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Abstract. Abstraction frameworks use under-approximating transitions in order
to prove existential properties of concrete systems. Under-approximating transi-
tions refer to the concrete states that correspond to a particular abstract state in a
universal manner. For example, there is a must transition from abstract state a to
abstract state a′ only if all the concrete states in a have successors in a′.
The universal nature of under-approximating transitions makes them closed under
transitivity. Consequently, reachability queries about the concrete system, which
have applications in falsification and testing, can be answered by reasoning about
its abstraction. On the negative side, the universal nature of under-approximating
transitions makes them dependent on all the variables of the program. The ab-
straction, on the other hand, often hides some of the variables. Since the universal
quantification in must transitions ranges over all variables, this often prevents the
abstraction from associating a must transition with statements that refer to hidden
variables.
We introduce and study partitioned-must transitions. The idea is to partition the
program variables to relevant and irrelevant ones, and restrict the universal quan-
tification inside must transitions to the relevant variables. Usual must transitions
are a special case of partitioned-must transitions in which all variables are rele-
vant. Partitioned-must transitions exist in many realistic settings in which usual
must transitions do not exist. As we show, they retain the advantages of must
transitions: they are closed under transitivity, their calculation can be automated,
and the three-valued semantics induced by usual must transitions is refined to a
multi-valued semantics that takes into an account the set of relevant variables.

1 Introduction

Abstraction frameworks [CC77] generally use over-approximation to check safety prop-
erties. If a safety property holds in the abstract (over-approximate) system then it holds
in the concrete system that it abstracts. However, if the safety property does not hold in
the abstract system, we do not know if the concrete system violates the safety property.

Since the ideal goal of proving a system correct involves many obstacles, the pri-
mary use of formal methods nowadays is falsification. There, as in testing, the goal is to
detect errors, rather than to prove correctness. In the falsification setting, we are inter-
ested in using abstractions based on under-approximation. This allows us to prove that



if a safety property does not hold in the abstract system then it does not hold in the con-
crete system. Our investigations are based on modal transition systems (MTS) [LT88],
which combine both overapproximation and under-approximation. Traditional MTSs
have two types of transitions: may (over-approximating transitions) and must (under-
approximating transitions).

A must transition from an abstract state a to an abstract state a′ implies that for all
concrete states c that correspond to a there is a successor concrete state c′ that corre-
sponds to a′. The importance of must transitions comes from the fact they are closed
under transitivity: if there is a sequence of must transitions from a to a′, we can con-
clude that all concrete states c that correspond to a can reach some concrete state c′ that
corresponds to a′.

Unfortunately, must transitions are very fragile with respect to updates of irrelevant
variables. To see this, consider, for example, two abstract states (x > 6) and (x >
8). Assume that the statement if y=0 then {x:=x+4;read(y)} is executed at
(x > 6). Since the abstraction ignores the variable y, and not all the concrete states
in (x > 6) have y = 0, there is no must transition from (x > 6) to (x > 8). For
example, the concrete state 〈7, 1〉 has no successor state in (x > 8). Current abstraction
frameworks would therefore include a may transition from (x > 6) to (x > 8), and are
likely to end up refining these states with predicates that refer to y.

This is needlessly too weak. A may transition only guarantees reachability for exis-
tentially quantified values of x and y: there exist values of x and y satisfying (x > 6)
for which there exist successor values satisfying (x > 8). The actual situation, however,
has a richer type of reachability, in which we can quantify the value of x universally
and quantify only the value of y existentially. In this work we introduce and study par-
titioned must transitions, which enable us to capture situations as above.

In order to understand our partitioned-must transitions, let us first recall earlier ef-
forts to extend the usefulness of must transitions. Consider again the abstract states
(x > 8) and (x > 6), and assume that the statement x:=x-4 is executed at (x > 8).
Since there are concrete states satisfying x > 8 (namely x = 9 and x = 10) for which
the assignment statement results in a successor state that does not satisfy x > 6, the
abstract transition from (x > 8) to (x > 6) is not a must transition. Augmenting MTSs
with hyper-must transitions [LX90,SG04] does not help in this setting either (and is
orthogonal to the contribution we describe here).

Such cases motivated the introduction ofmust− transitions [Bal04]. Amust− tran-
sition from a to a′ implies that for all concrete states c′ that correspond to a′ there is
a concrete predecessor state c that corresponds to a. In the above example, there is a
must− transition from (x > 8) to (x > 6). Like must transitions (let us refer to them in
the sequel as must+ transitions), must− transitions are closed under transitivity, and
as argued in [Bal04,BKY05], they are often useful in cases must+ transitions do not
exist.

While must− transitions are helpful in scenarios as above, they do not address the
fragility of must transitions with respect to updates of irrelevant variables. In particular,
in our earlier example, of (x > 6) if y=0 then {x:=x+4;read(y)} (x > 8),
there is no must− transition from (x > 6) to (x > 8), as there are concrete states sat-
isfying x > 8 (namely 〈9, 0〉 and 〈10, 0〉) that are not reachable from any concrete state
satisfying x > 6. Moreover, while must− transitions came to the rescue in the (x > 8)
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x>8

x:=x-4;y:=0

x>6

(ii) a must -{x}  transition:

x>6

If y=0 then {x:=x+4;read(y)}

x>8

(i) a must +{x}  transition:

Fig. 1. Partitioned-must transitions.

x:=x-4 (x > 6) example, they are no longer useful when we add irrelevant variables.
Assume, for example, that the statement executed in (x > 8) is x:=x-4;y:=0. Since
the abstraction ignores the variable y and not all the concrete states in (x > 6) have
y = 0, there are concrete states in (x > 6), say 〈10, 1〉, that do not have a predecessor
in (x > 8). Accordingly, there is no must− transition in the new setting.

