Variations on Safety

Orna Kupferman

Hebrew University, School of Engineering and Computer iS¢ Jerusalem 91904, Israel
Email: orna@cs.huji.ac.il

Abstract. Of special interest in formal verification asafetyproperties, which
assert that the system always stays within some allowednemi which nothing
“bad” happens. Equivalently, a property is a safety propérvery violation of
it occurs after a finite execution of the system. Thus, a cdatfmn violates the
property if it has a “bad prefix”, all whose extensions viel#éte property. The
theoretical properties of safety properties as well ag theictical advantages
with respect to general properties have been widely studibd paper surveys
several extensions and variations of safety. We startbatindedandcheckable
properties — fragments of safety properties that enable@m&mpler reasoning.
We proceed to aeactivesetting, where safety properties require the system to
stay in a region of states that is both allowed and from whighenvironment
cannot force it out. Finally, we describe a probability-4xapproach for defining
different levels of safety.

1 Introduction

Today'’s rapid development of complex and safety-critigatesms requires reliable veri-
fication methods. In formal verification, we verify that atgya meets a desired property
by checking that a mathematical model of the system meetsrafspecification that
describes the property. Of special interest are propeatissrting that the observed be-
havior of the system always stays within some allowed regiowhich nothing “bad”
happens. For example, we may want to assert that every neessatis acknowledged
in the next cycle. Such properties of systems are caléddty propertiesintuitively, a
propertyy is a safety property if every violation af occurs after a finite execution of
the system. In our example, if in a computation of the systemeasage is sent with-
out being acknowledged in the next cycle, this occurs afiaresfinite execution of the
system. Also, once this violation occurs, there is no wayfitd the computation.

In order to formally define what safety properties are, weréf computations of
a nonterminating system as infinite words over an alphabétonsider a language
of infinite words overX. A finite word x over ' is abad prefixfor L iff for all infinite
wordsy overY, the concatenation- y of x andy is notin L. Thus, a bad prefix fok is
a finite word that cannot be extended to an infinite word iA languagel is asafety
languageif every word not inL has a finite bad prefix. For example Xf = {0,1},
thenL = {0%,1“} is a safety language. Indeed, every word nat icontains either the

sequencél or the sequencH), and a prefix that ends in one of these sequences cannot
be extended to a word ih. *.

The interest in safety started with the quest for naturadsela of specifications.
The theoretical aspects of safety have been extensivaliest{?, 28, 29, 33]. With the
growing success and use of formal verification, safety hawtliout to be interesting
also from a practical point of view [14, 20, 23]. Indeed, thdity to reason about finite
prefixes significantly simplifies both enumerative and syfistadgorithms. In the first,
safety circumvents the need to reason about compieegular acceptance conditions.
For example, methods for temporal synthesis, program reggbarametric reasoning
are much simpler for safety properties [18, 32]. In the sd¢admrircumvents the need to
reason about cycles, which is significant in both BDD-baset®AT-based methods [5,
6]. In addition to a rich literature on safety, researchengehstudied additional classes,
such as liveness and co-safety properties [2, 28].

The paper surveys several extensions and variations dfs@éfe start withbounded
andcheckableproperties — fragments of safety properties that enablevan simpler
reasoning. We proceed ta@activesetting, where safety properties require the system
to stay in a region of states that is both allowed and from tvHie environment cannot
force it out. Finally, we describe a probability-based aggh for defining different
levels of safety. The survey is based on the papers [24], MitBhe Y. Vardi, [21],
with Yoad Lustig and Moshe Y. Vardi, [25], with Sigal Weinend [10], with Shoham
Ben-David.

2 Preliminaries

Safety and Co-Safety Languagé&siven an alphabell, aword overX' is a (possibly
infinite) sequencev = o - o1 --- oOf letters inX. Consider a language C X“ of
infinite words. A finite worde € X* is abad prefixfor L iff for all y € X, we have
x -y ¢ L. Thus, a bad prefix is a finite word that cannot be extended timnfanite
word in L. Note that ifx is a bad prefix, then all the finite extensionsicédire also bad
prefixes. A languagé is asafetylanguage iff every infinite word) ¢ L has a finite bad
prefix. For a safety languade we denote byad-pref L) the set of all bad prefixes for
L.

For a languagd, C X“, we usecomyL) to denote the complement df; i.e.,
comgL) = X\ L. Alanguagd. C X* is aco-safetyanguage iftomg L) is a safety
language. (The term used in [28]gsarantedanguage.) Equivalently, is co-safety iff
every infinite wordw € L has agood prefixc € X*: forally € X*, we haver -y € L.
For a co-safety languade we denote byood-pref L) the set of good prefixes fdr.
Note that for a safety languade we have thagood-prefcomg L)) = bad-pref(L).

