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Abstract. In formal verification, we verify that a system is correct with respect
to a specification. Even when the system is proven to be correct, there is still a
question of how complete the specification is, and whether it really covers all
the behaviors of the system. In this paper we study coverage metrics for model
checking. Coverage metrics are based on modifications we apply to the system in
order to check which parts of it were actually relevant for the verification process
to succeed. We introduce two principles that we believe should be part of any
coverage metric for model checking: a distinction between state-based and logic-
based coverage, and a distinction between the system and its environment. We
suggest several coverage metrics that apply these principles, and we describe two
algorithms for finding the uncovered parts of the system under these definitions.
The first algorithm is a symbolic implementation of a naive algorithm that model
checks many variants of the original system. The second algorithm improves the
naive algorithm by exploiting overlaps in the variants. We also suggest a few
helpful outputs to the user, once the uncovered parts are found.

1 Introduction

In model checking [CE81,QS81,LP85], we verify the correctness of a finite-state system
with respect to a desired behavior by checking whether a labeled state-transition graph
that models the system satisfies a specification of this behavior, expressed in terms of
a temporal logic formula or a finite automaton. Beyond being fully-automatic, an addi-
tional attraction of model-checking tools is their ability to accompany a negative answer
to the correctness query by a counterexample to the satisfaction of the specification in
the system. Thus, together with a negative answer, the model checker returns some er-
roneous execution of the system. These counterexamples are very important and they
can be essential in detecting subtle errors in complex designs [CGMZ95]. On the other
hand, when the answer to the correctness query is positive, most model-checking tools
terminate with no further information to the user. Since a positive answer means that the
system is correct with respect to the specification, this at first seems like a reasonable
policy. In the last few years, however, there has been growing awareness of the impor-
tance of suspecting the system of containing an error also in the case model checking



Supported in part by NSF grant CCR-9700061, NSF grant CCR-9988322, and by a grant from
the Intel Corporation.



succeeds. The main justification of such suspects are possible errors in the modeling of
the system or of the behavior, and possible incompleteness in the specification.

There are various ways to look for possible errors in the modeling of the system
or the behavior. One direction is to detect vacuous satisfaction of the specification
[BBER97,KV99], where cases like antecedent failure [BB94] make parts of the spec-
ification irrelevant to its satisfaction. For example, the specification ���������
	�����
������	�������� is vacuously satisfied in a system in which 	��� is always false. A similar
direction is to check the validity of the specification. Clearly, a valid specification is
satisfied trivially, and suggests some problem. A related approach is taken in the pro-
cess of constraint validation in the verification tool FormalCheck [Kur98], where sanity
checks for constraint validation include a search for enabling conditions that are never
enabled, and a replacement of all or some of the constraints by false. FormalCheck also
keeps track of variables and values of variables that were never used in the process of
model checking.

It is less clear how to check completeness of the specification. Indeed, specifications
are written manually, and their completeness depends entirely on the competence of the
person who writes them. The motivation for such a check is clear: an erroneous behavior
of the system can escape the verification efforts if this behavior is not captured by the
specification. In fact, it is likely that a behavior not captured by the specification also
escapes the attention of the designer, who is often the one to provide the specification.

This direction, of checking whether the specification describes the system exhaus-
tively, has roots in simulation-based verification techniques, where coverage metrics
are used to improve the quality of test vectors. For example, code coverage [CK93]
measures the fraction of HDL statements executed during simulation, transition cov-
erage [HYHD95,HMA95] measures the fraction of transitions executed, and tag cov-
erage [DGK96] attributes variables with tags that are used to detect whether assign-
ing a forbidden value to a variable leads to an erroneous behavior of the system. In
[FDK98,FAD99], Fallah et al. compute the tag coverage achieved by simulation and
generated simulation sequences that cover a given tagged variable. Of a similar nature is
the tour-generation algorithm in [HYHD95], which generates test vectors that traverse
all states of the system. Ho and Horowitz [HH96] define test coverage in terms of con-
trol events. Each control event identifies an interesting subset of the control variables,
and the test vectors have to cover all the events. They also define design coverage by
means of the states and edges covered by the test vectors (see also [MAH98]). In order
to circumvent the state-explosion problem in these methods, Bergmann and Horowitz
develop the technique of projection directed state exploration, which allows to compute
the above coverage metrics for small portions of the design [BH99]. Coverage metrics
are helpful as an indicator whether the simulation process has been exhaustive. Still,
simulation-based verification techniques lack of a uniform definition of coverage.

