is convenient to think about S(x) as the truth value
of the statement “x is in S”. We say that an L-set S is Boolean if S(x) ∈ {>,⊥} for
all x ∈ X .

Consider a lattice L and an alphabetΣ. An L-language overΣ is an L-set overΣ∗.
Thus, an L-language L : Σ∗ → L assigns a value in L to each word overΣ. For two L-
languages L1 and L2, we say that L1 is contained in L2, denoted L1 ≤ L2, if for every
word w ∈ Σ∗ it holds that L1(w) ≤ L2(w). The meet of two languages L1 and L2,
denoted L1∧L2, is the language that maps each word w ∈ Σ∗ to the meet of the values
of w in L1 and in L2; that is, for all w, we have that (L1 ∧ L2)(w) = L1(w) ∧ L2(w).
The join of L1 and L2, denoted L1 ∨ L2, is defined dually, thus, for every w, we have
(L1 ∨ L2)(w) = L1(w) ∨ L2(w).

Below is a useful extension of Birkhoff’s representation theorem [6] from equality
to inequality.

Proposition 1. Consider a lattice L and two elements a, b ∈ L. If for every join irre-
ducible element l ∈ L it holds that a ≥ l implies b ≥ l, then b ≥ a.

2.2 Lattice Automata

A nondeterministic lattice automaton on finite words (LNFW, for short) [27] is a six-
tuple A = 〈L, Σ,Q,Q0, δ, F 〉, where L is a finite lattice, Σ is an alphabet, Q is a

finite set of states, Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is an L-set
of transitions, and F ∈ LQ is an L-set of accepting states. An LNFW is a full-order
LNFW if L is a fully-ordered lattice. Otherwise, it is called a partial-order LNFW to
emphasize that the lattice is not fully-ordered. We use |A| to refer to the size of A, that
is, |A| = |Q×Σ ×Q|.

A run ofA on a wordw = σ1·σ2 · · ·σn is a sequence r = τ1, . . . , τn of n successive
transitions, where τi ∈ Q × Σ ×Q. Let q0, . . . , qn be such that τi = 〈qi−1, σi, qi〉 for
every 1 ≤ i ≤ n. In particular, q0 is the first state of the run, and qn is the last state of
the run. The value of r is val(r) = Q0(q0) ∧

∧n
i=1 δ(τi) ∧ F (qn). Intuitively, Q0(q0)

is the value of q0 being initial, δ(τi) is the value of taking the transition τi, namely, the
value of qi being a successor of qi−1 when σi is the input letter, F (qn) is the value of
qn being accepting, and the value of r is the meet of all these values.

We refer to Q0(q0) ∧
∧n
i=1 δ(τi) as the traversal value of r and refer to F (qn) as

its acceptance value. For a word w, the value of A on w, denoted A(w), is the join
of the values of all the possible runs of A on w. That is, val(A, w) =

∨{val(r) :
r is a run of A on w}. The L-language of A, denoted L(A), maps each word w to its

value in A. That is, L(A)(w) = val(A, w).
Let A be an LNFW, and δ1, δ2 be L-sets of transitions of A. We say that δ1 ≤ δ2 if

for every transition τ ∈ Q×Σ ×Q, it holds that δ1(τ) ≤ δ2(τ).
An LNFW is deterministic (LDFW, for short) if there is exactly one state q ∈ Q,

called the initial state of A, such that Q0(q) 6= ⊥, and for every state q ∈ Q and
letter σ ∈ Σ, there is at most one state q′ ∈ Q, called the σ-successor of q, such that
δ(q, σ, q′) 6= ⊥. Note that if A is deterministic, then it has at most one run on w whose
value is not ⊥.

Traditional nondeterministic automata over finite words (NFW, for short) corre-
spond to LNFW over the lattice L2. Indeed, over L2, the value of a run r is either >, in
case the run uses only transitions with value > and its final state has value >, or ⊥ oth-
erwise. Also, the value of A on w is > iff the value of some run on it is >. This reflects
the fact that a word w is accepted by an NFW if some legal run on w is accepting. Sim-
ilarly, traditional deterministic automata over finite words (DFW, for short) correspond
to LDFW over the lattice L2.

Below is a simple yet useful proposition about the relation between two LNFWs.

Proposition 2. Let A1 = 〈L, Σ,Q,Q0, δ1, F 〉 and A2 = 〈L, Σ,Q,Q0, δ2, F 〉 be LN-
FWs such that δ1 ≤ δ2. Then, for every word w ∈ Σ∗, it holds that L(A1)(w) ≤
L(A2)(w).

3 Vacuity in Lattice Automata

The essence of vacuity is detection of components of the specification that play no role
in its satisfaction. In this section we formalize and study this intuition in the setting of
lattice automata. That is, we formalize and study the influence that the value of a single
transition has or may not have on the language of a lattice automaton.

We start by defining tolerance and flexibility of transitions, which formalize and
quantify the ability to mutate the value of transitions without changing the language of
the automaton. We first need some definitions regarding runs of lattice automata.