As hinted earlier, the idea behind our partitioned-must transitions is to restrict the
universal nature of must transitions to a subset of the variables. Given a setX of relevant
variables, we can partition the state space of the concrete system to equivalence classes
such that states in the same class agree on the values of the variables in X . Consider
again the (x > 6) if y=0 then {x:=x+4;read(y)} (x > 8) example (see
Figure 1 (i)). We argue that if we restrict attention to the set X = {x} of relevant
variables, then there is a partitioned must+ transition from (x > 6) to (x > 8) in the
following sense. For every concrete state 〈x, y〉 in (x > 6), there is a concrete state
〈x′, y′〉 in (x > 8) such that all the states in the equivalence class of 〈x′, y′〉 have a
predecessor in the equivalence class of 〈x, y〉. Indeed, x′ = x + 4 is such that all the
states in {x + 4} × IN are reachable from the state 〈x, 0〉, which is in the equivalence
class of 〈x, y〉.

In general, we say that there is a pmust+X transition from a to a′ only if for every
concrete state c that corresponds to a there is a concrete state c′ that corresponds to a′

such that there is a must− transition from the restriction of a to the equivalence class
of c to the restriction of a′ to the equivalence class of c′. Dually, there is a pmust−X
transition from a to a′ only if for every concrete state c′ that corresponds to a′ there is
a concrete state c that corresponds to a such that there is a must+ transition from the
restriction of a to the equivalence class of c to the restriction of a′ to the equivalence
class of c′. For example (see Figure 1 (ii)), in the (x > 8) x:=x-4;y:=0 (x > 6)
setting, there is a pmust−{x} transition from (x > 8) to (x > 6).

In the paper, we define partitioned-must transitions, characterize settings in which
they are useful, and study their theoretical properties. As we show, while partitioned-
must transitions exist in many realistic settings in which usual must transitions do not
exist, they retain the advantages of must transitions: they are closed under transitivity,
their calculation can be automated, and the three-valued semantics induced by usual
must transitions is refined to a multi-valued semantics that takes into an account the set
of relevant variables.

3



2 Preliminaries

Programs and Concrete Transition Systems Consider a program P . Let V be the set of
variables appearing in the program and variables that encode the program counter (pc),
and let D be the domain of all variables (for technical simplicity, we assume that all
variables are over the same domain). We model P by a concrete transition system in
which each state is labeled by a valuation in D|V |.

A concrete transition system (CTS) is a tuple C = 〈SC , IC ,−→C〉, where SC is a
(possibly infinite) set of states, IC ⊆ SC is a set of initial states, −→C⊆ SC × SC is a
total transition relation. Let c−→C

∗c′ denote that state c′ is reachable from state c via a
path of transitions.

Predicate Abstraction Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (quantifier-free
formulas of first-order logic) over the program variables V . In the CTS of the program,
each concrete state c corresponds to a valuation of V . Given a program state c and
formula φ, let c |= φ indicate that formula φ is true in state c (c is a model of φ). For a
set a ⊆ Φ and an assignment c ∈ DV , we say that c satisfies a iff c |=

∧
φi∈a φi.

In predicate abstraction, we merge a set of concrete states into a single abstract
state, which is defined by means of a subset of the predicates. Thus, an abstract state is
given by a set of predicates a ⊆ Φ.1 We sometimes represent a by a formula, namely
the conjunction of predicates in a. For example, if a = {(x ≥ y), (0 ≤ x < n)} then
we also represent a by the formula (x ≥ y) ∧ (0 ≤ x < n). We define the set of
concrete states corresponding to a, denoted γ(a), as all the states c that satisfy a; that
is, γ(a) = {c | c |= a}.

May and Must Transitions Given a CTS and its (predicate) abstraction via a set of pred-
icates Φ, a modal transition system (MTS) contains three kinds of abstract transitions
between abstracts states a and a′ (a, a′ ⊆ Φ, and we assume that Φ is clear from the
context):

– may(a, a′) if there is c ∈ γ(a) and a c′ ∈ γ(a′), such that c −→C c′.
– must+(a, a′) only if for every c ∈ γ(a), there is c′ ∈ γ(a′) such that c −→C c′.
– must−(a, a′) only if for every c′ ∈ γ(a′), there is c ∈ γ(a) such that c −→C c′.

While may transitions over-approximate the transitions of the CTS, both types of
must transitions under-approximate it. It is not hard to see that must transitions are
closed under transitivity, and can therefore be used to prove reachability in the concrete
system. Formally, if there is a sequence of must+ transitions from a to a′, denoted
must+

∗(a, a′), then for all c ∈ γ(a), there is c′ ∈ γ(a′) such that c−→C
∗c′. The same

holds for must−. Formally, if there is a sequence of must− transitions from a to a′,
denoted must−∗(a, a′), then for all c′ ∈ γ(a′), there is c ∈ γ(a) such that c−→C

∗c′.
On the other hand, may transitions are not transitive. Indeed, it may be the case that

may(a, a′),may(a′, a′′) and still for all c ∈ a and c′′ ∈ a′′, we have c6−→C
∗c′.