Following the same considerations, analyzing coverage in model checking can dis-
cover parts of the system that are not relevant for the verification process to succeed.
Low coverage can point to several problems. One possibility is that the specification
is not complete enough to fully describe all the possible behaviors of the system. In
this case, the output of a coverage check is helpful in completing the specification. An-



other possibility is that the system contains redundancies. In this case, the output of the
coverage check is helpful in simplifying the system.

Two approaches for defining and developing algorithms for coverage metrics in
temporal logic model checking are studied in the literature. The first approach, of Katz
et al. [KGG99], is based on a comparison of the system with a tableau of the specifica-
tion. Essentially, a tableau of a universal specification � is a system that satisfies � and
subsumes all the behaviors allowed by � . By comparing a system with the tableau of � ,
Katz et al. are able to detect parts of the systems that are irrelevant to the satisfaction of
the specification, to detect different behaviors of the system that are indistinguishable
by the specification, and to detect behaviors that are allowed by the specification but not
generated by the system. Such cases imply that the specification is incomplete or not
sufficiently restrictive. The tableau used in [KGG99] is reduced: a state of the tableau
is associated with subformulas that have be true in it, and it induces no obligations on
the other, possibly propositional, subformulas. This leads to smaller and less restrictive
tableaux. Still, we found the approach in [KGG99] too strict. Indeed, a system passes
the criteria in [KGG99] iff it is bisimilar to the tableau of the specification, but we want
specifications to be much more abstract than their implementations1.

The second approach, of Hoskote et al. [HKHZ99], is to define coverage by exam-
ining the effect of modifications in the system on the satisfaction of the specification.
Given a system modeled by a Kripke structure � , a formula � satisfied in � , and a
signal (atomic proposition) � , a state � of � is � -covered by � if the Kripke structure
obtained from � by flipping the value of � in � no longer satisfies � (the signal � cor-
responds to a boolean variable that is true if � is labeled with � and is false otherwise,
so when we say that we flip the value of q, we mean that we switch the value of this
variable). Indeed, this indicates that the value of � in � is crucial for the satisfaction
of � in � . The signal � is referred to as the observable signal. Let us denote by

������ �
the Kripke structure obtained from � by flipping the value of � in � , and denote by
� -cover �	��
�� � the set of states � -covered by � in � . It is easy to see that � -cover �	��
 � �
can be computed by a naive algorithm that performs model checking of � in

������ � for
each state � of � . By [HKHZ99], a state is covered if it belongs to � -cover �	��
 � � for
some observable signal � .

Hoskote et al. describe an algorithm for computing the set of states that are � -
covered by a formula � in the logic acceptable ACTL. Acceptable ACTL is a restriction
of the universal fragment ACTL of CTL in which no disjunctions are allowed and all
the implications  ��� are such that  is propositional. The algorithm in [HKHZ99]
is applied to � after an observability transformation. The restricted syntax of accept-
able ACTL together with the observability transformation lead to a symbolic algorithm
that, like CTL model-checking, requires linear time 2. On the other hand, the set of
states designated as � -covered by the algorithm is not � -cover �	��
�� � . It is claimed in

1 The approach in [KGG99] also has some technical and computational drawbacks: the spec-
ification considered is the (big) conjunction of all the properties the system should satisfy,
the complexity of the algorithm is exponential in the specification (for � in ACTL), and it is
restricted to universal safety specifications whose tableaux have no fairness constraints.

