
Variations on Safety

Orna Kupferman

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
Email: orna@cs.huji.ac.il

Abstract. Of special interest in formal verification aresafetyproperties, which
assert that the system always stays within some allowed region, in which nothing
“bad” happens. Equivalently, a property is a safety property if every violation of
it occurs after a finite execution of the system. Thus, a computation violates the
property if it has a “bad prefix”, all whose extensions violate the property. The
theoretical properties of safety properties as well as their practical advantages
with respect to general properties have been widely studied. The paper surveys
several extensions and variations of safety. We start withboundedandcheckable
properties – fragments of safety properties that enable an even simpler reasoning.
We proceed to areactivesetting, where safety properties require the system to
stay in a region of states that is both allowed and from which the environment
cannot force it out. Finally, we describe a probability-based approach for defining
different levels of safety.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable veri-
fication methods. In formal verification, we verify that a system meets a desired property
by checking that a mathematical model of the system meets a formal specification that
describes the property. Of special interest are propertiesasserting that the observed be-
havior of the system always stays within some allowed region, in which nothing “bad”
happens. For example, we may want to assert that every message sent is acknowledged
in the next cycle. Such properties of systems are calledsafety properties. Intuitively, a
propertyψ is a safety property if every violation ofψ occurs after a finite execution of
the system. In our example, if in a computation of the system amessage is sent with-
out being acknowledged in the next cycle, this occurs after some finite execution of the
system. Also, once this violation occurs, there is no way to “fix” the computation.

In order to formally define what safety properties are, we refer to computations of
a nonterminating system as infinite words over an alphabetΣ. Consider a languageL
of infinite words overΣ. A finite wordx overΣ is abad prefixfor L iff for all infinite
wordsy overΣ, the concatenationx ·y of x andy is not inL. Thus, a bad prefix forL is
a finite word that cannot be extended to an infinite word inL. A languageL is asafety
languageif every word not inL has a finite bad prefix. For example, ifΣ = {0, 1},
thenL = {0ω, 1ω} is a safety language. Indeed, every word not inL contains either the

sequence01 or the sequence10, and a prefix that ends in one of these sequences cannot
be extended to a word inL. 1.

The interest in safety started with the quest for natural classes of specifications.
The theoretical aspects of safety have been extensively studied [2, 28, 29, 33]. With the
growing success and use of formal verification, safety has turned out to be interesting
also from a practical point of view [14, 20, 23]. Indeed, the ability to reason about finite
prefixes significantly simplifies both enumerative and symbolic algorithms. In the first,
safety circumvents the need to reason about complexω-regular acceptance conditions.
For example, methods for temporal synthesis, program repair, or parametric reasoning
are much simpler for safety properties [18, 32]. In the second, it circumvents the need to
reason about cycles, which is significant in both BDD-based and SAT-based methods [5,
6]. In addition to a rich literature on safety, researchers have studied additional classes,
such as liveness and co-safety properties [2, 28].

The paper surveys several extensions and variations of safety. We start withbounded
andcheckableproperties – fragments of safety properties that enable an even simpler
reasoning. We proceed to areactivesetting, where safety properties require the system
to stay in a region of states that is both allowed and from which the environment cannot
force it out. Finally, we describe a probability-based approach for defining different
levels of safety. The survey is based on the papers [24], withMoshe Y. Vardi, [21],
with Yoad Lustig and Moshe Y. Vardi, [25], with Sigal Weiner,and [10], with Shoham
Ben-David.

2 Preliminaries

Safety and Co-Safety Languages.Given an alphabetΣ, a word overΣ is a (possibly
infinite) sequencew = σ0 · σ1 · · · of letters inΣ. Consider a languageL ⊆ Σω of
infinite words. A finite wordx ∈ Σ∗ is abad prefixfor L iff for all y ∈ Σω, we have
x · y 6∈ L. Thus, a bad prefix is a finite word that cannot be extended to aninfinite
word inL. Note that ifx is a bad prefix, then all the finite extensions ofx are also bad
prefixes. A languageL is asafetylanguage iff every infinite wordw 6∈ L has a finite bad
prefix. For a safety languageL, we denote bybad-pref(L) the set of all bad prefixes for
L.

For a languageL ⊆ Σω, we usecomp(L) to denote the complement ofL; i.e.,
comp(L) = Σω \L. A languageL ⊆ Σω is aco-safetylanguage iffcomp(L) is a safety
language. (The term used in [28] isguaranteelanguage.) Equivalently,L is co-safety iff
every infinite wordw ∈ L has agood prefixx ∈ Σ∗: for all y ∈ Σω, we havex ·y ∈ L.
For a co-safety languageL, we denote bygood-pref(L) the set of good prefixes forL.
Note that for a safety languageL, we have thatgood-pref(comp(L)) = bad-pref(L).

Word Automata.A nondeterministic B̈uchi word automaton(NBW, for short) isA =
〈Σ,Q, δ,Q0, F 〉, whereΣ is the input alphabet,Q is a finite set of states,δ : Q×Σ →
2Q is a transition function,Q0 ⊆ Q is a set of initial states, andF ⊆ Q is a set of

1 The definition of safety we consider here is given in [1, 2], itcoincides with the definition of
limit closure defined in [12], and is different from the definition in [26], which also refers to
the property being closed under stuttering.

accepting states. If|Q0| = 1 andδ is such that for everyq ∈ Q andσ ∈ Σ, we have
that|δ(q, σ)| ≤ 1, thenA is adeterministicBüchi word automaton (DBW, for short).