1 In the full generality of predicate abstraction, an abstract state is represented by a set of set of
predicates (that is a, disjunction of conjunction of predicates). All our results hold for the more
general setting.
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Weakest Preconditions and Strongest Postconditions In many applications of predi-
cate abstraction, Ψ includes a predicate for the program counter. Accordingly, each
abstract state is associated with a location of the program, and thus it is also associated
with a statement. For a statement s and a predicate e over V , the weakest precondition
WP(s, e) and the strongest postcondition SP(s, e) are defined as follows [Dij76]:

– The execution of s from every state that satisfies WP(s, e) results in a state that
satisfies e, and WP(s, e) is the weakest predicate for which the above holds.

– The execution of s from a state that satisfies e results in a state that satisfies SP(s, e),
and SP(s, e) is the strongest predicate for which the above holds.

Must transitions can be computed automatically using weakest preconditions and strongest
postconditions. Indeed, statement s induces the transitionmust+(a, a′) iff a⇒ WP(s, a′),
and induces the transition must−(a, a′) iff a′ ⇒ SP(s, a).

3 Partitioned-Must Transitions

Recall that we consider programs with variables V over the domainD. For a setX ⊆ V ,
we define a relation ∼X⊆ DV × DV between concrete states such that c ∼X c′ iff c
and c′ agree on the values of the variables in X . For a concrete state c, let [c]X = {c′ :
c ∼X c′}; that is, [c]X is the set of concrete states that agree with c on the values of the
variables in X .

We are now ready to introduce partitioned-must transitions. The idea is to partition
the variables of the program to relevant (X) and irrelevant (V \X) variables and restrict
the universal quantification in must transitions to range over the equivalence classes of
∼X . Formally, we have the following.

Definition 1. Consider two abstract states a and a′, and a set X ⊆ V .

1. There is a pmust+X transition from a to a′, denoted pmust+X(a, a′), only if for all
c ∈ γ(a) there is c′ ∈ γ(a′) such that must−([c]X ∧ a, [c′]X ∧ a′).

2. There is a pmust−X transition from a to a′, denoted pmust−X(a, a′), only if for all
c′ ∈ γ(a′) there is c ∈ γ(a) such that must+([c]X ∧ a, [c′]X ∧ a′).

Example 1 Let us go back to the examples discussed in Section 1 and review them
formally. Consider the transition (x > 6) if y=0 then {x:=x+4;read(y)}
(x > 8). Assume that V = {x, y}, and let the domain of both variables be IN. There
is a pmust+{x} transition from (x > 6) to (x > 8). Indeed, for all concrete states
〈x, y〉 ∈ γ(x > 6), there exists the concrete state 〈x + 4, y〉 ∈ γ(x > 8) for which
must−([〈x, y〉]{x}, [〈x+ 4, y〉]{x}). To see the latter, note that [〈x+ 4, y〉]{x} = {x+
4}× IN, and each state in {x+ 4}× IN is reachable from 〈x, 0〉, which is in [〈x, y〉]{x}.
Thus, the partition to {x} and {y} circumvents the need to refer to the value of y in the
destination state.

Consider the transition (x > 8) x:=x-4; y:=0 (x > 6). There is a pmust−{x}
transition from (x > 8) to (x > 6). Indeed, for all concrete states 〈x, y〉 ∈ γ(x >
6), there exists the concrete state 〈x + 4, y〉 ∈ γ(x > 8) for which must+([〈x +
4, y〉]{x}, [〈x, y〉]{x}). To see the latter, note that [〈x + 4, y〉]{x} = {x + 4} × IN. Ex-
ecuting the statement x:=x-4;y:=0 from a state in {x + 4} × IN results in the state
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〈x, 0〉, which is in [〈x, y〉]{x} = {x}× IN. Thus, also here, the partition to {x} and {y}
circumvents the need to refer to the value of y in the destination state.

Example 1 demonstrates cases in which must+ and must− transitions do not exist
but partitioned-must transitions do exist. Below we characterize such cases in general:

– The abstraction refers to variables in X only, and the statement involves an as-
signment to variables in V \ X . Here, there is no must− transition, but there is a
pmust−X transition. The example (x > 8) x:=x-4;y:=0 (x > 6) is emblematic
of this case.

– The abstraction refers to variables in X only, and the statement involves guards on
the variables in V \ X . The range of the guarded variables in the post state is not
restricted to these that satisfy the guard (due to nondeterminism or the infiniteness
of the domain). Here, there is no must+ transitions, but there is a pmust+X transi-
tion. The example (x > 6) if y=0 then {x:=x+4; read(y)} (x > 8) is
emblematic of this case. An example of a similar nature but with more restricted
nondeterminism is

(x > 6) if y is odd then {x:=x+4;(skip|y:=y-1)} (x > 8).

Here, not all concrete states 〈x, y〉 ∈ γ(x > 6) have a successor in γ(x > 8),
but for all concrete states 〈x, y〉 ∈ γ(x > 6), there exists the concrete state
〈x + 4, y〉 ∈ γ(x > 8) for which must−([〈x, y〉]{x}, [〈x + 4, y〉]{x}). Indeed, the
nondeterministic assignment guarantees that all values of y have a pre-state with an
odd value. As a last example for this case, consider

(x > 6) if y>=10 then {x:=x+4; y:=y-10} (x > 8).

Here, the program is deterministic, and still, the fact IN is infinite, thus y can take
any value that is greater than or equal to 0, implies that all values of y in the post-
state are covered by values greater than or equal to 10 in the pre-state.