2 The restricted syntax of acceptable ACTL and the observability transformation force ������ � , for
all states � , to satisfy � in exactly the same way

�
does. For example, if a path in

�
satisfies



[HKHZ99] that the set found by the algorithm meets better the intuition of coverage.
One can argue whether this is indeed the case; we actually found several performances
of the algorithm in [HKHZ99] quite counter-intuitive (for example, the algorithm is
syntax-dependent, thus, equivalent formulas may induce different coverage sets; in par-
ticular, the set of states � -covered by the tautology � � � is the set of states that satisfy
� , rather than the empty set, which meets our intuition of coverage). Anyway, this is not
the point we want to make here — there are many possible ways of defining coverage
sets, each way has its advantages, and there need not be a best way. The point we want
to make in this paper is that there are two important principles that should be part of any
coverage metric for temporal logic model checking: a distinction between state-based
and logic-based approaches, and a distinction between the system and its environment.
These principles, which we explain below, are not applied in [HKHZ99] and in other
work on coverage hitherto.

The first principle, namely a distinction between state-based and logic-based ap-
proaches, is based on the observation that there are several ways to model a system, and
the different ways should induce different references to the observability signal and its
modification. Recall [HKHZ99]’s definition of coverage. Hoskote et al. model systems
by Kripke structures and the observable signal � is one of the atomic propositions that
label the states of the structure and encode the system’s variables. For every state � , the
truth value of � is flipped in

�� ��� � . This approach is state based, as it modifies � in each
of the states. When the system is modeled as a circuit and its state space is

���
, for the

set � of signals, transitions are given as relations between current and next values to the
signals in � [MP92]. Then, flipping the value of a signal in a state changes not only the
“label” of the state but also the transitions to and from the state. So, in the state-based
approach, we consider modifications that refer to a single state of the system and to
the adjacent transitions. When the system is modeled as a circuit, we can also take the
logic-based approach, where we do not flip the value of a signal in a particular state,
but rather, fix the signal to � , � , or “don’t care” everywhere in the circuit, and check the
effect of these fixes on the satisfaction of the specification.

In order to explain the second principle, namely a distinction between a system and
its environment, assume a definition of coverage in which a state is covered iff its re-
moval violates the specification. Since universal properties are preserved under state
removal, no state would be covered by a universal specification in such a definition. So,
is this a silly definition? The definition makes perfect sense in the context of closed sys-
tems. There, universal properties can be satisfied by the empty system, and if a designer
wants the system to do something (more than just being correct), this something should
be specified by an existential specification. On the other hand, in an open system, which
interacts with its environment, the above definition makes sense only if we restrict it to
states whose removal leaves the system responsive to all the behaviors of the environ-
ment and does not deadlock the interaction between the system and its environment.
Indeed, we cannot remove a state if the environment can force a visit to it. Likewise,
it makes no sense to talk about � -coverage for a signal � that corresponds to an input
variable. Indeed, it is the environment that determines the value of � , we cannot flip its

�	��
 by fulfilling 
 in the present, this path is expected to satisfy 
 in the present also in ������ � .
This restriction is what makes the algorithm so efficient.



value, and anyway we cannot talk about states being � -covered or not: all the values of
� should be around simply since the environment can force them all. Hence, in the def-
inition of coverage metrics, in both the design and implementation levels, there should
be a distinction between input and output variables, and coverage should be examined
only with respect to elements the system has control on.

The contribution of our paper is as follows. We introduce the above two principles
in the definition of coverage, and we give several coverage metrics that apply them. Our
definitions are similar to the one in [HKHZ99] in the sense that they consider the influ-
ence of local modifications of the system on the satisfaction of the specification (in fact,
[HKHZ99] can be viewed as a special case of our state-based approach, for a closed
system, with ��������� , and with only output variables being observable). Hence, the
naive algorithm, which finds the set of covered states (in the state-based approach) or
signals (in the logic-based approach) by model checking each of the modified systems
is applicable. We describe two alternatives to this naive algorithm. The first alternative
is a symbolic approach to finding the uncovered parts of the system. The second alter-
native is an algorithm that makes use of overlaps among the modified systems — since
each modification involves a small change in the original system, there is a great deal
of work that can be shared when we model check all the modified systems. Both algo-
rithms work for full CTL, and the ideas in them can be adopted to various definitions
of coverage. Once the set of covered states is found, we suggest a few helpful outputs
to the user (more helpful than just the percentage of covered states).