Given an input wordw = σ0 ·σ1 · · · inΣω, arun of A onw is a sequencer0, r1, . . .
of states inQ such thatr0 ∈ Q0 and for everyi ≥ 0, we haveri+1 ∈ δ(ri, σi). For a run
r, let inf (r) denote the set of states thatr visits infinitely often. That is,inf (r) = {q ∈
Q : ri = q for infinitely manyi ≥ 0}. AsQ is finite, it is guaranteed thatinf (r) 6= ∅.
The runr is acceptingiff inf (r) ∩ F 6= ∅. That is, iff there exists a state inF thatr
visits infinitely often. A run that is not accepting isrejecting. Whenα = Q, we say
thatA is a loopingautomaton. We use NLW and DLW to denote nondeterministic and
deterministic lopping automata. An NBWA accepts an input wordw iff there exists
an accepting run ofA on w. The languageof an NBWA, denotedL(A), is the set
of words thatA accepts. We assume that a given NBWA has no empty states, except
maybe the initial state (that is, at least one word is accepted from each state – otherwise
we can remove the state).

Linear Temporal Logic.The logicLTL is a linear temporal logic. Formulas of LTL are
constructed from a setAP of atomic propositions using the usual Boolean operators
and the temporal operatorsG (“always”), F (“eventually”),X (“next time”), andU
(“until”). Formulas of LTL describe computations of systems overAP . For example,
the LTL formulaG(req → Fack) describes computations in which every position in
which req holds is eventually followed by a position in whichack holds. Thus, each
LTL formulaψ corresponds to a language, denoted||ψ||, of words in(2AP)ω that satisfy
it. For the detailed syntax and semantics of LTL, see [30]. Themodel-checking problem
for LTL is to determine, given an LTL formulaψ and a systemM , whether all the
computations ofM satisfyψ.

General methods for LTL model checking are based on translation of LTL formulas
to nondeterministic Büchi word automata. By [36], given anLTL formula ψ, one can
construct an NBWAψ over the alphabet2AP that accepts exactly all the computations
that satisfyψ. The size ofAψ is, in the worst case, exponential in the length ofψ.

Given a systemM and an LTL formulaψ, model checking ofM with respect toψ is
reduced to checking the emptiness of the product ofM andA¬ψ [36]. This check can be
performed on-the-fly and symbolically [7, 35], and the complexity of model checking
that follows is PSPACE, with a matching lower bound [34].

It is shown in [2, 33, 22] that whenψ is a safety formula, we can assume that all the
states inAψ are accepting. Indeed,Aψ accepts exactly all words all of whose prefixes
have at least one extension accepted byAψ , which is what we get if we define all
the states ofAψ to be accepting. Thus, safety properties can be recognized by NLWs.
Since every NLW can be determined to an equivalent DLW by applying the subset
construction, all safety formulas can be translated to DLWs.

3 Interesting Fragments

In this section we discuss two interesting fragments of safety properties:clopen(a.k.a.
bounded) properties, which are useful in bounded model checking, andcheckableprop-
erties, which are useful in real-time monitoring.

3.1 Clopen Properties

Bounded model checkingmethodologies check the correctness of a system with respect
to a given specification by examining computations of a bounded length. Results from
set-theoretic topology imply that sets inΣω that are both open and closed (clopen sets)
are bounded: membership in a clopen set can be determined by examining a bounded
number of letters inΣ.

In [24] we studied safety properties from a topological point of view. We showed
that clopen sets correspond to properties that are both safety and co-safety, and show
that when clopen specifications are given by automata or LTL formulas, we can point
to a bound and translate the specification to bounded formalisms such as bounded LTL
and cycle-free automata.

Topology Consider a setX and a distance functiond : X × X → IR between the
elements ofX . For an elementx ∈ X andγ ≥ 0, letK(x, γ) be the set of elements
x′ such thatd(x, x′) ≤ γ. Consider a setS ⊆ X . An elementx ∈ S is called an
interior elementof S if there isγ > 0 such thatK(x, γ) ⊆ S. The setS is openif all
the elements inS are interior. A setS is closedif X \ S is open. So, a setS is open
if every element inS has a nonempty “neighborhood” contained inS, and a setS is
closed if every element not inS has a nonempty neighborhood whose intersection with
S is empty. A set that is both open and close is called aclopenset.

A Cantor spaceconsists ofX = Dω, for some finite setD, andd defined by
d(w,w′) = 1

2n , wheren is the first position wherew andw′ differ. Thus, elements of
X can be viewed as infinite words overD and two words are close to each other if they
have a long common prefix. Ifw = w′, thend(w,w′) = 0. It is known that clopen sets
in Cantor space arebounded, where a setS is bounded if it is of the formW ·Dω for
some finite setW ⊆ D∗. Hence, clopen sets in our Cantor space correspond exactly
to bounded properties: each clopen languageL ⊆ Σω has a boundk ≥ 0 such that
membership inL can be determined by the prefixes of lengthk of words inΣω.