Consider an LNFW A = 〈L, Σ,Q,Q0, δ, F 〉. We say that a run r on a word w is a
critical run in A if removing it from the set of runs of A on w changes the value of w
in A. Formally, L(A)(w) 6= ∨{val(r′) : r′ 6= r is a run of A on w}. Note that for the
case of a full-order LNFW, a run r on a word w is critical iff L(A)(w) = val(r) and
there is no run r′ 6= r on w such that L(A)(w) = val(r′).

Consider a run r, and let q0 and qn be the first and last states of r, respectively.
For a transition τ taken in r, the value of r without τ , denoted val−τ (r), is Q0(q0) ∧∧
τ ′∈{r\τ} δ(τ

′)∧F (qn). We say that τ is a bottleneck in r if val(r) 6= val−τ (r). That
is, removing the effect of τ from the value of r changes it. Note that since the value
of a run r on w is the meet of the values of all its components (transitions, initial state
and accepting state), for the case of a fully-ordered lattice, the value of a run is actually
determined by the minimal value throughout the run. Thus, in a full-order LNFW, a
transition τ is a bottleneck in a run r iff δ(τ) is the minimal value in r, and there is no
other value v throughout the run r such that δ(τ) = v.

For a transition τ inA, we useAτ←v to denoteAwith the value δ(τ) being changed
to v. We say that τ is v-tolerant if changing δ(τ) to v does not change the language of
A; that is, if L(A) = L(Aτ←v).

We say that a transition τ is universally flexible with respect to δ (∀-flexible, for
short, when δ is clear from the context) if τ is v-tolerant for every value v inL. Likewise,
τ is existentially flexible with respect to δ (∃-flexible, for short) if τ is v-tolerant for some
value v 6= δ(τ) in L.

Remark 1. Recall that an LNFW over the lattice L2 is a standard NFW. In this case,
we get that a transition τ is ∀-flexible iff τ is ∃-flexible. Consider an NFW A′ =
〈Σ,Q,Q0, δ, F 〉. For every q, q′ ∈ Q and σ ∈ Σ, the transition τ = 〈q, σ, q′〉 is flexible
if it exists in A′, and removing it does not change the language of A′, or if it does not
exist inA′, and adding it as a transition does not change the language ofA′. Note that a
transition in an NFW is flexible iff its corresponding transition in the matching LNFW
over the lattice L2 is ∀-flexible, or, equivalently, ∃-flexible. ut

Two basic questions we would like to study consider the universal and existential
flexibility of transitions, as formally specified below.

– ∀-FLEXIBILITY: Given an LNFW and a transition τ in it, decide whether τ is
∀-flexible.

– ∃-FLEXIBILITY: Given an LNFW and a transition τ in it, decide whether τ is
∃-flexible.

Remark 2. The definitions above refer to a single transition. That is, our study examines
the influence of the value of a single transition on the language of the automaton. In the
full version, we consider also sets of transitions. There, we define ∀-uniform-flexibility,
which indicates that we can mutate the vector of values of the transitions in the set to
any uniform vector of values without changing the language, and ∀-mixed-flexibility,
which indicates that we can mutate the vector of values to any vector without changing
the language of the automaton. We prove equivalence between these two definitions,
study also the dual ∃-uniform-flexibility and ∃-mixed-flexibility notions, and study the
complexity of the corresponding decision problems. ut

4 Useful Observations on Tolerance and Flexibility

In this section we provide some useful observations towards the solution of the flex-
ibility decision problems. We distinguish between four classes of LNFWs, induced
by the branching structure of the LNFW (that is, whether it is deterministic or non-
deterministic), and the lattice with respect to which it is defined (that is, whether the
lattice is fully or partially ordered). Note that the four classes are partially ordered ac-
cording to their generalization, with the deterministic linear class being a special case
of the nondeterministic linear and the deterministic partially ordered classes. The latter
two classes are not ordered, and are special cases of the most general class, namely the
one of nondeterministic and partial-order LNFWs. Accordingly, we are going to present
positive results on the most general class for which they apply, and present negative re-
sults on the most restricted ones. Throughout the section we refer to a lattice automaton
A = 〈L, Σ,Q,Q0, δ, F 〉.

In the context of vacuity in LTL, we say that a subformula ψ of a specification ϕ
does not affect the satisfaction of ϕ in a system S that satisfies ϕ if S also satisfies
the specification obtained from ϕ by replacing ψ by a universally quantified atomic
proposition. Thus, the approach taken there is the universal one – all mutations of ψ
should result in a formula that is satisfied in S. It is shown in [28] that rather than
checking ϕ with ψ being replaced by a universally quantified atomic proposition, it is
sufficient to check a single “most challenging” mutation – one that replaces ψ by true or
by false, according to the polarity of ψ in ϕ. Given a transition τ inA, deciding whether
τ is ∀-flexible or ∃-flexible can be done by checking all the replacements to δ(τ). One
of the questions we would like to answer is whether it is sufficient to change δ(τ) to ⊥,
>, or perhaps to another single value in order to answer the flexibility questions.

We first show that there is no single value v ∈ L such that for every transition τ
in A, the transition τ is ∀-flexible iff τ is v-tolerant. This holds already for full-order
LDFWs.

Example 1. Consider the LDFW A with L = {1, 2, 3}, described in Figure 2.

Fig. 2. No single value to check.