Due to lack of space, many details are omitted from this version. A full version of
the paper can be found in the authors’ URLs.

2 Coverage Metrics

In this section we suggest several coverage metrics for temporal logic model check-
ing. As describe in Section 1, we distinguish between a state-based and a logic-based
approach to coverage, and we distinguish between a system and its environment. Our
definitions are independent of the temporal logic being used. We assume the reader is
familiar with temporal logic. In particular, the algorithms we are going to present are
for the branching time logic CTL. Formulas of CTL are built from a set ��� of atomic
propositions using the boolean operators 	 and 
 , the temporal operators � (“next”)
and � (“until”), and the path quantifiers  (“exists a path”) and � (“for all paths”).
Every temporal operator must be immediately preceded by a path quantifier. The se-
mantics of temporal logic formulas is defined with respect to Kripke structures. For a
full definition of Kripke structures, and the syntax and semantics of CTL, see [Eme90]
and full version of this paper. For a formula � (and an agreed Kripke structure � ), we
denote by � ��� the set of states that satisfy � in � , and use ��� � � � to denote the set of
� ’s subformulas. A Kripke structure � satisfies a formula � , denoted ��� � � iff �
holds in the initial state of � . The problem of determining whether � satisfies � is the
model-checking problem.

We distinguish between two types of systems: closed and open [HP85]. A closed
system is a system whose behavior is completely determined by the state of the system.
An open system is a system that interacts with its environment and whose behavior



depends on external nondeterministic choices made by the environment [Hoa85]. In
a Kripke structure, all the atomic propositions describe internal signals, thus Kripke
structures model closed systems. We study here open systems, and we model them by
sequential circuits.

A sequential circuit (circuit, for short) is a tuple � ����� 
 � 
 � 
�� 
���
�	�
 , where � is
a set of input signals, � is a set of output signals, and � is a set of control signals that
induce the state space

��
. Accordingly, ��� �� is an initial state, ��� ���� ��� � ���

is a deterministic transition function, and 	�� ��� � ���
is an output function. Possibly

� � ���� � , in which case for all ��� � � � and ��� ��� , we have ����� iff ����	 ��� � .
Thus, 	 ��� � agrees with � on signals in � . We partition the signals in � � � into three
classes as follows. A signal �!� ��" � is a pure-output signal. A signal �!� �#" � is a
pure-control signal. A signal �$� � � � is a visible-control signal. While pure output
signals have no control on the transitions of the system, a specification of the system
can refer only to the values of the pure-output or the visible-control signals.

We define the semantics of CTL with respect to circuits by means of the Kripke
structure they induce. A circuit � �%��� 
 � 
 � 
�� 
���
�	�
 can be converted to a Kripke
structure ��& �'�(�)� �*� � 
 ���+� ��� 
-, 
.�/� 
 �
 
�01
 , where for all � and �32 in �� , and4

and
4 2 in ���

, we have , ����� 
 4 
 
5���32	
 4 26
 � iff � ��� 
 4 � �7�52 . Also, 0������ 
 4 
 � �8	 ��� �9� 4 �
� . Note that each state in ��& has

�;: �5:
successors, reflecting external nondeterminism

induced by the environment of � . We assume that the interaction between the circuit
and its environment is initiated by the circuit, hence the single initial state. The other
possibility, where the interaction between the circuit and its environment is initiated by
the environment, corresponds to a Kripke structure with a set � � �<� of initial states. Our
definitions and algorithms assume a single initial state, yet they can be easily modified
to handle multiple initial states.

We now define what it means for a specification to cover a circuit. Let � be a circuit
that satisfies a specification � . We want to check whether the specification describes �
exhaustively. Intuitively, the uncovered part of � is the part that can be modified without
falsifying � in � . Formally, we suggest several definitions of coverage, reflecting the
various possible ways in which a part of � can be modified.