Word Automata.A nondeterministic Bchi word automatofiNBW, for short) isA =
(X,Q,0,Qo, F), whereX is the input alphabet is a finite set of states,: Q x X —
29 is a transition functionQ, C Q is a set of initial states, an8 C Q is a set of

! The definition of safety we consider here is given in [1, 2dincides with the definition of
limit closure defined in [12], and is different from the defion in [26], which also refers to
the property being closed under stuttering.

accepting states. |f)o| = 1 and¢ is such that for every € @ ando € X, we have
that|d(q, 0)| < 1, thenA is adeterministidBuchi word automaton (DBW, for short).
Given aninputwordy = og-01 - - - in X, arunof A onw is a sequence,, ry, . . .
of states in@) such that, € @)y and for everyi > 0, we haver; ;1 € §(r;,0;). Forarun
r, letinf (r) denote the set of states thatisits infinitely often. That isinf(r) = {q €
Q :r; = qforinfinitely many: > 0}. As Q is finite, it is guaranteed thatf (r) # 0.
The runr is acceptingiff inf(r) N F # (. That is, iff there exists a state ifi thatr
visits infinitely often. A run that is not accepting ligjecting Whena = @, we say
that.A is aloopingautomaton. We use NLW and DLW to denote nondeterministic and
deterministic lopping automata. An NBW accepts an input word iff there exists
an accepting run ofd on w. The languageof an NBW .4, denoted((.A), is the set
of words thatA accepts. We assume that a given NBA\has no empty states, except
maybe the initial state (that is, at least one word is acckipben each state — otherwise
we can remove the state).

Linear Temporal Logic.The logicLTL is a linear temporal logic. Formulas of LTL are
constructed from a sed P of atomic propositions using the usual Boolean operators
and the temporal operato(s (“always”), F' (“eventually”), X (“next time”), andU
(“until”). Formulas of LTL describe computations of systemver AP. For example,
the LTL formulaG(req — Fack) describes computations in which every position in
which req holds is eventually followed by a position in whietek holds. Thus, each
LTL formulas corresponds to a language, dendted|, of words in(247)« that satisfy

it. For the detailed syntax and semantics of LTL, see [30g Mbdel-checking problem
for LTL is to determine, given an LTL formula and a system\/, whether all the
computations of\/ satisfy).

General methods for LTL model checking are based on traoslaf LTL formulas
to nondeterministic Buichi word automata. By [36], givenldi. formula), one can
construct an NBWA,, over the alphabez? that accepts exactly all the computations
that satisfy,). The size oA, is, in the worst case, exponential in the lengthyof

Given a systend/ and an LTL formula), model checking of\/ with respect ta is
reduced to checking the emptiness of the produsgt/aind.A-.,; [36]. This check can be
performed on-the-fly and symbolically [7, 35], and the coexjty of model checking
that follows is PSPACE, with a matching lower bound [34].

Itis shownin [2, 33, 22] that when is a safety formula, we can assume that all the
states in4,, are accepting. Indeedi,, accepts exactly all words all of whose prefixes
have at least one extension accepted4y, which is what we get if we define all
the states of4,, to be accepting. Thus, safety properties can be recognizéd W/s.
Since every NLW can be determined to an equivalent DLW byapglthe subset
construction, all safety formulas can be translated to DLWs

3 Interesting Fragments

In this section we discuss two interesting fragments oftggfeopertiesclopen(a.k.a.
bounded) properties, which are useful in bounded modeléhgcandcheckablgrop-
erties, which are useful in real-time monitoring.

3.1 Clopen Properties

Bounded model checkimgethodologies check the correctness of a system with respec
to a given specification by examining computations of a bedndngth. Results from
set-theoretic topology imply that setsift that are both open and closeziqpen sefs

are bounded: membership in a clopen set can be determinedahyiréing a bounded
number of letters irnv.

In [24] we studied safety properties from a topological pafview. We showed
that clopen sets correspond to properties that are botkysafe co-safety, and show
that when clopen specifications are given by automata or brinéilas, we can point
to a bound and translate the specification to bounded fasmalsuch as bounded LTL
and cycle-free automata.

Topology Consider a seX and a distance functiod : X x X — R between the
elements ofX. For an element € X andy > 0, let K(z,) be the set of elements
z’ such thatd(z,2’) < ~. Consider a sef C X. An elementz € S is called an
interior elemenbf S if there isy > 0 such thatK'(z,v) C S. The setS is openif all

the elements it are interior. A setS is closedif X \ S is open. So, a séf is open

if every element inS has a nonempty “neighborhood” containedSnand a sefS is
closed if every element not ifi has a nonempty neighborhood whose intersection with
S is empty. A set that is both open and close is calletbpenset.

A Cantor spaceconsists ofX = D¢, for some finite setD, andd defined by
d(w,w’) = 5%, wheren is the first position where andw’ differ. Thus, elements of
X can be viewed as infinite words ovBrand two words are close to each other if they
have a long common prefix. i = w’, thend(w, w’) = 0. It is known that clopen sets
in Cantor space afgoundedwhere a seb is bounded if it is of the forniV - D« for
some finite set¥ C D*. Hence, clopen sets in our Cantor space correspond exactly
to bounded properties: each clopen language X has a bound: > 0 such that
membership in. can be determined by the prefixes of lengtbf words in X,

Itis not hard to see that a languafeC X is co-safety iffL is an open set in our
Cantor space [27, 17]. To see this, consider a woid a co-safety languagk, and let
x be a good prefix ofv. All the wordsw’ with d(w,w’) < ﬁ havez as their prefix,
so they all belong td.. For the second direction, consider a wardn an open seL,
and lety > 0 be such thaf{(w,~) C L. The prefix ofw of length [log %J is a good
prefix for L. It follows that the clopen sets i'“ are exactly these properties that are

both safety and co-safety!