It is easy to see that L(A)(bb) = 2 and L(A)(aa) = ⊥. The transitions τ1 and τ2
are not ∀-flexible. Indeed, if we change δ(τ1) to ⊥, we get L(A)(bb) = ⊥, and if we
change δ(τ2) to > we get L(A)(aa) = 2. Assume by way of contradiction that there
is a value v ∈ L that satisfies the requirement in the claim. If v ≥ 2, then changing
δ(τ1) to v does not change the language ofA. Thus, we get that τ1 is not ∀-flexible, but

is v-tolerant. Otherwise, v < 2 and changing δ(τ2) to v does not change the language
of A. Thus, we get that τ2 is not ∀-flexible, but is v-tolerant. Hence, there is no single
value that enables us to determine the ∀-flexibility of all the transitions in A. ut

Thus, we can not expect to check flexibility of all the transitions in a lattice au-
tomaton using a single value, in particular the values ⊥ and > do not serve as a single
replacement. In the following sections we check the situation for a single transition, and
we consider universal and existential flexibility in the four classes of lattice automata.

4.1 Full-order LDFW

Universal flexibility Recall that a transition τ of A is ∀-flexible if τ is v-tolerant for
every value v in L. Since L is fully ordered, it is tempting to believe that we can check
the tolerance of τ with respect to a single “most challenging” value. The transition τ1
in the LDFA in Example 1 demonstrates that >-tolerance does not imply ∀ flexibility.
Indeed, τ1 is >-tolerant but is not ∀-flexible, as changing δ(τ1) to ⊥ changes L(A)(bb)
to ⊥. As we now show, however, a unique check is sufficient for checking universal
flexibility. This is similar to the case of subformulas in LTL, where a unique (either true
or false) mutation is sufficient, and depends on the polarity of the mutated subformula.
Here, the original value plays the role of the polarity.

Proposition 3. Consider a transition τ in a full-order LDFWA. If δ(τ) 6= ⊥, then τ is
∀-flexible iff τ is ⊥-tolerant. If δ(τ) = ⊥, then τ is ∀-flexible iff τ is >-tolerant.

Proof. We start with the case δ(τ) 6= ⊥. First, if τ is ∀-flexible, then, by definition, τ
is ⊥-tolerant. Now, since A is deterministic, if changing δ(τ) to ⊥ does not change the
language of A, then the value of every run that traverses τ was ⊥ before the change.
Since L is fully ordered, this means that every run that traverses τ had value ⊥ in
it, either in a transition or in an initial or an accepting state. Thus, the value of every
run that traverses this transition is ⊥ regardless what δ(τ) is, or in other words, τ is
∀-flexible.

We continue to the case δ(τ) = ⊥. First, if τ is ∀-flexible, then, by definition, τ is
>-tolerant. Now, if τ is>-tolerant, then we haveL(A) = L(Aτ←>). Let v be a value in
L. By Proposition 2, since ⊥ ≤ v ≤ > we have that L(A) ≤ L(Aτ←v) ≤ L(Aτ←>).
Thus, we get that L(A) = L(Aτ←v) for every v ∈ L, namely, τ is ∀-flexible, and we
are done.

Existential Flexibility Recall that a transition τ of A is ∃-flexible if τ is v-tolerant
for some value v 6= δ(τ) in L. The transition τ1 in the LDFA in Example 1 demon-
strates that ∃-flexibility does not imply ⊥-tolerance. Indeed, while changing δ(τ1) to
⊥ changes L(A)(bb) to ⊥, the transition τ1 is >-tolerant. As in the case of universal
flexibility, however, a unique check is sufficient.

Lemma 1. Consider a transition τ in an LDFW A. If τ is a bottleneck in some run,
then it is not ∃-flexible.

Proof. Since A is over a fully ordered lattice, then τ being a bottleneck in some run
implies that δ(τ) is the meet of all the values throughout that run, and there is no value
throughout that run that equals δ(τ). Thus, since A is deterministic, changing δ(τ) to
a lower value decreases the value of some word in the language of A, and changing
δ(τ) to a greater value increases the value of some word in the language of A. Thus,
the transition τ is not ∃-flexible.

Proposition 4. Consider a transition τ in an LDFWA. If δ(τ) 6= >, then τ is ∃-flexible
iff τ is >-tolerant. If δ(τ) = >, then τ is ∃-flexible iff τ is (>− 1)-tolerant.

Proof. We start with the case δ(τ) 6= >. First, if τ is>-tolerant, then, by definition, τ is
∃-flexible. Now, if τ is ∃-flexible, then by Lemma 1 we get that τ is not a bottleneck in
any run. Thus, we can increase δ(τ) without changing the language and τ is>-tolerant.

We continue to the case δ(τ) = >. First, if τ is (>−1)-tolerant, then, by definition,
τ is ∃-flexible. Now, if τ is ∃-flexible, then τ is v-tolerant for some value v 6= > in L.
Thus, we have L(Aτ←v) = L(A). Since v ≤ (> − 1) ≤ τ , we get by Proposition 2
that L(Aτ←v) ≤ L(Aτ←(>−1)) ≤ L(A), and so L(Aτ←(>−1)) = L(A). Namely, the
transition τ is (>− 1)-tolerant.