– The abstraction refers to all variables, but for these in X , it over-approximates the
value in the post-state and for these in V \X it over-approximates the value in the
pre-state. While there are no must+ or must− transitions, there are pmust+X and
pmust−V \X transitions. A typical example for this case is

(x > 6, y > 8) x:=x+4;y:=y-4 (x > 8, y > 6).

We now show that partitioned-must transitions are closed under transitivity. For
two abstract states a and a′ and a set of variables X ⊆ V , we use pmust+X

∗
(a, a′) to

indicate that there is a (possibly empty) sequence of pmust+X transitions from a to a′.
Formally, there are a1, a2, . . . , an such that a = a1, an = a′, and for all 1 ≤ i < n, we
have that pmust+X(ai, ai+1). The notation pmust−X

∗
(a, a′) is defined similarly as the

transitive closure of pmust−X transitions.
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Proposition 1. [transitive closure] Consider two abstract states a and a′, and a set
X ⊆ V .

1. If pmust+X
∗
(a, a′), then for all c ∈ γ(a) there exists c′ ∈ γ(a′) such thatmust−∗([c]X∧

a, [c′]X ∧ a′).
2. If pmust−X

∗
(a, a′), then for all c′ ∈ γ(a′) there exists c ∈ γ(a) such thatmust+∗([c]X∧

a, [c′]X ∧ a′).

Proof: We prove the forward case, the backwards case is dual. Assume that pmust+X
∗
(a, a′).

Let a1, a2, . . . , an be such that a = a1, a′ = an, and for all 1 ≤ i < n, we have
pmust+X(ai, ai+1). We prove that for all c1 ∈ γ(a1) there is cn ∈ γ(an) such that
must−

∗([c1]X ∧ a1, [cn]X ∧ an). The proof proceeds by induction on the length of
the sequence of transitions (i.e., n − 1). If n = 1, the sequence is empty and the re-
quirement follows from the definition of ∗. Assume that the claim holds for sequences
of length n, and consider a sequence of length n + 1. By the induction hypothesis,
for all c1 ∈ γ(a1) there is cn ∈ γ(an) such that must−∗([c1]X ∧ a1, [cn]X ∧ an).
Since pmust+X

∗
(an, an+1), then for all cn ∈ γ(an) there is cn+1 ∈ γ(an+1) such that

must−([cn]X ∧ an, [cn+1]X ∧ an+1). By the transitivity of must−, we can conclude
that must−∗([c1]X ∧ a1, [cn+1]X ∧ an+1).

Traditional must+ and must− transitions can be viewed as the two polar cases of
partitioned must transitions. Formally, we have the following:

Proposition 2. For all abstract states a and a′, the following hold.

1. must+(a, a′) iff pmust+V (a, a′) iff pmust−∅ (a, a′).
2. must−(a, a′) iff pmust+∅ (a, a′) iff pmust−V (a, a′).

Proof: We prove the forward case, the backwards case is dual. When X = V , the
relation ∼X relates each state only with itself. Thus, pmust+V (a, a′) iff for all c ∈ γ(a)
there is c′ ∈ γ(a′) such that must−(c, c′). Since for concrete states, we have that
must−(c, c′) coincides with c −→C c′, it follows thatmust+(a, a′) iff pmust+V (a, a′).

WhenX = ∅, the relation∼X relates all states inDV . Thus, the conditionmust+([c]X∧
a, [c′]X ∧ a′) is independent of c and c′ and is equivalent to must+(a, a′).

Remark 1. There are abstract states a and a′ such that must+(a, a′) and must−(a, a′)
and the only sets X for which pmust+X(a, a′) or pmust−X(a, a′) are the polar ones.

To see this, consider Boolean variables x and y and let a = a′ = true. The
transition if x=y then skip else swap(x,y) induces a must+ as well as
a must− transition from a to a′. The four possible partitions of {x, y} and the parti-
tioned transitions they induce are described in Figure 2. As described there, there is no
pmust+{x}, pmust−{x}, pmust+{y}, or pmust−{y} transition from a to a′.

Example 2 We demonstrate the usefulness of partitioned-must transitions with a vari-
ant of the well-known algorithm for calculating the greatest-common-divisor of two
positive integers. Consider the function gcd described in Figure 3.
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00      01      10       11

00      01      10       11

X={}

00      01      10       11

00      01      10       11

X={x}

00      01      10       11

00      01      10       11

X={x,y}

00      01      10       11

00      01      10       11

X={y}

Fig. 2. Existence and nonexistence of a partitioned-must transition.

gcd(x,y) {
(1) assume(x>0);
(2) assume(y>0);
(3) int t:=0;
(4) while (x!=y) do if (x>y) then x:=x-y;t:=t+1

else y:=y-x
}

Fig. 3. The function gcd.