It is not hard to see that a languageL ⊆ Σω is co-safety iffL is an open set in our
Cantor space [27, 17]. To see this, consider a wordw in a co-safety languageL, and let
x be a good prefix ofw. All the wordsw′ with d(w,w′) ≤ 1

2|x| havex as their prefix,
so they all belong toL. For the second direction, consider a wordw in an open setL,
and letγ > 0 be such thatK(w, γ) ⊆ L. The prefix ofw of length⌊log 1

γ
⌋ is a good

prefix forL. It follows that the clopen sets inΣω are exactly these properties that are
both safety and co-safety!

Bounding Clopen Properties Our goal in this section is to identify a bound for a
clopen property given by an automaton. Consider a clopen languageL ⊆ Σω. For
a finite wordx ∈ Σ∗, we say thatx is undeterminedwith respect toL if there are
y ∈ Σω andz ∈ Σω such thatx · y ∈ L andx · z 6∈ L. As shown in [24], every word in
Σω has only finitely many prefixes that are undetermined with respect toL. It follows
thatL is bounded: there are only finitely many words inΣ∗ that are undetermined with
respect toL. For an integerk, we say thatL is bounded byk if all the wordsx ∈ Σ∗

such that|x| ≥ k are determined with respect toL. Moreover, sinceL is bounded, then

a minimal DLW that recognizesL must be cycle free. Indeed, otherwise we can pump
a cycle to infinitely many undetermined prefixes. Letdiameter (L) be the diameter of
the minimal DLW forL.

Lemma 1. A clopenω-regular languageL ⊆ Σω is bounded bydiameter (L).

Proof: LetA be the minimal deterministic looping automaton forL. Consider a word
x ∈ Σ∗ with |x| ≥ diameter (L). SinceA is cycle free, its run onx either reaches
an accepting sink, in which casex is a good prefix, or it does not reach an accepting
sink, in which case, by the definition ofdiameter (A), we cannot extendx to a word
accepted byA, thusx is a bad prefix.

For a languageL, the in index of L, denotedinindex (L), is the minimal num-
ber of states that an NBW recognizingL has. Similarly, theout indexof L, denoted
outindex (L), is the minimal number of states that an NBW recognizingcomp(L) has.

Lemma 2. A clopenω-regular languageL ⊆ Σω is bounded byinindex (L)·outindex (L).

Proof: Assume by way of contradiction that there is a wordx ∈ Σ∗ such that|x| ≥
inindex (L) · outindex (L) andx is undetermined with respect toL. Thus, there are
suffixesy andz such thatx · y ∈ L andx · z 6∈ L. LetA1 andA2 be nondeterminis-
tic looping automata such thatL(A1) = L, L(A2) = comp(L), andA1 andA2 have
inindex (L) andoutindex (L) states, respectively. Consider two accepting runsr1 and
r2 of A1 andA2 onx ·y andx · z, respectively. Since|x| ≥ inindex (L) ·outindex (L),
there are two prefixesx[1, . . . , i] andx[1, . . . , j] of x such thati < j and both runs re-
peat their state after these two prefixes; i.e.,r1(i) = r1(j) andr2(i) = r2(j). Consider
the wordx′ = x[1, . . . , i] ·x[i+1, . . . , j]ω. SinceA1 is a looping automaton, the runr1
induces an accepting runr′1 of A1 onx′. Formally, for alll ≤ i we haver′1(l) = r1(l)
and for alll > i, we haver′1(l) = r1(i + ((l − i)mod(j − i))). Similarly, the runr2
induces an accepting run ofA2 onx′. It follows thatx′ is accepted by bothA1 andA2,
contradicting the fact thatL(A2) = comp(L(A1)).

3.2 Checkable Properties

For an integerk ≥ 1, a languageL ⊆ Σω is k-checkableif there is a languageR ⊆
Σk (of “allowed subwords”) such that a wordw belongs toL iff all the subwords
of w of lengthk belong toR. A property is locally checkable if its language isk-
checkable for somek. Locally checkable properties, which are a special case of safety
properties, are common in the specification of systems. In particular, one can often
bound an eventuality constraint in a property by a fixed time frame, which results in a
checkable property.

The practical importance of locally checkable properties lies in the low memory
demand for their run-time verification. Indeed,k-checkable properties can be verified
with a bounded memory – one that has access only to the lastk-computation cycles.
Run-time verification of a property amounts to executing a monitor together with the
system allowing the detection of errors in run time [20, 3, 9]. Run-time monitors for

checkable specifications have low memory demand. Furthermore, in the case of general
ω-regular properties, when several properties are checked,we need a monitor for each
property, and since the properties are independent of each other, so are the state spaces
of the monitors. Thus, the memory demand (as well as the resources needed to maintain
the memory) grow linearly with the number of properties monitored. Such a memory
demand is a real problem in practice. In contrast, as shown in[21], a monitor for ak-
checkable property needs only a record of the lastk computation cycles. Furthermore,
even if a large number ofk-checkable properties are monitored, the monitors can share
their memory, resulting in memory demand of|Σ|k, which is independant of the number
of properties monitored.