4.2 Full-order LNFW

In Propositions 3 and 4 we showed that in the case of full-order LDFW, if δ(τ) 6= ⊥
then τ is ∀-flexible iff τ is ⊥-tolerant, and that if δ(τ) 6= > then τ is ∃-flexible iff τ is
>-tolerant. As we now show in Example 2 below, This does not hold for LNFWs.

Example 2. with Let L = {1, 2, 3}. Consider the LNFW A1 described in the left of
Figure 3.

Fig. 3. Propositions 3 and 4 do not hold for partial-order LDFWs.

It is easy to see that L(A1)(a) = L(A1)(ac) = 2. Consider the upper-left transition
τ . If we change δ(τ) to ⊥ we get an equivalent LNFW. However, τ is not ∀-flexible.
Indeed, changing δ(τ) to > changes L(A1)(a) and L(A1)(ac) to >.

Consider now the LNFWA2 described in the right of the figure. It is easy to see that
L(A2)(aa) = 2. Consider the upper-left transition τ . If we change δ(τ) to ⊥ we get an
equivalent LNFW. However, τ is not >-tolerant. Indeed, changing δ(τ) to > changes
L(A2)(aa) to >. ut

Example 2 is a negative result for the class of full-order LNFWs. In Propositions 5
and 6 we will show a positive result for the more general partial-order LNFW.

4.3 Partial-order LDFW

In Example 2 we showed that Propositions 3 and 4, which apply to full-order LDFWs,
do not hold for full-order LNFWs. Below we show that they do not hold for partial-
order LDFWs either. Thus, we conclude that Propositions 3 and 4 are tight for full-order
LDFWs and do not hold for partial-order LDFWs or for LNFWs.

Example 3. Let L = 2{a,b}. Consider the LDFW A described in Figure 4.

! ⊥ !
(σ1, {a}) (σ2, {b})

τ

Fig. 4. Propositions 3 and 4 do not hold for full-order LNFWs.

It is easy to see that L(A)(σ1 · σ2) = ∅. Consider the left transition τ . If we change
δ(τ) to ⊥ we get an equivalent LDFW. However, τ is not ∀-flexible. Indeed, changing
δ(τ) to {a, b} changes L(A)(σ1 · σ2) to {b}. Thus, there exists a partial-order LDFW
with a transition τ in it, such that δ(τ) 6= ⊥ and τ is ⊥-tolerance but is not ∀-flexible.

Further observe that τ , which is⊥-tolerance and hence ∃-flexible, is not>-tolerant.
Indeed, changing δ(τ) to > changes L(A2)(σ1 ·σ2) to {b}. Thus, there exists a partial-
order LDFW with a transition τ in it, such that δ(τ) 6= > and τ is ∃-flexible but is not
>-tolerant. In particular, ∃-flexibility does not imply >-tolerance. ut

Example 3 is a negative result for the class of partial-order LDFWs. In Proposi-
tions 5 we will show a positive result for the more general partial-order LNFW. The
last negative result we are going to show concerns existential flexibility and shows that
there, checking even both extreme values > and ⊥ may not be of help. In Example 4
below we formalize this intuition.

Example 4. Consider the LDFW A with L = 2{a,b,c}, described in Figure 5.

Fig. 5. τ is ∃-flexible, but is neither ⊥-tolerant nor >-tolerant.

It is easy to see thatL(A)(σ1·σ2) = {b}. Consider the left transition τ . If we change
δ(τ) to {b} we get an equivalent LDFW, thus, τ is ∃-flexible. However, changing δ(τ)
to ⊥ changes L(A)(σ1 · σ2) to ⊥, and changing δ(τ) to > changes L(A)(σ1 · σ2) to
{b, c}, thus, τ is neither ⊥-tolerant nor >-tolerant. ut

4.4 Partial-order LNFW

Universal flexibility As shown in Examples 2 and 3, checking only ⊥-tolerance or >-
tolerance is not sufficient in order to determine ∀-flexibility. As we show, however, in
Proposition 5 below, checking both is sufficient, even in the most general model.

Proposition 5. A transition τ in an LNFW A is ∀-flexible iff τ is both ⊥-tolerant and
>-tolerant.

Proof. If τ is ∀-flexible, then, by definition, τ is ⊥-tolerant and >-tolerant. Now, if τ is
⊥-tolerant and >-tolerant, we have L(Aτ←⊥) = L(A) = L(Aτ←>). Let v be a value
in L. By Proposition 2, since ⊥ ≤ v ≤ >, we have that L(Aτ←⊥) ≤ L(Aτ←v) ≤
L(Aτ←>). Since L(Aτ←⊥) = L(Aτ←>), it must be that L(Aτ←⊥) = L(Aτ←v) =
L(Aτ←>). This holds for every v ∈ L, thus, we get that τ is v-tolerant for every v ∈ L,
that is, τ is ∀-flexible, and we are done.

By Proposition 2, since ⊥ ≤ δ(τ) ≤ >, we have L(Aτ←⊥) ≤ L(A) ≤ L(Aτ←>).
Hence, the two tolerance checks from Proposition 5 can be performed in a single
language-containment check:

Lemma 2. Consider an LNFW A. A transition τ in A is ∀-flexible iff L(Aτ←>) ≤
L(Aτ←⊥).