In addition to the variables x and y whose gcd is calculated, the function maintains
a variable t that counts the number of iterations in which x > y. Consider an abstraction
that refers to x, y, and the program counter pc. Consider the abstract state a = (pc =
4 ∧ x > 0 ∧ y > 0 ∧ x 6= y). We would like to show that all values of x, y, and pc
that satisfy a are successors of other values that satisfy a. Thus, whenever we are in the
loop with x 6= y, we have a predecessor in the loop with x 6= y. An attempt to prove the
above withmust− transitions fails: since the abstraction ignores the value of t, concrete
states that satisfy a and in which t = 0 may not have a predecessor that satisfy a (as
they may be reachable only from states visited before the execution of the loop, and in
which pc 6= 4). Hiding the variable t, however, we can prove the above by showing that
pmust−{x,y,pc}(a, a). To see the latter, observe that for all 〈x, y, t, pc〉 ∈ γ(a), we have
that must+([〈x+ y, y, t, pc〉]{x,y}, [〈x, y, t, pc〉]{x,y}). Indeed, satisfying a guarantees
that pc = 4, and the execution of the statement in pc = 4 from the values 〈x+y, y, t, 4〉,
which satisfy a, results in values 〈x, y, t, 4〉.

Now, consider the abstract state b = (pc = 4 ∧ x > 0 ∧ y > 0 ∧ x = y), for
which all corresponding concrete states cause the while loop to terminate. We would
like to show that all values of x, y, and pc that satisfy b are successors of other val-
ues that satisfy a. Thus, whenever we are in the loop with x = y, we have a pre-
decessor in the loop with x 6= y. Again, an attempt to prove the above with must−

transitions fails: since the abstraction ignores the value of t, concrete states that sat-
isfy b and in which t = 0 may not have a predecessor that satisfies the pc = 4
conjunct in a. Hiding the variable t, however, we can prove the above by showing
that pmust−{x,y,pc}(a, b). To see the latter, observe that for all 〈x, y, t, pc〉 ∈ γ(b), we
have that must+([〈x, 2x, t, pc〉]{x,y}, [〈x, y, t, pc〉]{x,y}). Finally, by the transitivity of
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pmust−X transitions, we can conclude that whenever we are about to leave the loop with
x = y, and for any desired iteration count i, we can go back i transitions and stay in the
loop with x 6= y.

4 Calculation of Partitioned-Must Transitions

As Example 2 shows, the calculation of partitioned-must transitions may not be easy.
In this section we show that this calculation can be automated. We start with pmust+X
transitions.

Theorem 3. Consider two abstract states a and a′ and a set X ⊆ V . Let s be the
statement executed in a. The following are equivalent.

1. pmust+X(a, a′).
2. For all c ∈ γ(a) there is c′ ∈ γ(a′) such that ([c′]X ∧ a′) ⇒ SP(s, [c]X ∧ a).
3. For all c ∈ γ(a), there is an equivalence class θ of∼X such that θ∧a′ is satisfiable

and (θ ∧ a′) ⇒ SP(s, [c]X ∧ a).

Proof: We prove that both (1) and (3) are equivalent to (2). We start by proving that
(1) ↔ (2). By Definition 1, pmust+X(a, a′) iff for all c ∈ γ(a) there is c′ ∈ γ(a′) such
thatmust−([c]X∧a, [c′]X∧a′). By the definition ofmust− transitions, the latter holds
iff ([c′]X ∧ a′) ⇒ SP(s, [c]X ∧ a), and we are done.

It is left to prove that (2) ↔ (3). Assume first that (2) holds. Thus, for all c ∈ γ(a)
there is c′ ∈ γ(a′) such that ([c′]X ∧ a′) ⇒ SP(s, [c]X ∧ a). Then, given c ∈ γ(a), the
set θ = [c′]X is an equivalence class of∼X such that θ∧a′ is satisfiable (say, by c′), and
(θ∧a′) ⇒ SP(s, [c]X∧a). Assume now that (3) holds. Thus, for all c ∈ γ(a) there is an
equivalence class θ of ∼X such that θ∧a′ is satisfiable and (θ∧a′) ⇒ SP(s, [c]X ∧a).
Let c′ be such that c′ satisfies θ ∧ a′. Since θ is an equivalence class of ∼X , we have
that [c′]X ⇒ θ. Hence, c′ is such that c′ ∈ γ(a′) and ([c′]X ∧a′) ⇒ SP(s, [c]X ∧a).

We can now use Theorem 3 to describe a first-order logic formula that is valid iff
the conditions for the existence of a pmust−X transition are satisfied. Describing the
formula, we use x and y (possibly primed) to denote the variables in X and V \ X ,
respectively. For a predicate a over V , we use a(x,y) to indicate that the assignment of
the variables in V (described in x and y together) satisfy a. Finally, when we use x as
a predicate, it is satisfied by assignments to V that agree with x on the variables in X .

Proposition 3. There is a pmust+X transition from a to a′ only if the following formula
is valid.

∀x∀y[a(x,y) → ∃x′((∃y′.a′(x′,y′)) ∧ (∀y′.(a′(x′,y′) → SP(s,x ∧ a)))].

Proof: The formula states that for all states c ∈ γ(a) (these are the universally quan-
tified variables in x and y, when they satisfy the left-hand side of the a(x,y) → . . .
implication), there is an equivalence class of ∼X (these are the existentially quantified
variables in x′) that satisfies the condition in item (3) of Theorem 3: the intersection of
the equivalence class with a′ is not empty (there is an assignment y′ to the variables in
V \X such that a′(x′,y′)), and every assignment in the intersection (that is, every y′

that is combined with x′ and for which a′(x′,y′)) satisfies SP(s,x ∧ a).
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We now describe a similar reasoning for pmust−X transitions. The proof is similar
to the one detailed in the proofs of Theorem 3 and Proposition 3.

Theorem 4. Consider two abstract states a and a′ and a set X ⊆ V . Let s be the
statement executed in a. The following are equivalent.