As in the case of clopen properties, our goal is to identify a bound for a checkable
property given by an automaton. We first need some notations.For a wordw ∈ Σω and
k ≥ 0, we denote bysub(w, k) the set of finite subwords ofw of lengthk, formally,
sub(w, k) = {y ∈ Σ∗ : |y| = k and there existx ∈ Σ∗ andz ∈ Σω such thatw =
xyz}. A languageL ⊆ Σω is k-checkableif there exists a finite languageR ⊆ Σk

such thatw ∈ L iff all the k-long subwords ofw are inR. That is,L = {w ∈
Σω : sub(w, k) ⊆ R}. A languageL ⊆ Σω is k-co-checkableif there exists a fi-
nite languageR ⊆ Σk such thatw ∈ L iff there exists ak-long subword ofw that is
in R. That is,L = {w ∈ Σω : sub(w, k) ∩ R 6= ∅}. A language ischeckable(co-
checkable) if it is k-checkable (k-co-checkable, respectively) for somek. We refer tok
as thewidth of L. It is easy to to see that all checkable languages are safety,and sim-
ilarly for co-checkable and co-safety. In particular,L is a checkable language induced
byR iff comp(L) is co-checkable and induced bycomp(L).

In order to demonstrate the the subtlety of the width question, consider the following
example.

Example 1.LetΣ = {0, 1, 2}. The DBWA below recognizes the languageL of all the
words that contain10, 120 or 220 as subwords. Note thatL is the 3-co-checkable lan-
guageL co-induced byR = {010, 110, 210, 100, 101, 102, 120, 220}. Indeed, a word
w is inL iff sub(w, 3) ∩R 6= ∅.

qac

0

0

0
0,1,2

1,2

1,2
2

1q0

q2

q1

At first sight, it seems that the same considerations appliedin Lemma 1 can be used
in order to prove that the width of a checkable language is bounded by the diameter
of the smallest DBW recognizing the language. Indeed, it appears that in an accepting
run, the traversal through the minimal good prefix should notcontain a cycle. This

impression, however, is misleading, as demonstrated in theDBW A from Example 1,
where a traversal through the subword120 contains a cycle, and similarly for010. The
diameter of the DBWA is3, so it does not constitute a counterexample to the conjecture
that the diameter bounds the width, but the problem remains open in [21], and the
tightest bound proven there depends on the size ofA and not only on its diameter, and
is even not linear. Intuitively, it follows form an upper-bound on the size of a DBW that
recognizes minimal bad prefixes ofL. Formally, we have the following.

Theorem 1. If a checkable (or co-checkable) languageL is recognized by a DBW with
n states, then the width ofL is bounded byO(n2).

As noted above, the bound in Theorem 1 is not tight and the bestknown lower
bound is only the diameter of a DBW forL. For the nondeterministic setting the bound
is tighter:

Theorem 2. If a checkable languageL is recognized by an NBW withn states, then
the width ofL is bounded by2O(n). Also, There exist an NBWA withO(n) states such
thatL(A) is k-checkable but not(k − 1)-checkable, fork = (n+ 1)2n + 2 .

4 Safety in a Reactive Setting

Recall that safety is defined with respect to languages over an alphabetΣ. Typically,
Σ = 2AP , whereAP is the set of the system’s atomic propositions. Thus, the definition
and studies of safety treat all the atomic propositions as equal and do not distinguish
between input and output signals. As such, they are suited for closed systems – ones
that do not maintain an interaction with their environment.In open (also calledreactive)
systems [19, 31], the system interacts with the environment, and a correct system should
satisfy the specification with respect to all environments.A good way to think about
the open setting is to consider the situation as a game between the system and the
environment. The interaction between the players in this game generates a computation,
and the goal of the system is that only computations that satisfy the specification will
be generated.

Technically, one has to partition the setAP of atomic propositions to a setI of input
signals, which the environment controls, and a setO of output signals, which the system
controls. An open system is then anI/O-transducer– a deterministic automaton over
the alphabet2I in which each state is labeled by an output in2O. Given a sequence
of assignments to the input signals (each assignment is a letter in 2I), the run of the
transducer on it induces a sequence of assignments to the output signals (that is, letters
in 2O). Together these sequences form a computation, and the transducerrealizesa
specificationψ if all its computations satisfyψ [31].

The transition from the closed to the open setting modifies the questions we typi-
cally ask about systems. Most notably, thesynthesischallenge, of generating a system
that satisfies the specification, corresponds to the satisfiability problem in the closed
setting and to the realizability problem in the open setting. As another example, the
equivalence problem between LTL specifications is different in the closed and open
settings [16]. That is, two specifications may not be equivalent when compared with

respect to arbitrary systems onI ∪ O, but beopen equivalent; that is, equivalent when
compared with respect toI/O-transducers. To see this, note for example that a satis-
fiable yet non-realizable specification is equivalent to false in the open but not in the
closed setting.

As mentioned above, the classical definition of safety does not distinguish between
input and output signals. The definition can still be appliedto open systems, as a special
case of closed systems withΣ = 2I∪O. In [11], Ehlers and Finkbeiner introducedreac-
tive safety– a definition of safety for the setting of open systems. Essentially, reactive
safety properties require the system to stay in a region of states that is both allowed and
from which the environment cannot force it out. The definition in [11] is by means of
sets of trees with directions in2I and labels in2O. The use of trees naturally locate
reactive safety between linear and branching safety. In [25], we suggested an equivalent
yet differently presented definition, which explicitly userealizability, and study the the-
oretical aspects of receive safety and other reactive fragments of specifications. In this
section, we review the definition and results from [25].