Existential flexibility Unlike the case of ∀-flexibility, which amounts to tolerance of
the two extreme values, namely >-tolerance and ⊥-tolerance, Example 4 shows that
this is not true for ∃-flexibility, even in LDFW. As we prove below, we can still avoid
checking all possible values and restrict attention to the neighbors of the original value
of the mutated transition.

Lemma 3. Let τ be a transition in an LNFW A. If τ is v′-tolerant for some v′ ∈ L,
then τ is v′′-tolerant for every value v′′ ∈ L such that (δ(τ) ∧ v′) ≤ v′′ ≤ v′, v′ ≤
v′′ ≤ (δ(τ) ∨ v′), (δ(τ) ∧ v′) ≤ v′′ ≤ δ(τ), or δ(τ) ≤ v′′ ≤ (δ(τ) ∨ v′).

Lemma 3 implies that the search for a value with respect to which a transition is
tolerant can consider only the neighbors of the current value. Formally, we have the
following. The proof, which appears in the full version, analyzes all possible relations
between the value of δ(τ) and a value that witnesses its ∃-flexibility.

Proposition 6. Consider an LNFW A and a transition τ in A. The transition τ is ∃-
flexible iff τ is v′-tolerant for some neighbor v′ of δ(τ) in the graph of the lattice L.

Remark 3. In order to justify the need to check all the neighbors of δ(τ), consider the
LDFW A with L = 2{a,b,c,d}, described in Figure 6.

Consider the right transition τ ′. If δ(τ ′) = {a, b, d}, then the only value v for which
τ is v-tolerant is {a, b}. If δ(τ ′) = {a, c, d}, then the only value v for which τ is v-
tolerant is {a, c}. If δ(τ ′) = {b, c, d}, then the only value v for which τ is v-tolerant is
{b, c}. If δ(τ ′) = {a, b, c}, then the only value v for which τ is v-tolerant is {a, b, c, d}.
It is easy to see that in each case, the only value that can give an indication for the ∃-
flexibility of τ is a neighbor of δ(τ). Also, note that every neighbor of δ(τ) is useful in
one of the cases. Thus, it is required to check at least all the neighbors of δ(τ) in order
to determine ∃-flexibility. ut

Fig. 6. checking tolerance for neighbors.

5 Complexity of the Decision Problems

In this section we use the observations from Section 4 in order to find the complexity
of the flexibility decision problems.

We first prove a lower bound for the flexibility problem in DFWs and NFWs. As
discussed in Remark 1, an NFW corresponds to an LNFW over the lattice L2, and sim-
ilarly, a DFW corresponds to an LDFW over this lattice. Then, universal and existential
flexibility coincide, and a transition in an NFW is flexible iff the corresponding transi-
tion in the matching LNFW over the lattice L2 is ∀-flexible and ∃-flexible. Accordingly,
the FLEXIBILITY problem for NFW is to decide, given an NFW and a transition τ in
it, whether τ is flexible.

Theorem 1. The FLEXIBILITY problem is NLOGSPACE-hard for DFWs and is PSPACE-
hard for NFWs.

Proof. We start with DFWs and describe a reduction from the non-reachability prob-
lem, proven to be NLOGSPACE-hard in [24, 25]. Given a graph G = 〈V,E〉 and two
vertices u, v, we construct a DFW A = 〈Σ,Q, q0, δ, F 〉 with a transition τ such that τ
is flexible iff v is not reachable from u. The DFW A is similar to G, with an additional
transition τ from v to a new state. We define A so that this new transition is flexible iff
v is not reachable from u. Intuitively, v is not reachable from u off τ is not reachable
from an initial state, which determines τ ’s flexibility.

Formally, A = 〈E ∪ {enew}, V ∪ {q}, u, δ, {q}〉. For every edge e ∈ E such that
e = (w,w′), we add toA a transition τ ′ = 〈w, e, w′〉. That is, all the edges of the graph
are transitions in the automaton with different letters. We also add to A the transition
τ = 〈v, enew, q〉 , where enew /∈ E, and q /∈ V . Note that A is a DFW, as required, and
that this reduction is computable using logarithmic space. In the full version we prove
that indeed τ is flexible iff v is not reachable from u.

For the nondeterministic setting, we show a reduction from the universality problem
for NFWs, namely, the problem of deciding, given an NFW A, whether L(A) = Σ∗.
The reduction is to the flexibility problem for NFWs. Since the universality problem is
PSPACE-hard [29], hardness in PSPACE follows.

Given an NFW A = 〈Σ,Q,Q0, δ, F 〉, we define A′ = 〈Σ′, Q′, Q′0, δ′, F ′〉 to be
similar to A, with an additional component that includes, among others, a transition
τ that is going to be flexible iff L(A) = Σ∗. Intuitively, if L(A) = Σ∗, then the
additional component does not contribute to the language of A, and τ is flexible. If,
however, L(A) 6= Σ∗, there are words that are accepted only using the new component,
so τ is not flexible. We assume that if there is a word w /∈ L(A), then w is of length at
least 1. This assumption does not affect the hardness of the universality problem.