1. pmust−X(a, a′).
2. For all c′ ∈ γ(a′) there is c ∈ γ(a) such that ([c]X ∧ a) ⇒ WP(s, [c′]X ∧ a′).
3. For all c′ ∈ γ(a′) there is an equivalence class θ of∼X such that θ∧a is satisfiable

and (θ ∧ a) ⇒ WP(s, [c′]X ∧ a′).

Proposition 4. There is a pmust−X transition from a to a′ only if the following formula
is valid.

∀x′∀y′[a′(x′,y′) → ∃x((∃y.a(x,y)) ∧ (∀y.(a(x,y) → WP(s,x′ ∧ a′))))].

When the predicates of the abstraction contain only variables appearing in X , rea-
soning is simplified. We discuss this case in Section 6, where we also show the simpli-
fied version of the formulas described in Propositions 3 and 4 for the general case. In
particular, in Example 6 there, we describe the automation of the reasoning required for
the gcd function discussed in Example 2.

5 Applications

In this section we discuss applications of partitioned-must transitions. Essentially, our
applications are these in which one is interested in weak reachability in the abstract
system. For two abstract states a and a′, we say that a′ is weakly reachable from a iff
there are concrete state c ∈ γ(a) and c′ ∈ γ(a′) such that c′ is reachable from c. While
weak reachability quantifies the states in γ(a) and γ(a′) existentially, we cannot use
may transitions in order to detect it, as may transitions are not closed under transitivity.
Thus, the way to go is to check whether must+∗(a, a′) or must−∗(a, a′). The fragility
of must transitions with respect to irrelevant variables can then prevent the detection of
weak reachability, and we suggest to use partitioned-must transition instead. Below we
detail the applications in falsification and verification of temporal-logic specifications.

5.1 Linear-time falsification

In linear-time model checking, we check whether all the computations of a given pro-
gram P satisfy a specification ψ, say an LTL formula. In the automata-theoretic ap-
proach to model checking [Kur94,VW94], one constructs an automaton A¬ψ for the
negation of ψ. The automaton A¬ψ is usually a nondeterministic Büchi automaton,
where a run is accepting iff it visits a set of designated states infinitely often. The pro-
gram P is faulty with respect to ψ if the product of A¬ψ with the program contains a
fair path – one that visits the set of designated states infinitely often.

The product of A¬ψ with an MTS MP that abstracts P is an MTS that retains the
type of transitions in MP . We assume that each atomic proposition in the LTL formula
is a predicates over the variables, e.g., x > 4, x = y, etc. The alphabet of A¬ψ is then
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subsets of these predicates. The transitions in the product ofA¬ψ andMP are then such
that for two abstract states a and a′ of MP and two states q and q′ of A¬ψ , we have that
there is a transition of type β (say, β is pmust+X ) from the state 〈a, q〉 of the product
to the state 〈a′, q′〉 of the product iff there is a β-transition from a to a′ and there is a
transition 〈q, σ, q′〉 of A¬ψ such that a⇒ p, for all p ∈ σ.

Since the product retains the type of transitions of the MTS, the less under-approximating
the abstraction is, the more we are likely to detect errors. When ψ is a safety property,
A¬ψ can be replaced by an automaton accepting finite bad prefixes [KL06], and detec-
tion can be reduced to weak reachability in the product. In the general case, we have to
find a concrete state that is reachable from itself. The latter cannot be reduced to two
weak reachability queries (indeed, the same concrete state has to “glue” the prefix of the
lasso with its repeated part, and the same concrete state has to “glue” the repeated parts),
but can be reduced to the type of reachability implied by the closure of partitioned-must
transitions. Formally, we have the following.

Theorem 5. Consider the MTSM obtained by taking the product ofA¬ψ andMP . Let
ainit and aacc be states of M such that ainit is initial and aacc is accepting. Consider a
setX ⊆ V . If pmust+X

∗
(ainit , aacc) and pmust+X

∗
(aacc , aacc), or pmust−X

∗
(ainit , aacc)

and pmust−X
∗
(aacc , aacc), then P violates ψ.

In Section 5.2, we describe a multi-valued semantics for µ-calculus that is based
on partitioned-must transitions and show, for example, that if pmust+X

∗
(ainit , aacc)

and pmust+X
∗
(aacc , aacc), then we can strengthen the conclusion in Theorem 5 to “for

every concrete state c that corresponds to ainit , at least one state in [c]X violates ψ”.
Nevertheless, the main contribution of partitioned-must transition is not the ability to
strengthen the conclusion, but the fact they are applicable in cases usual must transitions
fail.

5.2 A multi-valued semantics

Since abstraction hides information, the truth value of temporal-logic formulas with
respect to states of a MTS may not be definite. According to the three-valued semantics
for MTS [GJ02], the value of a formula θ in abstract state a is T, denoted [a |= θ] = T,
only if all the concrete states in γ(a) satisfy θ. Likewise, [a |= θ] = F, only if all the
concrete states in γ(a) do not satisfy θ. Sometimes, neither case holds, or our reasoning
is not sufficiently strong to infer that one of the cases hold [BG00], in which case the
value of θ in a is unknown, denoted [a |= θ] = ⊥. Since must transitions under-
approximate the transitions of the concrete system, they are used in the three-valued
semantics for proving existential properties. Formally, [a |= ∃ fθ] = T iff there is
a′ such that must+(a, a′) and [a′ |= θ] = T. For logics with backwards modalities,
reasoning is the same, with must− transitions.