Bounding Clopen Properties Our goal in this section is to identify a bound for a
clopen property given by an automaton. Consider a clopeguiagel. C X“. For

a finite wordz € X*, we say thatr is undeterminedvith respect toL if there are

y € XY¥andz € Y“ suchthat:-y € Landx - z ¢ L. As shown in [24], every word in
X% has only finitely many prefixes that are undetermined witpeestoL. It follows
thatL is boundedthere are only finitely many words ib* that are undetermined with
respect tal. For an integek, we say thatl is bounded by if all the wordsz € X*
such thatz| > k are determined with respect o Moreover, since. is bounded, then

a minimal DLW that recognizes must be cycle free. Indeed, otherwise we can pump
a cycle to infinitely many undetermined prefixes. déimeter(L) be the diameter of
the minimal DLW for L.

Lemma 1. A cloperw-regular languagel. C X is bounded byliameter(L).

Proof: Let.A be the minimal deterministic looping automaton farConsider a word

x € X* with |z| > diameter(L). Since A is cycle free, its run on: either reaches
an accepting sink, in which caseis a good prefix, or it does not reach an accepting
sink, in which case, by the definition @fameter(.A), we cannot extend to a word
accepted by4, thusz is a bad prefix.]

For a languagd., thein indexof L, denotedinindex (L), is the minimal num-
ber of states that an NBW recognizidghas. Similarly, theout indexof L, denoted
outindex (L), is the minimal number of states that an NBW recogniziommg) has.

Lemma 2. Aclopenv-regularlanguagd. C X* is bounded bynindex(L)- outindexz(L).

Proof: Assume by way of contradiction that there is a werd X* such thafx| >
inindex(L) - outindex (L) andx is undetermined with respect fo. Thus, there are
suffixesy andz such thatc -y € L andx - z ¢ L. Let A; and.A; be nondeterminis-
tic looping automata such th#&f(.A;) = L, £L(A2) = comdL), and.A; and.A; have
inindez (L) andoutindex (L) states, respectively. Consider two accepting nynand
ro of A1 andAy onz -y andz - z, respectively. Sincee| > inindex (L) - outindex (L),
there are two prefixes[l, ..., andz[1, ..., j] of x such that < j and both runs re-
peat their state after these two prefixes; icg(i) = r1(j) andra(i) = r2(j). Consider
thewordy’ = «[1,...,4]-2[i+1,...,J]. SinceA, is alooping automaton, the run
induces an accepting ruf) of A; onz’. Formally, for alll < i we haver|(l) = r1(1)
and for alll > i, we haver;(I) = (i + (({ —i)mod(j — 7))). Similarly, the runr,
induces an accepting run gf; onz’. It follows thatz’ is accepted by botld; and.As,
contradicting the fact thaf(Ay) = comdL£(A1)). O

3.2 Checkable Properties

For an integek > 1, a languagd. C X is k-checkabldf there is a languag® C
X% (of “allowed subwords”) such that a word belongs toL iff all the subwords
of w of length k belong toR. A property is locally checkable if its language ks
checkable for somé&. Locally checkable properties, which are a special casafety
properties, are common in the specification of systems. tticoar, one can often
bound an eventuality constraint in a property by a fixed tinaenke, which results in a
checkable property.

The practical importance of locally checkable properties In the low memory
demand for their run-time verification. Indegdgcheckable properties can be verified
with a bounded memory — one that has access only to thé{estputation cycles.
Run-time verification of a property amounts to executing anitoo together with the
system allowing the detection of errors in run time [20, 3,Rjin-time monitors for

checkable specifications have low memory demand. Furthesrimothe case of general
w-regular properties, when several properties are cheekeageed a monitor for each
property, and since the properties are independent of dheln so are the state spaces
of the monitors. Thus, the memory demand (as well as the respneeded to maintain
the memory) grow linearly with the number of properties niordd. Such a memory
demand is a real problem in practice. In contrast, as sho2ilijh a monitor for ak-
checkable property needs only a record of the fasbmputation cycles. Furthermore,
even if a large number df-checkable properties are monitored, the monitors careshar
their memory, resulting in memory demand &f*, which is independant of the number
of properties monitored.

As in the case of clopen properties, our goal is to identifypar for a checkable
property given by an automaton. We first need some notatitmrsaa wordw € 3¢ and
k > 0, we denote byub(w, k) the set of finite subwords af of lengthk, formally,
sub(w, k) = {y € X¥* : |y| = k and there exist € X¥* andz € X“ such thatw =
ryz}. Alanguagel C X is k-checkabldf there exists a finite language C X*
such thatw € L iff all the k-long subwords ofw are inR. That is,L = {w €
X : sub(w,k) C R}. Alanguagel C X“ is k-co-checkabléf there exists a fi-
nite language? C X* such thatw € L iff there exists a-long subword ofw that is
in R. Thatis,L = {w € X : sub(w,k) N R # 0}. A language ixheckablgco-
checkablgif it is k-checkablek-co-checkable, respectively) for sorheWe refer tok
as thewidth of L. It is easy to to see that all checkable languages are safedysim-
ilarly for co-checkable and co-safety. In particularis a checkable language induced
by R iff comf{L) is co-checkable and induced bgmgL).