We start with the state-based definition. Here, we check whether the satisfaction of
� is sensitive to local changes in the values of output and control signals; i.e., changes
in one state.

For a circuit � �=��� 
 � 
 � 
�� 
���
�	�
 , a state ��� �� , and a signal �>� � , we define
the � -twin of � , denoted ��?A@ �CB��ED � , as the state �32 obtained from � by dualizing the value
of � . Thus, �>�>�32 iff ����>� . Now, given � , � , and a signal �>� �+� � , we define the
dual circuit

��GF � H �I�(� 
 � 
 � 
 �� 
 ���
 �	�
 as follows.

– If � is a pure-output signal, then
�� �+� , �� �J� , and

�	 is obtained from 	 by dualizing
the value of � in � , thus �!� �	 ��� � if �K��L	 ��� � .

– If � is a pure-control signal, then
�	��M	 , and

�� and
�� are obtained by replacing all

the occurrences of � in � and in the range of � by ��?A@ �NB �ED � . Thus, if � �7� , then�� ����?A@ �CB �OD � (otherwise,
�� �I� ), and for all �52P� ��� and

4 � �� , if � ���52 
 4 ���Q� ,
then

�� ���52 
 4 � ����?A@ �CB �OD � (otherwise,
�� ���32	
 4 � ��� ���52 
 4 � ).



– If � is a visible-control signal, then we do both changes. Thus,
�	 is obtained from

	 by dualizing the value of � in � , and
�� and

�� are obtained by replacing all the
occurrences of � in � and in the range of � by ��?A@ � B �OD � .

Intuitively, dualizing a control signal � in a state � in � means that all the transitions
leading to � are now directed to its � -twin. In particular, the state � is no longer reachable
in
��GF � H (which is why we do not have to redefine

�� ��� 
 4 � ). For a specification � such that
��� � � , a state � is � -covered by � if

��GF � H does not satisfy � .
Note that it makes no sense to define coverage with respect to observable input

signals. This is because an open system has no control on the values of the input signals,
which just resolve the external nondeterminism of the system. In a closed system, the
set of input signals is empty, and thus the system has the control on all its variables.
Therefore in closed systems we can define coverage with respect to all signals.

Our second approach to coverage, which we call logic-based coverage, does not
refer to a particular state of � , and it examines the possibility of fixing some control
signals to � or � . For a circuit � � �(� 
 � 
 � 
�� 
�� 
-	�
 and a control signal �+� � , the
� -fixed-to- � circuit � H � � � �(� 
 � 
 � 
��2 
��<2 
�	�
 is obtained from � by replacing all the
occurrences of � in � and in the range of � by � ; i.e., �<2 �*� � � ��� , and for all ��� ��
and
4 � � � , we have � 2 ��� 
 4 � �M� ��� 
 4 � � � ��� . Similarly, the � -fixed-to- � circuit � H � � is

defined by replacing all the occurrences of � in � and in the range of � by � . A control
signal � is � -covered if �GH � � does not satisfy � . Similarly, � is � -covered if � H � � does
not satisfy � . 3

3 Algorithms for Computing Coverage

In this section we describe algorithms for solving the following problems. Let � be a
specification in CTL.

– Given a circuit � that satisfies � and an observable output or control signal � , return
the set of states not � -covered by � in � .

– Given a circuit � that satisfies � , return the set of control signals that can be fixed
to � or fixed to � .

All these problems have a naive algorithm that model checks each of the corre-
sponding dual circuits. For example, in order to find the set of states not � -covered by
� in a circuit � �'�(� 
 � 
 � 
�� 
�� 
-	�
 , with the observable signal � being a pure-output
signal, the naive algorithm executes the model-checking procedure � �C� � times, once for
each dual circuit, where each dual circuit is obtained from � by dualizing the value
of � in one state. A similar thing happens in the naive algorithm with the observable
signal being a control signal, only that here the dual circuits also differ in some of

3 The logic-based definition of coverage is closely related to the notion of observability don’t
care conditions as presented in [HS96]. There, there is a set ���	�
� of control signals and an
assignment for the signals in � � , denoted by the set � ��� � of signals that are assigned true
in this assignment, such that the behavior of the output signals in all the states �� 
 , for all
 ���
����� , is the same. Thus, whenever the system is in a state in which the control signals
in � � has value � , the value of the other control signals is “don’t care”.



their transitions. Finally, the naive algorithm for the logic-based coverage executes the
model-checking procedure � � � times, once for each control signal.