4.1 Definitions

We model open systems bytransducers. Let I andO be finite sets of input and output
signals, respectively. Givenx = i0 · i1 · i2 · · · ∈ (2I)ω andy = o0 · o1 · o2 · · · ∈ (2O)ω,
we denote their composition byx ⊕ y = (i0, o0) · (i1, o1) · (i2, o2) · · · ∈ (2I∪O)ω. An
I/O-transducer is a tupleT = 〈I,O, S, s0, η, L〉, whereS is a set of states,s0 ∈ S is
an initial state,η : S × 2I → S is a transition function, andL : S → 2O is a labeling
function. Therun of T on a (finite or infinite) input sequencex = i0 · i1 · i2 · · · , with
ij ∈ 2I , is the sequences0, s1, s2, . . . of states such thatsj+1 = η(sj , ij+1) for all
j ≥ 0. Thecomputationof T onx is thenx⊕ y, for y = L(s0) ·L(s1) ·L(s2) · · · Note
thatT is responsive and deterministic (that is, it suggests exactly one successor state for
each input letter), and thusT has a single run, generating a single computation, on each
input sequence. We extendη to finite words over2I in the expected way. In particular,
η(s0, x), for x ∈ (2I)∗ is the |x|-th state in the run onx. A transducerT induces a
strategyf : (2I)∗ → 2O such that for allx ∈ (2I)∗, we have thatf(x) = L(η(s0, x)).
Given an LTL formulaψ overI ∪O, we say thatψ is I/O-realizableif there is a finite-
stateI/O-transducerT such that all the computations ofT satisfyψ [31]. We then say
thatT realizesψ. When it is clear from the context, we refer toI/O-realizability as
realizability, or talk about realizability of languages over the alphabet2I∪O.

Since the realizability problem corresponds to deciding a game between the system
and the environment, and the game is determined [15], realizability is determined too,
in the sense that either there is anI/O-transducer that realizesψ (that is, the system
wins) or there is anO/I-transducer that realizes¬ψ (that is, the environment wins).
Note that in anO/I-transducer the system and the environment “switch roles” and the
system is the one that provides the inputs to the transducer.A technical detail is that
in order for the setting ofO/I-realizability to be dual to the one inI/O-realizability
we need, in addition to switching the roles and negating the specification, to switch
the player that moves first and consider transducers in whichthe environment initiates
the interaction and moves first. Since we are not going to delve into constructions, we
ignore this point, which is easy to handle.

Let I andO be sets of input and output signals, respectively. Considera language
L ⊆ (2I∪O)ω. For a finite wordu ∈ (2I∪O)∗, letLu = {s : u · s ∈ L} be the set of all
infinite wordss such thatu · s ∈ L. Thus, ifL describes a set of allowed computations,
thenLu describes the set of allowed suffixes of computations starting withu.

We say that a finite wordu ∈ (2I∪O)∗ is a system bad prefixfor L iff Lu is not
realizable. Thus, a system bad prefix is a finite wordu such that after traversingu,
the system does not have a strategy to ensure that the interaction with the environment
would generate a computation inL. We usesbp(L) to denote the set of system bad
prefixes forL. Note that by determinacy of games, wheneverLu is not realizable by the
system, then its complement is realizable by the environment. Thus, once a bad prefix
has been generated, the environment has a strategy to ensurethat the entire generated
behavior is not inL.

A languageL ⊆ (2I∪O)
ω

is a reactive safety languageif every word not inL
has a system bad prefix. Below are two examples, demonstrating that a reactive safety
language need not be safe. Note that the other direction doeshold: LetL be a safe
language. Consider a wordw /∈ L and a bad prefixu ∈ (2I∪O)∗ of w. Sinceu is a
bad prefix, the setLu is empty, and is therefore unrealizable, sou is also a system bad
prefix. Thus, every word not inL has a system bad prefix, implying thatL is reactively
safe.

Example 2.Let I = {fix}, O = {err}, ψ = G(err → Ffix), andL = ‖ψ‖. Note
thatψ is realizable using the system strategy “never err”. Also,L is clearly not safe, as
every prefix can be extended to one that satisfiesψ. On the other hand,L is reactively
safe. Indeed, every word not inL must have a prefixu that ends with{err}. Since
Lu = ‖Ffix‖, which is not realizable, we have thatu is a system bad prefix andL is
reactively safe.

Example 3.Let I = {fix}, O = {err}, ψ = G¬err ∨ FGfix , andL = ‖ψ‖. Note
thatψ is realizable using the system strategy “never err”. Also,L is clearly not safe.
We showL is reactively safe. Consider a wordw /∈ L. Sincew does not satisfyG¬err ,
there must be a prefixu of w such thatu contains a position satisfyingerr . Since
words with prefixu do not satisfyG¬err , we have thatLu = ‖FGfix‖, which is not
realizable. Thus,u is a system bad prefix andL is reactively safe.

4.2 Properties of Reactive Safety

In the closed settings, the setbad-pref(L) is closed under finite extensions for all lan-
guagesL ⊆ Σω. That is, for every finite wordu ∈ bad-pref(L) and finite extension
v ∈ Σ∗, we have thatu · v ∈ bad-pref(L). This is not the case in the reactive setting:

Theorem 3. System bad prefixes are not closed under finite extension.