In order to demonstrate the the subtlety of the width questionsider the following
example.

Example 1.Let X = {0, 1, 2}. The DBW.4 below recognizes the languagef all the
words that contain0, 120 or 220 as subwords. Note thdt is the 3-co-checkable lan-
guageL co-induced byR = {010,110, 210, 100, 101, 102, 120, 220}. Indeed, a word
wisin Liff sub(w,3)N R # 0.

01,2

At first sight, it seems that the same considerations appliedmma 1 can be used
in order to prove that the width of a checkable language isnded by the diameter
of the smallest DBW recognizing the language. Indeed, ieappthat in an accepting
run, the traversal through the minimal good prefix should caitain a cycle. This

impression, however, is misleading, as demonstrated iDBW& A from Example 1,
where a traversal through the subwagt) contains a cycle, and similarly fon0. The
diameter of the DBWA is 3, so it does not constitute a counterexample to the conjectur
that the diameter bounds the width, but the problem remaiesn don [21], and the
tightest bound proven there depends on the siz¢ ahd not only on its diameter, and
is even not linear. Intuitively, it follows form an upper+ed on the size of a DBW that
recognizes minimal bad prefixes bf Formally, we have the following.

Theorem 1. If a checkable (or co-checkable) languafés recognized by a DBW with
n states, then the width df is bounded by)(n?).

As noted above, the bound in Theorem 1 is not tight and the lbestn lower
bound is only the diameter of a DBW fér. For the nondeterministic setting the bound
is tighter:

Theorem 2. If a checkable languagé is recognized by an NBW with states, then
the width ofL is bounded b (™). Also, There exist an NBW with O(n) states such
that L(.A) is k-checkable but notk — 1)-checkable, fok = (n + 1)2™ + 2.

4 Safety in a Reactive Setting

Recall that safety is defined with respect to languages avedEhabet”. Typically,

X = 24P whereAP is the set of the system’s atomic propositions. Thus, theitief
and studies of safety treat all the atomic propositions asleand do not distinguish
between input and output signals. As such, they are suitedldsed systems — ones
that do not maintain an interaction with their environmémbpen (also calleceactive
systems [19, 31], the system interacts with the environnagnta correct system should
satisfy the specification with respect to all environmeAtgiood way to think about
the open setting is to consider the situation as a game betiheesystem and the
environment. The interaction between the players in thisggenerates a computation,
and the goal of the system is that only computations thatfgatie specification will
be generated.

Technically, one has to partition the seP of atomic propositions to a sétof input
signals, which the environment controls, and aef output signals, which the system
controls. An open system is then &nO-transducer a deterministic automaton over
the alphabe®’ in which each state is labeled by an outpulf?. Given a sequence
of assignments to the input signals (each assignment igea Iat2?), the run of the
transducer on it induces a sequence of assignments to thetaignals (that is, letters
in 29). Together these sequences form a computation, and thedtre@rrealizesa
specificationy if all its computations satisfy [31].

The transition from the closed to the open setting modifiesgtiestions we typi-
cally ask about systems. Most notably, gyathesichallenge, of generating a system
that satisfies the specification, corresponds to the séfigffaproblem in the closed
setting and to the realizability problem in the open settihg another example, the
equivalence problem between LTL specifications is diffeierthe closed and open
settings [16]. That is, two specifications may not be egeivaivhen compared with

respect to arbitrary systems érJ O, but beopen equivalenthat is, equivalent when
compared with respect tb/O-transducers. To see this, note for example that a satis-
fiable yet non-realizable specification is equivalent tedah the open but not in the
closed setting.

As mentioned above, the classical definition of safety dotslistinguish between
input and output signals. The definition can still be appieedpen systems, as a special
case of closed systems with= 27V In [11], Ehlers and Finkbeiner introduceshc-
tive safety- a definition of safety for the setting of open systems. B&sén reactive
safety properties require the system to stay in a regioratésthat is both allowed and
from which the environment cannot force it out. The defimitio [11] is by means of
sets of trees with directions i/ and labels ir2®. The use of trees naturally locate
reactive safety between linear and branching safety. Iy yJ@suggested an equivalent
yet differently presented definition, which explicitly usalizability, and study the the-
oretical aspects of receive safety and other reactive fesgsrof specifications. In this
section, we review the definition and results from [25].