We present two alternatives to the naive algorithm. The first is a symbolic algorithm
that manipulates pairs of sets of states, and the second is an algorithm that makes use
of overlaps among the various dual circuits. We are going to describe our coverage
algorithms in terms of Kripke structures. For that, we first need to adjust the definitions
in Section 2 to Kripke structures. For a Kripke structure � , an observable signal � , a
set ����� of states, and sets ��� and �	� of transitions in � � � , the dual Kripke
structure

�� �	� 

� 
���� 
��� � is obtained from � by dualizing the value of � in states in
� , adding to , transitions in ��� , and removing from , transitions in ��� . It is easy to
see that all the dualizations of circuits mentioned in Section 2 can be described in terms
of dualizations of the Kripke structures they induce.

For simplicity, we describe in detail the algorithms for computing the set of � -
covered states for a pure-output signal � and the case � � � . The same ideas work
for the more general cases. Some generalizations are very simple (e.g., releasing the
requirement for � being empty) and some result in a significantly more complicated
algorithm (e.g., when the modification involve control signals, where transitions are
modified). For the detailed explanation of the required modifications in both algorithms
presented below see the full version of this paper. For our special case, we define, for a
specification � , a Kripke structure � that satisfies � , and an observable atom � , the set
of states � -covered by � in � as the set of states � such that the dual Kripke structure������ � � �� �	� 
 � � � 
 � 
 ��� does not satisfy � . Thus, a state of � is not � -covered if
we can flip the value of � in it and still satisfy � . This definition, which is studied in
[HKHZ99], corresponds to the special case of the observable signal being a pure-output
signal and � being empty. So, in the algorithms below, we are given a Kripke structure
� �Q� � � 

� 
-, 
 � � 
�0P
 that satisfies a CTL formula � and an observable atom � , and
we look for the set of states � such that

������ � does not satisfy � .
The naive algorithm for computing the set of � -covered states performs model

checking of � in
������ � for each � ��� . Since CTL model-checking complexity is

linear in the Kripke structure and the specification, the naive algorithm requires time
� � � � ��� � ����� � � � � , which is quadratic in the size of structure4. Our symbolic algo-
rithm returns an OBDD of the � -covered states. Our improved algorithm has an average
running time of � � � � ��� � ����������� � � � � .
3.1 Algorithm 1: a symbolic approach

Consider a Kripke structure � � � ��� 

� 
�, 
 ��� 
�01
 and an atomic proposition � �
��� . For a CTL formula � , we define

��� � � � � � � 
��N
 � ���� � � 
 � � � � ���
Thus, ��� � �	� � � � contains exactly all pairs �	� 
��N
 such that � satisfies � in the
structure where we dualize the value of � in � . The definition of ��� � � may not appear

4 The algorithm for computing the set of ! -covered states in [HKHZ99] runs in time "#%$ � $�&
$ �'$ ( . As we discuss in Section 1, however, the algorithm calculates the set of ! -covered states
according to a different definition of coverage, which we found less intuitive, and it handles
only a restricted subset of ACTL.



helpful, as we are interested in the set of states in which dualizing the value of � falsifies
� . Nevertheless, the � -covered set in � for � can be derived easily from ��� � � as it is
the set

� �M� � � � 
 � 
 ������ � � � .
Our symbolic algorithm computes the OBDDs ����� � for all � � � � � � � . The algo-

rithm works bottom-up, and is based on the symbolic CTL model-checking algorithm.
We assume that we have already performed symbolic model checking of � in � ; thus
the sets � � � � � have already been computed for all ��������� � � . Let � ��� � denote the set of
pairs � � � � � � � . In each step of the algorithm, it calculates ����� � for some � � ����� � � ,
based on the sets � ���12 � for �12 � ������� � , and on the sets �����12 2 � for �P2 2 ��������� �G" � � � .