Formally,A′ = 〈Σ∪{σnew}, Q∪{s0, sf}, Q0∪{s0}, δ′, F ∪{sf}〉. We obtainA′
from A by adding to A a transition τ = 〈q, σnew, q〉, for every accepting state q ∈ F .

Next, we add to A′ an additional component with two states: s0 and sf (see Figure 7).
The state s0 is added to the set of initial states, and the state sf is added to the set
of accepting states. For each σ ∈ Σ, we add a transition 〈s0, σ, s0〉, and a transition
〈s0, σ, sf 〉. Finally, we add a transition τ = 〈sf , σnew, sf 〉. Note that the reduction
is computable using logarithmic space. In the full version we prove that indeed τ =
〈sf , σnew, sf 〉 is flexible iff L(A) = Σ∗.

Fig. 7. The new component added to A′.

Theorem 2. The ∀-FLEXIBILITY problem is NLOGSPACE-complete for LDFWs and
is PSPACE-complete for LNFWs.

Proof. We start with the upper bounds. As shown in Lemma 2, in order to check
whether a transition τ is ∀-flexible, it is sufficient to perform a single containment
check:L(Aτ←>) ≤ L(Aτ←⊥). The language-containment problem is in NLOGSPACE
and PSPACE, for LDFWs and LNFWs, respectively [27], implying the required upper
bounds.

Now, since flexibility in DFWs and NFWs corresponds to universal flexibility in
LDFWs and LNFWs, respectively, the lower bounds follow from Theorem 1.

Theorem 3. The ∃-FLEXIBILITY problem is NLOGSPACE-complete for LDFWs and
is PSPACE-complete for LNFWs.

Proof. For the upper bounds, consider an LNFW A = 〈L, Σ,Q,Q0, δ, F 〉, and let τ
be a transition in A with δ(τ) = v. By Proposition 6, the transition τ is ∃-flexible
iff τ is v′-tolerant for some neighbor v′ of v in the graph of the lattice L; that is,
L(A) = L(Aτ←v′). By Proposition 2, for a value v′ ∈ L such that v′ > v we have
L(A) ≤ L(Aτ←v′), and for a value v′ ∈ L such that v′ < v, we have L(Aτ←v′) ≤
L(A). Hence, it is sufficient to check for every neighbor v′ of v such that v′ > v,
if L(Aτ←v′) ≤ L(A) holds, and for every neighbor v′ of v such that v′ < v or if
L(A) ≤ L(Aτ←v′) holds. We get that τ is ∃-flexible iff there exists a neighbor of v
for which the corresponding inequality holds. The upper bound now follows from the
known NLOGSPACE and PSPACE complexities of the language-containment problem,
for LDFWs and LNFWs, respectively.

Finally, since flexibility in DFWs and NFWs corresponds to existential flexibility in
LDFWs and LNFWs, respectively, the lower bounds follow from Theorem 1.

By Theorems 2 and 3, the complexity of the flexibility problems coincide for full-
order and partial-order lattice automata. The difference between the two settings is re-
flected in the time-complexity analysis of the algorithms we described. Given an LNFW

A over a lattice L, let n = |A|,m = |L|, and k = |JI|. Precisely, we have the follow-
ing.

Theorem 4. The ∀-FLEXIBILITY problem can be decided in timeO(n(m+n)) for full-
order LDFWs, in timeO(kn(m+n)) for partial-order LDFWs, and in timeO(k(nm+
2O(n))) for LNFWs.

Theorem 5. The ∃-FLEXIBILITY problem can be decided in timeO(n(m+n)) for full-
order LDFWs, in time O(rkn(m + n)) for partial-order LDFWs, in time O(k(nm +
2O(n))) for full-order LNFWs, and in time O(rk(nm + 2O(n))) for partial-order LN-
FWs, where r is the number of the neighbors of δ(τ) in the graph of L.

Remark 4. In practice, systems and specifications are sometimes underspecified as the
designer intentionally does not care about some values in some configurations [22].
Our algorithms can be easily changed to handle settings in which a transition can get
the value ∅ (dont care) or get a set of possible values. In this case, flexibility gets
additional significance, as we can assume that the value of transitions for which the
designer did bother to specify a value is important. For example, if a transition has a
value different than ∅, and it turns out to be ∀-flexible, we can assume that there is an
error in the modeling of the specification, since this transition could have also gotten
the value ∅. ut

6 Inherent Vacuity with Analogy to Temporal Logic

In [17], the authors introduce two different definitions of inherent vacuity for LTL for-
mulas and prove that they coincide. Consider an LTL formula ϕ. We say that a subfor-
mula ψ of ϕ does not affect the satisfaction of ϕ in S if S also satisfies the formula
∀x.ϕ[ψ ← x]. We refer to the formula ∀x.ϕ[ψ ← x] as the ψ-strengthening of ϕ. Also,
we say that a formula ϕ is vacuously satisfied in S if ϕ has a subformula that does not
affect its satisfaction in S [4].