4.1 Definitions

We model open systems IsansducersLet I andO be finite sets of input and output
signals, respectively. Given= ig - i1 - is--- € (2/)* andy = 0p - 01 - 03 - - - € (29)~,
we denote their composition by® y = (ig, 09) - (i1, 01) - (i2,02) - - - € (21Y9)¥. An
I/O-transducer is a tupl& = (1,0, S, sg,n, L), whereS is a set of states;, € S is
an initial state) : S x 2/ — S is a transition function, and : S — 29 is a labeling
function. Therun of 7 on a (finite or infinite) input sequenae= iy - i1 - i - - -, with

i; € 27 is the sequencey, s, s2, ... of states such that; 1 = n(s;,i;41) for all

j > 0. Thecomputatiorof 7 onz is thenz & y, fory = L(sg) - L(s1) - L(s2) - - - Note
that7 is responsive and deterministic (that is, it suggests xant successor state for
each input letter), and thd has a single run, generating a single computation, on each
input sequence. We extendo finite words ove! in the expected way. In particular,
n(so0,), for x € (2)* is the|z|-th state in the run om. A transducer? induces a
strategyf : (27)* — 29 such that for alk: € (21)*, we have thaff (x) = L(n(so, z)).
Given an LTL formulayp overI U O, we say that) is I /O-realizableif there is a finite-
statel /O-transducef such that all the computations #fsatisfy [31]. We then say
that7 realizesy. When it is clear from the context, we refer igO-realizability as
realizability, or talk about realizability of languages over the alphaep’.

Since the realizability problem corresponds to decidingme between the system
and the environment, and the game is determined [15], edality is determined too,
in the sense that either there is AfD-transducer that realizes (that is, the system
wins) or there is ar0/I-transducer that realizesy (that is, the environment wins).
Note that in ar0D/I-transducer the system and the environment “switch roled"tae
system is the one that provides the inputs to the transdAdecchnical detail is that
in order for the setting o)/ I-realizability to be dual to the one ify O-realizability
we need, in addition to switching the roles and negating pgexification, to switch
the player that moves first and consider transducers in whielenvironment initiates
the interaction and moves first. Since we are not going toedielo constructions, we
ignore this point, which is easy to handle.

Let I andO be sets of input and output signals, respectively. Considanguage
L C (21Y9)«. For a finite wordu € (21Y9)*, let L* = {s: u-s € L} be the set of all
infinite wordss such that. - s € L. Thus, if L describes a set of allowed computations,
thenL* describes the set of allowed suffixes of computations stattith v.

We say that a finite word, € (2799)* is asystem bad prefifor L iff L* is not
realizable. Thus, a system bad prefix is a finite warduch that after traversing,
the system does not have a strategy to ensure that the itb@radth the environment
would generate a computation in We usesbp(L) to denote the set of system bad
prefixes forL. Note that by determinacy of games, whenel&is not realizable by the
system, then its complement is realizable by the environmdmus, once a bad prefix
has been generated, the environment has a strategy to ¢hatitee entire generated
behavior is not in’..

A languageL C (2/Y9)” is areactive safety languagé every word not inL
has a system bad prefix. Below are two examples, demonsttati a reactive safety
language need not be safe. Note that the other direction limds Let L be a safe
language. Consider a word ¢ L and a bad prefix. € (2/Y9)* of w. Sinceu is a
bad prefix, the sef* is empty, and is therefore unrealizable sis also a system bad
prefix. Thus, every word not ifh has a system bad prefix, implying thais reactively
safe.

Example 2.Let I = {fiz}, O = {err},v» = G(err — Ffix), andL = ||¢||. Note
that is realizable using the system strategy “never err”. Als@s clearly not safe, as
every prefix can be extended to one that satisfie®n the other hand, is reactively
safe. Indeed, every word not ih must have a prefix. that ends with{err}. Since
L* = ||Ffiz||, which is not realizable, we have thats a system bad prefix anlis
reactively safe.

Example 3.Let I = {fiz}, O = {err}, v = G-err V FGfiz, andL = ||¢||. Note
that is realizable using the system strategy “never err”. Al6as clearly not safe.
We showL is reactively safe. Consider a word¢ L. Sincew does not satisf@—err,

there must be a prefix of w such thatu contains a position satisfyingrr. Since
words with prefixu do not satisfyG—err, we have thal.* = || FGfiz||, which is not
realizable. Thusy is a system bad prefix andis reactively safe.

4.2 Properties of Reactive Safety

In the closed settings, the dead-pref(L) is closed under finite extensions for all lan-
guagesL C X“. Thatis, for every finite word: € bad-pref(L) and finite extension
v € X*, we have that, - v € bad-pref(L). This is not the case in the reactive setting:

Theorem 3. System bad prefixes are not closed under finite extension.

Proof: Letl = {fiz}, O = {err}, andy = G(err — X fix) A FG—err. Thus,y
states that every error the system makes is fixed by the emaaot in the following
step, and that there is a finite number of errors.LLet ||¢||. Clearly,s is realizable, as
the strategy “never err” is a winning strategy for the systéino, L is reactively safe,
as awordw ¢ L must have a prefix that ends in a position satisfyingr, andu is

a system bad prefix. We show thdip (L) is not closed under finite extensions. To see
this, consider the word = ({err, fiz} - {fir})*. Thatis, the system makes an error on
every odd position, and the environment always fixes erRirge there are infinitely
many errors inv, it does not satisfy). The prefixu = {err, fiz} of w is a system bad
prefix. Indeed, an environment strategy that starts wifls is a winning strategy. On
the other handy's extensiorv = {err, fix} - {fiz} is not a system bad prefix. Indeed,
LV is realizable using the winning system strategy “never.err”]

Recall that reasoning about safety properties is easiarrdasoning about general
properties. In particular, rather than working with autéanan infinite words, one can
model check safety properties using automata (on finite sjdia bad prefixes. The
guestion is whether and how we can take advantage of reaetieéy when the specifi-
cation is not safe (but is reactively safe). In [11], the austanswered this question to
the positive and described a transition from reactivelg $afsafe formulas. The trans-
lation is by means of nodes in the tree in which a violationtsta he translation from
[25] we are going to describe here uses realizability ekpliavhich we find simpler.