The algorithm uses the procedures ��� 4��  � and ��� 4�� � � that take an OBDD
����� � of pairs of states as an argument, and output an OBDD of pairs as follows:
��� 4��  � � ����� � � � � � � 
��N
 � there exists a successor � of � such that ����
��N
1������� � � .
The procedure ��� 4�� � � � ����� � � is defined dually. Thus, the procedures ��� 4��  � and
��� 4�� � � work as in symbolic CTL model checking, only that here we compute sets
of pairs instead of sets of singletons. The procedures apply the modalities to the first
element of the pair, assuming the second is fixed.
We can now describe the algorithm. Given a CTL formula � , we define ����� � according
to the structure of � as follows (we describe here only the existential modalities. The
universal ones are defined dually using ��� 4�� � � , and are described in the full version).

– � �
	 for an atomic proposition 	K�� � . Obviously, changing the value of � in some
state does not affect the value of 	 in any state. Therefore, ����	 � � � �	� 
��N
 ��	 �
0��	��� � .

– � � � . Since the satisfaction of � in � depends only on the labeling of � , changing
the value of � in some state � affects it iff � � � . Therefore, ��� � � � � � � 
��N
 � �Q��
� 
 � �!0�� ��� �1� � � � 
 � 
 � ����L0��	��� � .

– � �� � 	�� � . A state � satisfies � in the dual structure
�� � � � iff it satisfies either

� � or � � in
�� � � � . Therefore, ����� � � ����� � � � ����� � � .

– � ��
�� � . A state � satisfies � in the dual structure
�� � � � iff it does not satisfy 
��

in
�� � � � . Therefore, ����� � � � � � � � " ����� � � .

– � �  ��� � . A state � satisfies � in the dual structure
�� � � � iff there exists a

successor of � that satisfies � � in
�� � � � . Therefore, ����� � � ��� 4��  � � ����� � ��� .

– � � �� � ��� � . A state � satisfies � in the dual structure
�� � � � iff � satisfies � �

in
�� � � � , or � satisfies � � in

�� � � � and there exists a successor of � that satis-
fies � in

���� � � . Therefore, ����� � is computed using the least fixed-point expression��� � ����� � � 	 � ����� � ��� ��� 4��  � � � � � .
The symbolic algorithm for CTL model-checking uses a linear number of OBDD

variables. The algorithm we present here doubles the number of OBDD variables, as it
works with sets of pairs of states instead of sets of states. By the nature of the algorithm,
it performs model-checking for all

������ � globally, and thus the OBDDs it computes
contain information about the satisfaction of the specification in all the states of all the
dual Kripke structures, and not only in their initial states.

The algorithm is described for the case that the Kripke structure � has one initial
state, and can be easily extended to handle a set �
� of initial states. Indeed, given the



set ��� � � of the set computed by the algorithm, the � -covered set in � for � is the set
of all states � such that there is an initial state ��� � � � such that � � � 
 � 
 �� ��� � � .

3.2 Algorithm 2: improving average complexity

Consider a Kripke structure � � � � � 

� 
-, 
 ��� 
�0P
 , a formula � , and an atomic propo-
sition � . Recall that the naive CTL coverage algorithm, which performs model checking
for all dual Kripke structures, has running time of � � � � � � � ��� � � � � � . While for some
dual Kripke structures model-checking may require less than � � � � � � � ��� � , the naive
algorithm always performs � � � iterations of model checking; thus, its average com-
plexity cannot be substantially better than its worst-case complexity. This unfortunate
situation arises even when model checking of two dual Kripke structures is practically
the same, and even when some of the states of � obviously do not affect the satisfaction
of � in � . In this section we present an algorithm that makes use of such overlaps and
redundancies. The expectant running time of our algorithm is � � � � � � � � � � ����� � � � � .
Formally, we have the following:

Theorem 1. The set � -cover �	��
�� � can be computed in average running time of � � � � � �
� ����� ����� � � � � , where the average is taken with respect to all possible assignments of �
in � .