By partitioning the variables to relevant (X) and irrelevant ones, we can refine the
three-valued semantics to one that takes the partition into an account. We say that an
abstract state a X-satisfies a formula θ, denoted [a |= θ] w TX , only if for each state
c ∈ γ(a), at least one state in [c]X ∧ a satisfies θ. Likewise, a does not X-satisfy
a formula θ, denoted [a |= θ] w FX , if for each state c ∈ γ(a), at least one state
in [c]X ∧ a does not satisfy θ. Note that the conditions for values TX1 and TX2 , for
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X1 6= X2, are not mutually exclusive, and so are the conditions for the values TX and
FX . This is why we use the w notation in the definition of the semantics. Formally, the
values are taken from the domain 2V × 2V , where a pair 〈P,N〉 ⊆ 2V × 2V consists of
a positive set: all maximal sets X ⊆ V for which [a |= θ] w TX and a negative set: all
maximal sets X ⊆ V for which [a |= θ] w FX . Saying that [a |= θ] w TX means that
at least one of the sets in P contains X , and similarly for FX and N . Note that when
P = ∅, the positive set is unknown, and similarly for N .

When X = V , we have that [c]X = {c}. Accordingly, the values TV and FV
coincide with the standard T and F values from the three-valued semantics. Also, when
X = ∅, we have that [c]X = DV . Accordingly, the values T∅ and F∅ coincide with
the existential T∃ and F∃ values from the six-valued semantics studied in [BKY05].
Finally, it is interesting to note that the semantics is monotonic, in the sense that if
[a |= θ] w TX and X ′ ⊆ X , then [a |= θ] w TX′ . Thus, our semantics is a natural
refinement of the existential semantics in [BKY05].

As with the existential semantics, however, the weakness of the TX and FX values
is the fact that their conjunction does not correspond to meet in the (2V ,⊆) lattice, and
results in⊥. An exception is the TV value, where TV ∧TX = TX , for allX ⊆ V . Since
our main motivation for partitioned-must transitions is reachability, and reachability
corresponds to a least fixed point in which the main Boolean operator is a disjunction,
the above weakness is not too discouraging. Still, the significance of the semantics here
is mainly theoretical, and its goal is to give a logical counterpart of partitioned-must
transitions.

Formally, the value of a µ-calculus formula θ in a state a of a MTS is defined by
induction on the structure of θ as follows. We describe the semantics for full µ-calculus,
which has both forward (∃ f) and backwards (∃ f- ) modalities. We assume a µ-calculus
in which each atomic proposition is a predicate over the variables, e.g., x > 4, x = y,
etc. We refer to the set of variables appearing in the atomic proposition p by var(p).

[a |= p] w


TX if (var(p) ⊆ X and a |= p) or

(var(p) 6⊆ X and [c]X ∧ a ∧ p is satisfiable for all c ∈ γ(a)),
FX if (var(p) ∈ X and a |= ¬p) or

(var(p) 6∈ X and [c]X ∧ a ∧ ¬p is satisfiable for all c ∈ γ(a)).

[a |= ¬θ] w
{

TX if [a |= θ] w FX ,
FX if [a |= θ] w TX .

[a |= θ ∧ θ′] w
{

TX if [a |= θ] w TV and [a |= θ′] w TX .
FX if [a |= θ] w FV and [a |= θ′] w FX .

[a |= θ ∨ θ′] w
{

TX if [a |= θ] w TX or [a |= θ′] w TX .
FX if [a |= θ] w FX or [a |= θ′] w FX .

[a |= ∃ fθ] w {
TX if there is a′ such that pmust+X(a, a′) and [a′ |=X θ] w TX ,
FV if for all a′ such that may(a, a′), we have that [a′ |=X θ] w FV .

[a |= ∃ f- θ] w {
TX if there is a′ such that pmust−X(a′, a) and [a′ |=X θ] w TX ,
FV if there is a′ such that may(a′, a) and [a′ |=X θ] w TV .

Note that when var(p) ⊆ X , we have that [c]X ∧ a ∧ p is satisfiable for all c ∈
γ(a) iff a |= p. Thus, the partition to two cases in the base case does not suggest
a different semantics for each case and only suggests a simplified check for the case
var(p) ⊆ X . Note also that for refuting existential properties (equivalently, verifying
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universal properties) we proceed with usual may transitions, which corresponds to the
case X = V . For the fixed-point operators, the closure of partitioned-must transitions
under transitivity guarantees we can iterate the local ∃ fand ∃ f- modalities, as in the
usual three-valued semantics to µ-calculus [BG04]. Note that in the special case of
CTL and CTL? formulas, this amounts to letting existential path formulas range over
pmust+X and pmust−X paths [SG03].

6 Choosing the Relevant Variables

In this section we discuss the choice of the relevant variables. We first show that some
of our previous results can be simplified in case the abstraction refers only to variables
in X . Then, we show that the choice of the relevant variables need not be global, and
extend the transitive closure of partitioned-must transitions to cases in which different
transitions along the computation require different relevant variables.

6.1 An abstraction based on X

For a setX ⊆ V , we say that an abstraction is based onX if all the predicates in Φ refer
only to variables inX . When our abstraction is based onX , then for all abstract states a
and for all c ∈ γ(a), we have [c]X ⊆ γ(a). Accordingly, in the definition of partitioned-
must transitions, we can replace [c]X ∧ a and [c′]X ∧ a′ by [c]X and [c′]X , respectively.
Consequently, the characterization in Propositions 3 and 4 can be simplified as follows:

Proposition 5. Let a and a′ be abstract states in an abstraction that is based on X .
Then,

– pmust+X(a, a′) only if ∀x[a(x) → ∃x′.a′(x′) ∧ (x′ → SP(s,x))].
– pmust−X(a, a′) only if ∀x′[a′(x′) → ∃x.a(x′) ∧ (x → WP(s,x′))].