For a languagé. C (2/Y9)~, we defineclose(L) = L N {w : w has no system
bad prefix forL}. Equivalently,close(L) = L\ {w : w has a system bad prefix f@r}.
Intuitively, we obtainclose(L) by defining all the finite extensions ebp(L) as bad
prefixes. Itis thus easy to see thap(L) C bad-pref(close(L)).

As an example, consider again the specificatioa G(err — X fix) A FG—err,
with I = {fiz}, O = {err}. An infinite word contains a system bad prefix {oiff it
has a position that satisfiesr. Accordingly,close(¢) = G—err. As another example,
let us add td the signalack, and lety) = G(err — X (fix A Fack)), with I = {fiz},

O = {err, ack}. Again,y is reactively safe and an infinite word contains a system bad
prefix for ¢ iff it has a position that satisfiesr. Accordingly,close(y) = G—err.

Our definition ofclose(L) is sound, in the following sense:

Theorem 4. A languagel, C (2/Y9)« is reactively safe iftlose(L) is safe.

While L and close(L) are not equivalent, they ampen equivalenil6]. Formally,
we have the following.

Theorem 5. For every languagd. C (2/“9)« and I /O-transducer7, we have that
7 realizesL iff 7 realizesclose(L).

It is shown in [11] that given an LTL formula, it is possible to construct a de-
terministic looping word automaton fatlose(v)) with doubly-exponential number of
states. In fact, as suggested in [23], it is then possibleetterpte also a determinis-
tic automaton for the bad prefixes @bse(1)). Note that wherl is not realizable, we
have that € sbp(L), implying thatclose(L) = 0. It follows that we cannot expect to
construct small automata fefose(L), even nondeterministic ones, as the realizability
problem for LTL can be reduced to easy questions about them.

Theorem 5 implies that a reactive safety languagie open equivalent to a safe
language, namelylose(L). Conversely, open equivalence to a safe language implies
reactive safety. This follows from the fact thatfif and L’ are open-equivalent lan-
guages, then a prefix is a minimal system bad prefix ih iff = is a minimal system
bad prefix inL’. We can thus conclude with the following.

Theorem 6. A languagel. is reactively safe iff. is open equivalent to a safe language.

In the setting of open systems, dualization of specificatismore involved, as one
has not only to complement the language but to also dualimesaies of the system
and the environment. Accordingly, we actually have fougfrents of languages that
are induced by dualization of the reactive safety definitide define them by means
of bad and good prefixes.

Consider a language C (27V°)~ and a prefix: € (2/V9)*. We say that:

u is asystem bad prefik L* is notI/O-realizable.

u is asystem good prefik L* is I /O-realizable.

u is anenvironment bad prefik L* is notO/I-realizable.
u is anenvironment good prefik L* is O/I-realizable.

Now, a languagd. C (27Y9)« is asystem (environment) safety languélgevery
word not in L has a system (environment, respectively) bad prefix. Thguagel is
a system (environment) co-safety languégevery word in I, has a system (environ-
ment, respectively) good prefix. System safety and enviemtroo-safety dualize each
other: For every language C (2/Y9)«, we have that. is system safe iftomgL) is
environment co-safe.

Since each languagg“ is eitherI/O-realizable or not/ /O-realizable, and the
same forO/I-realizability, all finite words are determined, in the fniling sense.

Theorem 7. Consider a languagé C (27Y9)«. All finite words in(27-°)* are deter-
mined with respect td.. That is, every prefix is either system good or system bad, and
either environment good or environment bad, with respeét.to

Note that while every prefix is determined, a word may havé lsgstem bad and
system good prefixes, and similarly for the environmentcivhs not the case in the
setting of closed systems. For example, recall the langdiage||G(err — X fix) A
FG=err||, for I = {fix} andO = {err}. As noted above, the wor{err, fix} -
{fix})“ has both a system bad prefiesrr, fiz}, and a system good pref{xrr, fixz}-
{fix}.

In Section 3.1 we showed that in the closed setting, thedattion of safe and
co-safe properties induces the fragmenbotindedproperties. It is shown in [25] that
boundedness in the open setting is more involved, as a catqputmay have both
infinitely many good and infinitely many bad prefixes. It idlgibssible, however, to
define reactive bounded properties and use their appeatiatjgal advantages.