Proof: Let I = {fix}, O = {err}, andψ = G(err → Xfix) ∧ FG¬err . Thus,ψ
states that every error the system makes is fixed by the environment in the following
step, and that there is a finite number of errors. LetL = ‖ψ‖. Clearly,ψ is realizable, as
the strategy “never err” is a winning strategy for the system. Also,L is reactively safe,
as a wordw /∈ L must have a prefixu that ends in a position satisfyingerr , andu is

a system bad prefix. We show thatsbp(L) is not closed under finite extensions. To see
this, consider the wordw = ({err ,fix} · {fix})ω. That is, the system makes an error on
every odd position, and the environment always fixes errors.Since there are infinitely
many errors inw, it does not satisfyψ. The prefixu = {err ,fix} of w is a system bad
prefix. Indeed, an environment strategy that starts with¬fix is a winning strategy. On
the other hand,u’s extensionv = {err ,fix} · {fix} is not a system bad prefix. Indeed,
Lv is realizable using the winning system strategy “never err”.

Recall that reasoning about safety properties is easier than reasoning about general
properties. In particular, rather than working with automata on infinite words, one can
model check safety properties using automata (on finite words) for bad prefixes. The
question is whether and how we can take advantage of reactivesafety when the specifi-
cation is not safe (but is reactively safe). In [11], the authors answered this question to
the positive and described a transition from reactively safe to safe formulas. The trans-
lation is by means of nodes in the tree in which a violation starts. The translation from
[25] we are going to describe here uses realizability explicitly, which we find simpler.

For a languageL ⊆ (2I∪O)ω, we defineclose(L) = L ∩ {w : w has no system
bad prefix forL}. Equivalently,close(L) = L\{w : w has a system bad prefix forL}.
Intuitively, we obtainclose(L) by defining all the finite extensions ofsbp(L) as bad
prefixes. It is thus easy to see thatsbp(L) ⊆ bad-pref(close(L)).

As an example, consider again the specificationψ = G(err → Xfix) ∧ FG¬err ,
with I = {fix}, O = {err}. An infinite word contains a system bad prefix forψ iff it
has a position that satisfieserr . Accordingly,close(ψ) = G¬err . As another example,
let us add toO the signalack , and letψ = G(err → X (fix ∧ Fack)), with I = {fix},
O = {err , ack}. Again,ψ is reactively safe and an infinite word contains a system bad
prefix forψ iff it has a position that satisfieserr . Accordingly,close(ψ) = G¬err .

Our definition ofclose(L) is sound, in the following sense:

Theorem 4. A languageL ⊆ (2I∪O)ω is reactively safe iffclose(L) is safe.

While L andclose(L) are not equivalent, they areopen equivalent[16]. Formally,
we have the following.

Theorem 5. For every languageL ⊆ (2I∪O)ω and I/O-transducerT , we have that
T realizesL iff T realizesclose(L).

It is shown in [11] that given an LTL formulaψ, it is possible to construct a de-
terministic looping word automaton forclose(ψ) with doubly-exponential number of
states. In fact, as suggested in [23], it is then possible to generate also a determinis-
tic automaton for the bad prefixes ofclose(ψ). Note that whenL is not realizable, we
have thatǫ ∈ sbp(L), implying thatclose(L) = ∅. It follows that we cannot expect to
construct small automata forclose(L), even nondeterministic ones, as the realizability
problem for LTL can be reduced to easy questions about them.

Theorem 5 implies that a reactive safety languageL is open equivalent to a safe
language, namelyclose(L). Conversely, open equivalence to a safe language implies
reactive safety. This follows from the fact that ifL andL′ are open-equivalent lan-
guages, then a prefixx is a minimal system bad prefix inL iff x is a minimal system
bad prefix inL′. We can thus conclude with the following.

Theorem 6. A languageL is reactively safe iffL is open equivalent to a safe language.

In the setting of open systems, dualization of specifications is more involved, as one
has not only to complement the language but to also dualizes the roles of the system
and the environment. Accordingly, we actually have four fragments of languages that
are induced by dualization of the reactive safety definition. We define them by means
of bad and good prefixes.

Consider a languageL ⊆ (2I∪O)ω and a prefixu ∈ (2I∪O)∗. We say that:

– u is asystem bad prefixif Lu is notI/O-realizable.
– u is asystem good prefixif Lu is I/O-realizable.
– u is anenvironment bad prefixif Lu is notO/I-realizable.
– u is anenvironment good prefixif Lu isO/I-realizable.

Now, a languageL ⊆ (2I∪O)ω is asystem (environment) safety languageif every
word not inL has a system (environment, respectively) bad prefix. The languageL is
a system (environment) co-safety languageif every word inL has a system (environ-
ment, respectively) good prefix. System safety and environment co-safety dualize each
other: For every languageL ⊆ (2I∪O)ω, we have thatL is system safe iffcomp(L) is
environment co-safe.

Since each languageLu is eitherI/O-realizable or notI/O-realizable, and the
same forO/I-realizability, all finite words are determined, in the following sense.

Theorem 7. Consider a languageL ⊆ (2I∪O)ω. All finite words in(2I∪O)∗ are deter-
mined with respect toL. That is, every prefix is either system good or system bad, and
either environment good or environment bad, with respect toL.

Note that while every prefix is determined, a word may have both system bad and
system good prefixes, and similarly for the environment, which is not the case in the
setting of closed systems. For example, recall the languageL = ‖G(err → Xfix) ∧
FG¬err‖, for I = {fix} andO = {err}. As noted above, the word({err, fix} ·
{fix})ω has both a system bad prefix{err, fix}, and a system good prefix{err, fix}·
{fix}.