We can now describe the two different definitions of inherent vacuity for LTL for-
mulas from [17]. According to the first definition, an LTL formula ϕ is inherently vac-
uous (by mutation) if there exists a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x].
That is, ϕ is equivalent to its ψ-strengthening. As opposed to the first definition, the
second one does not restrict attention to a single subformula. According to the second
definition, an LTL formula ϕ is inherently vacuous (by reference) if for every system
S, if S |= ϕ, then S satisfies ϕ vacuously. In this section we introduce two different
definitions of inherent vacuity for lattice automata, analogous to the definitions in [17],
and show that they coincide as well.

Given two LNFWs A and A′ such that L(A′) ≤ L(A), we say that a transition
τ in A does not affect the containment of L(A′) in L(A), if for every v ∈ L it holds
that L(A′) ≤ L(Aτ←v). Note that this requirement applies to every value in L. Also,
A′ is vacuously contained in A if there is a transition τ in A that does not affect the
containment of L(A′) in L(A).
Definition 1. An LNFW A is inherently vacuous by mutation if there exist a transition
τ in A that is ∀-flexible. We then say that A is inherently vacuous by mutation with
witness τ .

Definition 2. An LNFW A is inherently vacuous by reference if for every LNFW A′, if
L(A′) ≤ L(A), then A′ is vacuously contained in A.

Theorem 6. An LNFWA is inherently vacuous by mutation iffA is inherently vacuous
by reference.

Proof. For the first direction, assume that A = 〈L, Σ,Q,Q0, δ, F 〉 is inherently vac-
uous by mutation. Then, there is a transition τ in A that is ∀-flexible, that is, for ev-
ery v ∈ L it holds that L(A) = L(Aτ←v). Accordingly, for every LNFW A′, if
L(A′) ≤ L(A), then for every v ∈ L we have that L(A′) ≤ L(Aτ←v), and so A′
is vacuously contained in A. Thus, A is inherently vacuous by reference.

For the second direction, assume that A is inherently vacuous by reference, and
assume, by way of contradiction, that A is not inherently vacuous by mutation. Then,
there exist no transition τ in A that is ∀-flexible. It is not hard to prove that then, there
is no transition τ in A such that for all LNFWs A′ with L(A′) ≤ L(A), the transition
τ does not affect the containment of L(A′) in L(A). Indeed, since L(A) ≤ L(A), the
existence of such a transition would have implied universal flexibility of τ .

Let k be the number of transitions in A. By the assumption, for every candidate
transition τi, with 1 ≤ i ≤ k, there is an LNFW Ai = 〈L, Σ,Qi, Q0

i , δi, Fi〉 such
that L(Ai) ≤ L(A) but there is a value v ∈ L such that L(Ai) � L(Aτi←v). With-
out loss of generality, we assume that the state spaces Qi are pairwise disjoint. Let A′
be the LNFW obtained by “putting all the LNFWs Ai next to each other”. Formally,
A′ = 〈L, Σ,⋃{Qi}1≤i≤k,⋃{Q0

i }1≤i≤k,
⋃{δi}1≤i≤k,⋃{Fi}1≤i≤k〉. Note that, nat-

urally, L(A′) =
∨

1≤i≤k L(Ai). Since L(Ai) ≤ L(A) for every 1 ≤ i ≤ k we get
that

∨
1≤i≤k L(Ai) ≤ L(A) and thus L(A′) ≤ L(A). Now, since A is inherently

vacuous by reference, then A′ is vacuously contained in A. Let τi be a transition that
does not affect the containment of L(A′) in L(A). Then, for every v ∈ L it holds that
L(A′) ≤ L(Aτi←v). Since L(Ai) ≤ L(A′), we get that for every v ∈ L it holds that
L(Ai) ≤ L(Aτi←v), and so τi does not affect the containment of L(Ai) in L(A), and
we have reached a contradiction.

Thus, as in the case of LTL formulas, the two definitions of inherent vacuity coin-
cide.

Remark 5. As discussed in Section 1, lattices and lattice automata have practical ap-
plications in formal methods. Some of the applications use the specification formalism
latticed LTL (LLTL, for short), which extends LTL by mapping computations in which
atomic propositions have values from a lattice into lattice values [12]. The translation
of LTL into automata [36] has been extended to a translation of LLTL into latticed
automata [27]. When applied to the lattice automata obtained from LLTL formulas,
vacuity in the automata correspond to vacuity in the formulas. Since changes in subfor-
mulas induce changes in transitions from all states of the automaton that are associated
with these subformulas, the relevant type of vacuity is the one discussed in Remark 2,
namely when the value of a set of transitions is mutated. ut

References

1. S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about quality. In Proc.
40th Int. Colloq. on Automata, Languages, and Programming, volume 7966 of Lecture Notes
in Computer Science, pages 15 – 27. Springer, 2013.

2. S. Almagor and O. Kupferman. Latticed-ltl synthesis in the presence of noisy inputs. In Proc.
17th Int. Conf. on Foundations of Software Science and Computation Structures, Lecture
Notes in Computer Science. Springer, 2014.

3. R. Alur, A. Kanade, and G. Weiss. Ranking automata and games for prioritized requirements.
In Proc. 20th Int. Conf. on Computer Aided Verification, volume 5123 of Lecture Notes in
Computer Science, pages 240–253. Springer, 2008.

4. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M.Y. Vardi.
Enhanced vacuity detection for linear temporal logic. In Proc. 15th Int. Conf. on Computer
Aided Verification. Springer, 2003.

5. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. Formal Methods in System Design, 18(2):141–162, 2001.

6. G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.
7. R. Bloem, R. Cavada, I. Pill, M. Roveri, and A. Tchaltsev. RAT: A tool for the formal

analysis of requirements. In Proc. 19th Int. Conf. on Computer Aided Verification, volume
4590 of Lecture Notes in Computer Science, pages 263–267. Springer, 2005.

8. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal
logics. In Proc. 11th Int. Conf. on Computer Aided Verification, pages 274–287, 1999.

9. G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. 16th IEEE Symp. on
Logic in Computer Science, pages 409–420. IEEE Computer Society, 2001.

10. D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M.Y. Vardi. Regular vacuity. In
Proc. 13th Conf. on Correct Hardware Design and Verification Methods, volume 3725 of
Lecture Notes in Computer Science, pages 191–206. Springer, 2005.

11. W. Chan. Temporal-logic queries. In Proc. 12th Int. Conf. on Computer Aided Verification,
volume 1855 of Lecture Notes in Computer Science, pages 450–463. Springer, 2000.

12. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems
with fine-grained abstractions using SPIN. In Proc. 8th Int. SPIN Workshop on Model Check-
ing Software, volume 2057 of Lecture Notes in Computer Science, pages 16–36. Springer,
2001.

13. H. Chockler and O. Strichman. Easier and more informative vacuity checks. In Proc. 5th
International Conference on Formal Methods and Models for Co-Design, pages 189–198,
2007.

14. M. Ciric, J. Ignjatovic, N. Damljanovic, and M. Basic. Bisimulations for fuzzy automata.
Fuzzy Sets and Systems, 186(1):100–139, 2012.

15. M. Droste, W. Kuich, and H. Vogler (eds.). Handbook of Weighted Automata. Springer,
2009.

16. S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over inconsis-
tent viewpoints. In Proc. 23rd Int. Conf. on Software Engineering, pages 411–420. IEEE
Computer Society Press, 2001.

17. D. Fisman, O. Kupferman, S. Seinvald, and M.Y. Vardi. A framework for inherent vacuity. In
4th International Haifa Verification Conference, volume 5394 of Lecture Notes in Computer
Science, pages 7–22. Springer, 2008.

18. A. Gurfinkel and M. Chechik. Extending extended vacuity. In Proc. 5th Int. Conf. on Formal
Methods in Computer-Aided Design, volume 3312 of Lecture Notes in Computer Science,
pages 306–321. Springer, 2004.

19. S. Halamish and O. Kupferman. Approximating deterministic lattice automata. In 10th Int.
Symp. on Automated Technology for Verification and Analysis, volume 7561 of Lecture Notes
in Computer Science, pages 27–41. Springer, 2012.

20. S. Halamish and O. Kupferman. Minimizing deterministic lattice automata. ACM Transac-
tions on Computational Logic, 16(1):1–21, 2015.

21. T.A. Henzinger. From Boolean to quantitative notions of correctness. In Proc. 37th ACM
Symp. on Principles of Programming Languages, pages 157–158, 2010.

22. Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage estimation for symbolic model check-
ing. In Proc. 36st Design Automation Conf., pages 300–305, 1999.

23. A. Hussain and M. Huth. On model checking multiple hybrid views. Technical Report
TR-2004-6, University of Cyprus, 2004.

24. N. Immerman. Nondeterministic space is closed under complement. Information and Com-
putation, 17:935–938, 1988.

25. N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Com-
puter and Systems Science, 11:68–75, 1975.

26. O. Kupferman. Sanity checks in formal verification. In Proc. 17th Int. Conf. on Concurrency
Theory, volume 4137 of Lecture Notes in Computer Science, pages 37–51. Springer, 2006.

27. O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, volume 4349 of Lecture Notes in Computer Science,
pages 199 – 213. Springer, 2007.

28. O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. Software
Tools for Technology Transfer, 4(2):224–233, 2003.

29. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential time. In Proc. 13th IEEE Symp. on Switching and Automata
Theory, pages 125–129, 1972.

30. M. Mohri. Finite-state transducers in language and speech processing. Computational Lin-
guistics, 23(2):269–311, 1997.

31. K.S. Namjoshi. An efficiently checkable, proof-based formulation of vacuity in model check-
ing. In Proc. 16th Int. Conf. on Computer Aided Verification, volume 3114 of Lecture Notes
in Computer Science, pages 57–69. Springer, 2004.

32. PROSYD. The Prosyd project on property-based system design. http://www.prosyd.org,
2007.

33. M. Roveri. Novel techniques for property assurance. Technical report, PROSYD FP6-IST-
507219, 2007.

34. K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. In Proc. 14th International SPIN
Workshop, volume 4595 of Lecture Notes in Computer Science, pages 149–167. Springer,
2007.

35. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg, editor,
Proc. 9th Int. Conf. on Computer Aided Verification, volume 1254, pages 72–83. Springer,
1997.

36. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