5 A Spectrum Between Safety and Co-Safety

Safety is a binary notion. A property may or may not satisfy tkefinition of safety.
In this section we describe a probability-based approacldédining different levels
of safety. The origin of the definition is a study wédcuityin model checking [4, 23].
Vacuity detection is a method for finding errors in the mocledcking process when
the specification is found to hold in the model. Most vaculgoathms are based on
checking the effect of applying mutations on the specificatit has been recognized

that vacuity results differ in their significance. While inany cases vacuity results
are valued as highly informative, there are also cases inlwthie results are viewed as
meaningless by users. In [10], we suggested a method fortamatic ranking of vacu-
ity results according to their level of importance. Our noeths based on therobability

of the mutated specification to hold in a random computafonexample, two natural
mutations of the specificatiof(req — F'ready) are G(—req), obtained by mutating
the subformulaready to false, and GF'ready, obtained by mutating the subformula
req to true. It is agreed that vacuity information about satisfying fingt mutation is
more alarming than information about satisfying the secdhe framework in [10] for-
mally explains this, as the probability 6f(—req) to hold in a random computation@s
whereas the probability af F'ready is 1. In this section we suggest to use probability
also for defining levels of safety.

5.1 The Probabilistic Setting

Given a setS of elements, grobability distributionon S is a functiony : S — [0, 1]
such that”sc s 1(s) = 1. Consider an alphabét. A random word ovel is a word in
which for all indicesi, thei-th letter is drown uniformly at random. In particular, when
X = 24P then a random computatianis such that for each atomic propositigand
for each position inr, the probability ofg to hold in the position i%. An equivalent
definition of this probabilistic model is by means of the pabllistic labeled structure
Us, which generates computations in a uniform distributicornfally, Us is a clique
with | X| states in which a state € X' is labeledo, is initial with probabilityﬁ, and

the probability to move from a stateto a stater’ is ﬁ

We define the probability of a languageC X, denotedPr(L), as the probability
of the event{r : = is a path inl{x that is labeled by a word if}. Accordingly, for
an LTL formulay, we definePr(y) as the probability of the evedtr : 7 is a path in
U,ar that satisfiesp}. For example, the probabilities dfp, Gp, andF'p are%, 0, and
1, respectively. Using/s, we can reduce the problem of findidgy(¢) to ¢'s model
checking. Results on probabilistic LTL model checking f83n imply that the problem
of finding the probability of LTL formulas is PSPACE-commet

First-order logic respects @& 1-law: the probability of a formula to be satisfied in
a random model is eithdr or 1 [13]. It is easy to see that @/1-law does not hold
for LTL. For example, for an atomic propositign we have thaPr(p) = % Back to
our safety story, it is not hard to see thRt(G¢), for a formulag with Pr(¢) # 1,
is 0. Dually, Pr(F¢), for a formulag with Pr(¢) # 0 is 1. Can we relate this to the
fact thatGp is a safety property wheredsp is a co-safety property? Or perhaps it
has to do withFp being a liveness propert§This is not clear, as, for example, the
probability of clopen formulas depends on finitely many dgeand can vary between
0 to 1. As another example, consider the two possible semantitwedintil temporal
operator. For the standard, strong, Until, which is not e,saé havePr(pUq) = % By
changing the semantics of the Until to a weak one, we get fietysmrmulaplV ¢, with
pWq = pUqVGp. Still, Pr(pWq) = Pr(pUgq). Thus, the standard probabilistic setting
does not suggest a clear relation between probability dfefeint levels of safety.

2 Alanguagel is a liveness language if = ¥* - L [1].

We argue that we can still use the probabilistic approachdero measure safety.
The definition ofPr () in [10] assumes that the probability of an atomic propositm
hold in each position i%. This corresponds to computations in an infinite-statessyst
and is the standard approach taken in studie®/dflaws. Alternatively, one can also
study the probability of formulas to hold in computationfiofte-state systems. For-
mally, for an integel > 1, let Pr;(¢) denote the probability that holds in a random
cycle of length. Here too, the probability of each atomic proposition tatiola state is
%, yet we have only states to fix an assignment to. So, for example, whitéGp) = 0,
we have thalPr1 (Gp) = 3, Pro(Gp) = 1, and in generaPr;(Gp) = . Indeed, an
[-cycle satisfiegsp iff all its states satisfy.

There are several interesting issues in the finite-stateoapp. First, it may seem
obvious that the biggédris, the closePr;(p) gets toPr(y). This is, however, not so
simple. For example, issues like cyclesgdrcan causer;(y) to be non-monotonic.
For example, whe requiresp to hold in exactly all even positions, thétr () =
0, Pra(p) = ., Pra(¢) = 0, Pry(p) = 15, and so on.

Assume now that we have cleaned the cycle-based issue @or@a by restricting
attention to formulas withouK's, or by restricting attention to cycles of “the right”
length). Can we characterize safety properties by meargeaisymptotic behavior of
Pri(¢)? Can we define different levels of safety according to the tla¢ probability
decreases or increases? For example, cldar]yGp) tends td) as! increases, whereas
Pri(Fp) tends tol. Also, now, for a giveri, we have thafr;(pWgq) > Pr;(pUq). In
addition, for a clopen property, we have thaPr;(p) stablizes oncé is bigger than
the bound ofp. Still, the picture is not clean. For example@p is a liveness formula,
but Pr;(FGp) decreases dsncreases. Finding a characterization of properties that i
based on the analysis &f; is an interesting question, and our initial research sugges
a connection between the level of safety.oéind the behavior aPr; ().