In Section 3.1 we showed that in the closed setting, the intersection of safe and
co-safe properties induces the fragment ofboundedproperties. It is shown in [25] that
boundedness in the open setting is more involved, as a computation may have both
infinitely many good and infinitely many bad prefixes. It is still possible, however, to
define reactive bounded properties and use their appealing practical advantages.

5 A Spectrum Between Safety and Co-Safety

Safety is a binary notion. A property may or may not satisfy the definition of safety.
In this section we describe a probability-based approach for defining different levels
of safety. The origin of the definition is a study ofvacuity in model checking [4, 23].
Vacuity detection is a method for finding errors in the model-checking process when
the specification is found to hold in the model. Most vacuity algorithms are based on
checking the effect of applying mutations on the specification. It has been recognized

that vacuity results differ in their significance. While in many cases vacuity results
are valued as highly informative, there are also cases in which the results are viewed as
meaningless by users. In [10], we suggested a method for an automatic ranking of vacu-
ity results according to their level of importance. Our method is based on theprobability
of the mutated specification to hold in a random computation.For example, two natural
mutations of the specificationG(req → F ready) areG(¬req), obtained by mutating
the subformulaready to false, andGF ready , obtained by mutating the subformula
req to true. It is agreed that vacuity information about satisfying thefirst mutation is
more alarming than information about satisfying the second. The framework in [10] for-
mally explains this, as the probability ofG(¬req) to hold in a random computation is0,
whereas the probability ofGF ready is 1. In this section we suggest to use probability
also for defining levels of safety.

5.1 The Probabilistic Setting

Given a setS of elements, aprobability distributiononS is a functionµ : S → [0, 1]
such thatΣs∈S µ(s) = 1. Consider an alphabetΣ. A random word overΣ is a word in
which for all indicesi, thei-th letter is drown uniformly at random. In particular, when
Σ = 2AP , then a random computationπ is such that for each atomic propositionq and
for each position inπ, the probability ofq to hold in the position is12 . An equivalent
definition of this probabilistic model is by means of the probabilistic labeled structure
UΣ , which generates computations in a uniform distribution. Formally,UΣ is a clique
with |Σ| states in which a stateσ ∈ Σ is labeledσ, is initial with probability 1

|Σ| , and

the probability to move from a stateσ to a stateσ′ is 1
|Σ| .

We define the probability of a languageL ⊆ Σω, denotedPr(L), as the probability
of the event{π : π is a path inUΣ that is labeled by a word inL}. Accordingly, for
an LTL formulaϕ, we definePr(ϕ) as the probability of the event{π : π is a path in
U2AP that satisfiesϕ}. For example, the probabilities ofXp,Gp, andFp are 1

2 , 0, and
1, respectively. UsingUΣ we can reduce the problem of findingPr(ϕ) to ϕ’s model
checking. Results on probabilistic LTL model checking [8] then imply that the problem
of finding the probability of LTL formulas is PSPACE-complete.

First-order logic respects a0/1-law: the probability of a formula to be satisfied in
a random model is either0 or 1 [13]. It is easy to see that a0/1-law does not hold
for LTL. For example, for an atomic propositionp, we have thatPr(p) = 1

2 . Back to
our safety story, it is not hard to see thatPr(Gξ), for a formulaξ with Pr(ξ) 6= 1,
is 0. Dually,Pr(Fξ), for a formulaξ with Pr(ξ) 6= 0 is 1. Can we relate this to the
fact thatGp is a safety property whereasFp is a co-safety property? Or perhaps it
has to do withFp being a liveness property?2 This is not clear, as, for example, the
probability of clopen formulas depends on finitely many events and can vary between
0 to 1. As another example, consider the two possible semantics ofthe Until temporal
operator. For the standard, strong, Until, which is not a safe, we havePr(pUq) = 2

3 . By
changing the semantics of the Until to a weak one, we get the safety formulapWq, with
pWq = pUq∨Gp. Still, Pr(pWq) = Pr(pUq). Thus, the standard probabilistic setting
does not suggest a clear relation between probability and different levels of safety.

2 A languageL is a liveness language ifL = Σ∗

· L [1].

We argue that we can still use the probabilistic approach in order to measure safety.
The definition ofPr(ϕ) in [10] assumes that the probability of an atomic proposition to
hold in each position is12 . This corresponds to computations in an infinite-state system
and is the standard approach taken in studies of0/1-laws. Alternatively, one can also
study the probability of formulas to hold in computations offinite-state systems. For-
mally, for an integerl ≥ 1, letPrl(ϕ) denote the probability thatϕ holds in a random
cycle of lengthl. Here too, the probability of each atomic proposition to hold in a state is
1
2 , yet we have onlyl states to fix an assignment to. So, for example, whilePr(Gp) = 0,
we have thatPr1(Gp) = 1

2 , Pr2(Gp) = 1
4 , and in generalPrj(Gp) = 1

2j . Indeed, an
l-cycle satisfiesGp iff all its states satisfyp.

There are several interesting issues in the finite-state approach. First, it may seem
obvious that the biggerl is, the closerPrl(ϕ) gets toPr(ϕ). This is, however, not so
simple. For example, issues like cycles inϕ can causePrl(ϕ) to be non-monotonic.
For example, whenϕ requiresp to hold in exactly all even positions, thenPr1(ϕ) =
0, P r2(ϕ) = 1

4 , P r3(ϕ) = 0, P r4(ϕ) = 1
16 , and so on.