Example 6 The function gcd described in Example 2 is based in {x, y, pc}. Hence, the
existence of the pmust−{x,y,pc} transitions demonstrated there follows from the validity
of the following formulas (since a and b fix pc to 4, we ignore it in the formulas).

– pmust−{x,y,pc}(a, a) iff
∀x′, y′[a(x′, y′) → ∃x, y.(a(x, y) ∧ [(x > y ∧ x 6= 2y) ∨ (x < y ∧ y 6= 2x)])].

– pmust−{x,y,pc}(a, b) iff
∀x′, y′[b(x′, y′) → ∃x, y.(a(x, y) ∧ [(x > y ∧ x = 2y) ∨ (x < y ∧ y = 2x)])].

When the specification we want to check involves only predicates that appear in
the abstraction, then var(p) ⊆ X for all atomic propositions. Accordingly, for sets
X such that the abstraction is based on X , the base case of the multi-valued semantics
described in Section 5.2 can be simplified, as [a |= p] w TX if a |= p and [a |= p] w FX
if a |= ¬p.
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a:     x>4

a’:  x+1=y>5

a’’:    y>6

y:=x+1;
z:=0

y:=y+1;
z:=3
x:=3

pmust -
{x,y} (a,a’) 

pmust -
{y} (a,’a’’)

P1:

a:     x>6

a’:     z>5

a’’:    y>4

z:=x-1;
y:=0

y:=z-1;
x:=y

pmust -
{x,z} (a,a’)

pmust -
{z,y} (a,’a’’)

P2:

Fig. 4. Existence and nonexistence of dynamic transitive closure.

6.2 Choosing X

Recall that our motivation is to detect weak reachability in the concrete system. Propo-
sition 1 shows that partitioned-must transitions are closed under transitivity and can
therefore be used for showing weak reachability. The theorem, however, assumes one
set X with respect to which we partition all the transitions along the path. Below we
generalize the proposition to a dynamic choice of sets according to which the transitions
are partitioned.

Proposition 6. [dynamic transitive closure] Let a1, a2, . . . , an be a sequence of ab-
stract states.

1. If there is a sequence X1 ⊆ X2 ⊆ · · · ⊆ Xn−1 ⊆ V such that for all 1 ≤ i < n,
we have that pmust+Xi

(ai, ai+1), then for every concrete state c1 ∈ γ(a1), there is
a concrete state cn ∈ γ(an), such that must−∗([c1]X1 ∧ a1, [cn]Xn−1 ∧ an).

2. If there is a sequence V ⊇ X1 ⊇ X2 · · · ⊆ Xn−1 such that for all 1 ≤ i < n, we
have that pmust−Xi

(ai, ai+1), then for every concrete state cn ∈ γ(an), there is a
concrete state c1 ∈ γ(a1), such that must−∗([c1]X1 ∧ a1, [cn]Xn−1 ∧ an).

The proof of the proposition proceeds by an induction on n and is similar to the
proof of Proposition 1.

Remark 2. It is shown in [Bal04] that weak reachability in a framework with no partitioned-
must transitions follows from a sequence of must− transitions followed by a sequence
ofmust+ transitions. By Proposition 2,must+(a, a′) iff pmust+V (a, a′) andmust−(a, a′)
iff pmust+∅ (a, a′). Likewise, since must+(a, a′) iff pmust−∅ (a, a′) and must−(a, a′)
iff pmust−V (a, a′), it is also a special case of the dynamic transitive closure of pmust−

transitions.

Example 7 Consider the program P1 appearing in Figure 4. Since pmust−{x,y}(a, a
′)

and pmust−{y}(a
′, a′′), we can conclude that for every concrete state c′ satisfying y > 6

there is a concrete state c satisfying x > 4 such that all the states satisfying x > 4 and
that agree with c on the values of x and y can reach states that satisfy y > 6 and agree
with c′ on the value of y. Indeed, if c′ = 〈x, y, z〉, then we can take c = 〈y − 1, 0, 0〉.
Note that nor pmust−{y}(a, a

′) neither pmust−{x,y}(a
′, a′′). Thus, the dynamic choice

of relevant variables is essential.
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Consider now the program P2 in the figure. It requires a dynamic choice of relevant
variables that does not satisfy the conditions of Proposition 6, as {z, y} 6⊆ {x, y}.
This is unfortunate, as it is true that for every concrete state c′ satisfying y > 4 there
is a concrete state c satisfying x > 6 such that must+([c]{x}, [c′]{y}). The cause of
this inapplicability of Proposition 6 is the fact that the assignments in the program
correspond to renaming of the variables. To see this, consider a program P ′

2 in which
the only variables are x and y, the abstract states are (x > 6), (x > 5), and (x > 4),
and statements are obtained from these of P2 by renaming z to x in the first and second
transitions and renaming y to x and x to y in the second transition. Then, we can use
pmust−{x}-transitions in order to prove that for every concrete state c′ ∈ γ(a′′), there is
concrete state c ∈ γ(a) such that must+([c]{x}, [c′]{x}).
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