References

1. B. Alpern and F.B. Schneider. Defining liveneH3L, 21:181-185, 1985.

2. B. Alpern and F.B. Schneider. Recognizing safety anchégs. Distributed computing
2:117-126, 1987.

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Ruesdd runtime verification. In
Proc. 5th VMCAJ LNCS 2937, pages 44-57. Springer, 2004.

4. 1. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficiertedgon of vacuity in ACTL
formulas. InProc. 9th CAVLNCS 1254, pages 279-290, 1997.

5. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic r@@&hecking without BDDs. In
Proc. 5th TACASLNCS 1579. Springer, 1999.

6. R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for glg connected compo-
nent analysis im log n symbolic steps. IProc. 3rd FMCAD LNCS 1954, pages 37-54.
Springer, 2000.

7. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. YannakaKiéemory efficient algorithms
for the verification of temporal propertieBMSD, 1:275-288, 1992.

8. C. Courcoubetis and M. Yannakakis. The complexity of philistic verification.J. ACM
42:857-907, 1995.

9. M. dAmorim and G. Rosu. Efficient monitoring of omegadmmages. IrProc. 17th CAY
LNCS 3576. Springer, 2005.

10

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

. S. Ben David and O. Kupferman. A framework for rankinguigcresults. In11lth ATVA
LNCS 8172, pages 148-162. Springer, 2013.

R. Ehlers and B. Finkbeiner. Reactive safetyPtac. 2nd GANDALFvolume 54 ofElec-
tronic Proceedings in TC$ages 178-191, 2011.

E.A. Emerson. Alternative semantics for temporal legicCS 26:121-130, 1983.

R. Fagin. Probabilities in finite modeldournal of Symb. Logijet1(1):50-5, 1976.

. E. Filiot, N. Jin, and J.-F. Raskin. An antichain aldamitfor LTL realizability. InProc. 21st
CAV, LNCS 5643, pages 263-277, 2009.

D. Gale and F. M. Stewart. Infinite games of perfect infaion. Ann. Math. Studies
28:245-266, 1953.

K. Greimel, R. Bloem, B. Jobstmann, and M. Vardi. Openlicagion. InProc. 35th ICALR
LNCS 5126, pages 361-372. Springer, 2008.

H.P. Gumm. Another glance at the Alpern-Schneider charaation of safety and liveness
in concurrent executionsPL, 47:291-294, 1993.

D. Harel, G. Katz, A. Marron, and G. Weiss. Non-intrugigpair of reactive programs. In
ICECCS pages 3-12, 2012.

D. Harel and A. Pnueli. On the development of reactivéesys. InLogics and Models of
Concurrent System8IATO AS| vol. F-13, pages 477-498. Springer, 1985.

K. Havelund and G. Rosu. Synthesizing monitors for gafeaperties. IProc. 8th TACAS
LNCS 2280, pages 342—-356. Springer, 2002.

O. Kupferman, Y. Lustig, and M.Y. Vardi. On locally chedite properties. IfProc. 13th
LPAR LNCS 4246, pages 302-316. Springer, 2006.

O. Kupferman and M.Y. Vardi. Model checking of safety gedies. InProc. 11th CAY
LNCS 1633, pages 172-183. Springer, 1999.

O. Kupferman and M.Y. Vardi. Model checking of safetygedies.FMSD, 19(3):291-314,
2001.

O. Kupferman and M.Y. Vardi. On bounded specification®roc. 8th LPARLNCS 2250,
pages 24-38. Springer, 2001.

O. Kupferman and S. Weiner. Environment-friendly safet 8th HYC LNCS 7857, pages
227-242. Springer, 2012,

L. Lamport. Logical foundation. IDistributed systems - methods and tools for specification
LNCS 190. Springer, 1985.

Z. Manna and A. Pnueli. The anchored version of the teadfiamework. InLinear time,
branching time, and partial order in logics and models foncarrency LNCS 345, pages
201-284. Springer, 1989.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent SystemsifSpec
cation Springer, 1992.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent SystemstySafe
Springer, 1995.

A. Pnueli. The temporal semantics of concurrent prograr@S 13:45-60, 1981.

A. Pnueli and R. Rosner. On the synthesis of a reactivaiteoth Proc. 16th POPL_pages
179-190, 1989.

A. Pnueli and E. Shahar. Liveness and acceleration enpeterized verification. IRroc.
12th CAV LNCS 1855, pages 328-343. Springer, 2000.

A.P. Sistla. Safety, liveness and fairness in tempogit! Formal Aspects of Computing
6:495-511, 1994.

A.P. Sistla and E.M. Clarke. The complexity of propasitil linear temporal logicJournal
of the ACM 32:733-749, 1985.

H.J. Touati, R.K. Brayton, and R. Kurshan. Testing laggicontainment fap-automata
using BDD's.1& C, 118(1):101-109, 1995.

M.Y. Vardi and P. Wolper. Reasoning about infinite corafiohs.|& C, 115(1):1-37, 1994.