Assume now that we have cleaned the cycle-based issue (for example by restricting
attention to formulas withoutXs, or by restricting attention to cycles of “the right”
length). Can we characterize safety properties by means of the asymptotic behavior of
Prl(ϕ)? Can we define different levels of safety according to the rate the probability
decreases or increases? For example, clearlyPrl(Gp) tends to0 asl increases, whereas
Prl(Fp) tends to1. Also, now, for a givenl, we have thatPrl(pWq) > Prl(pUq). In
addition, for a clopen propertyϕ, we have thatPrl(ϕ) stablizes oncel is bigger than
the bound ofϕ. Still, the picture is not clean. For example,FGp is a liveness formula,
butPrl(FGp) decreases asl increases. Finding a characterization of properties that is
based on the analysis ofPrl is an interesting question, and our initial research suggests
a connection between the level of safety ofϕ and the behavior ofPrl(ϕ).

References

1. B. Alpern and F.B. Schneider. Defining liveness.IPL, 21:181–185, 1985.
2. B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed computing,

2:117–126, 1987.
3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In

Proc. 5th VMCAI, LNCS 2937, pages 44–57. Springer, 2004.
4. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL

formulas. InProc. 9th CAV, LNCS 1254, pages 279–290, 1997.
5. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In

Proc. 5th TACAS, LNCS 1579. Springer, 1999.
6. R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected compo-

nent analysis inn log n symbolic steps. InProc. 3rd FMCAD, LNCS 1954, pages 37–54.
Springer, 2000.

7. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties.FMSD, 1:275–288, 1992.

8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.J. ACM,
42:857–907, 1995.

9. M. d’Amorim and G. Rosu. Efficient monitoring of omega-languages. InProc. 17th CAV,
LNCS 3576. Springer, 2005.

10. S. Ben David and O. Kupferman. A framework for ranking vacuity results. In11th ATVA,
LNCS 8172, pages 148–162. Springer, 2013.

11. R. Ehlers and B. Finkbeiner. Reactive safety. InProc. 2nd GANDALF, volume 54 ofElec-
tronic Proceedings in TCS, pages 178–191, 2011.

12. E.A. Emerson. Alternative semantics for temporal logics. TCS, 26:121–130, 1983.
13. R. Fagin. Probabilities in finite models.Journal of Symb. Logic, 41(1):50–5, 1976.
14. E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability. InProc. 21st

CAV, LNCS 5643, pages 263–277, 2009.
15. D. Gale and F. M. Stewart. Infinite games of perfect information. Ann. Math. Studies,

28:245–266, 1953.
16. K. Greimel, R. Bloem, B. Jobstmann, and M. Vardi. Open implication. InProc. 35th ICALP,

LNCS 5126, pages 361–372. Springer, 2008.
17. H.P. Gumm. Another glance at the Alpern-Schneider characterization of safety and liveness

in concurrent executions.IPL, 47:291–294, 1993.
18. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-intrusiverepair of reactive programs. In

ICECCS, pages 3–12, 2012.
19. D. Harel and A. Pnueli. On the development of reactive systems. InLogics and Models of

Concurrent Systems, NATO ASI, vol. F-13, pages 477–498. Springer, 1985.
20. K. Havelund and G. Rosu. Synthesizing monitors for safety properties. InProc. 8th TACAS,

LNCS 2280, pages 342–356. Springer, 2002.
21. O. Kupferman, Y. Lustig, and M.Y. Vardi. On locally checkable properties. InProc. 13th

LPAR, LNCS 4246, pages 302–316. Springer, 2006.
22. O. Kupferman and M.Y. Vardi. Model checking of safety properties. InProc. 11th CAV,

LNCS 1633, pages 172–183. Springer, 1999.
23. O. Kupferman and M.Y. Vardi. Model checking of safety properties.FMSD, 19(3):291–314,

2001.
24. O. Kupferman and M.Y. Vardi. On bounded specifications. In Proc. 8th LPAR, LNCS 2250,

pages 24–38. Springer, 2001.
25. O. Kupferman and S. Weiner. Environment-friendly safety. In 8th HVC, LNCS 7857, pages

227–242. Springer, 2012.
26. L. Lamport. Logical foundation. InDistributed systems - methods and tools for specification,

LNCS 190. Springer, 1985.
27. Z. Manna and A. Pnueli. The anchored version of the temporal framework. InLinear time,

branching time, and partial order in logics and models for concurrency, LNCS 345, pages
201–284. Springer, 1989.

28. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer, 1992.

29. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Safety.
Springer, 1995.

30. A. Pnueli. The temporal semantics of concurrent programs. TCS, 13:45–60, 1981.
31. A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. 16th POPL, pages

179–190, 1989.
32. A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification. InProc.

12th CAV, LNCS 1855, pages 328–343. Springer, 2000.
33. A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing,

6:495–511, 1994.
34. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.Journal

of the ACM, 32:733–749, 1985.
35. H.J. Touati, R.K. Brayton, and R. Kurshan. Testing language containment forω-automata

using BDD’s. I& C , 118(1):101–109, 1995.
36. M.Y. Vardi and P. Wolper. Reasoning about infinite computations.I& C , 115(1):1–37, 1994.