All possible assignments of � in � are all possible labelings of the structure � with the
observable signal � , where the value of � is chosen in each state of � to be true or false
with equal probability.

Our algorithm is based on the fact that for each � , the dual Kripke structure
�� ��� �

differs from � only slightly. Therefore, there should be a large amount of work that we
can share when we model check all the dual structures. In order to explain the algorithm,
we introduce the notion of incomplete model checking. Informally, incomplete model
checking of � is model checking of � with its labeling function 0 partially defined.
The solution to the incomplete model checking problem can rely only on the truth values
of the atomic propositions in states for which the corresponding 0 is defined. Obviously,
in the general case we are not guaranteed to solve the model-checking problem without
knowing the values of all atoms in all states. We can, however, perform some work in
this direction, which is not needed to be performed again when missing parts of 0 are
revealed.

Consider a partition of � into two equal sets, � � and � � . Our algorithm essentially
works as follows. For all the dual Kripke structures

������ � such that � � � � , the states
in � � maintain their original labeling. Therefore, we start by performing incomplete
model checking of � in � with 0 that does not rely on the values of � in states in � � .
We end up in one of the following two situations. It may be that the values of � in states
in � � (and the values of all the other atomic propositions in all the states) are sufficient
to imply the satisfaction of � in � . Then, we can infer that all the states in � � are not � -
covered. It may also be that the values of � in states in � � are not sufficient to imply the
satisfaction of � in � . Then, we continue and partition the set � � into two equal sets,
� � � and � � � , and perform incomplete model checking that does not rely on the values
of � in states in � � � . The important observation is that incomplete model checking



is now performed in a Kripke structure to which we have already applied incomplete
model checking in the previous iteration. Thus, we only have to propagate information
that involves the values of � in � � � . Thus, as we go deeper in the recursion described
above, we perform less work. The depth of the recursion is bounded by ����� � � � . As we
shall analyze exactly below, the work in depth

4
amounts in average to model checking

of � in a Kripke structure of size
: �):��� . Hence the � � � � � � � ����������� � � � � complexity.

It is easier to understand and analyze incomplete model checking by means of the
automata-theoretic approach to branching time model checking [KVW00]. In this ap-
proach, we transform the specification � to an alternating automaton

���
that accepts

exactly all the models of � . Model checking of � with respect to � is then reduced to
checking the nonemptiness of the product

� � � � of � and
���

. When � is in CTL, the
automaton

� �
is linear in the length of � , thus the product is of size � � � � � ��� � .

The product
� � � � can be viewed as a boolean circuit � � � � (unlike boolean circuits,

the product
� � � � may contain cycles. In the full version we show how to handle these

cycles) . The root of � � � � is the vertex �	���
	 
 �9
 . The leaves of � � � � are pairs � � 
 	 

or � � 
 
 	 
 . The formula � is assumed to be in a positive normal form, thus negation
applies only to the leaves of � � � � . The inner vertices of � � � � are labeled with true
or false, and the leaves are labeled with literals (variables or their negations). Initially,
each leaf � � 
�	 
 or � � 
 
 	 
 has a value, true or false, depending on the membership of
	 in 0�� ��� . The graph has at most

� � � ��� ��� � � � leaves. Intuitively, incomplete model
checking corresponds to shrinking a boolean circuit part of whose inputs are known
to an equivalent minimal circuit. The shrinking procedure (described in detail in the
full version of this paper) replaces for example, an OR-gate one of whose successors is
a leaf with value true, with a leaf with value true. In each iteration of the algorithm
we assign values to half of the unassigned leaves of � � � � and leave the other half
unassigned. Recall that our average complexity is with respect to all assignments of
� in � . Therefore, though we work with a specific Kripke structure, and the values
assigned to half of the leaves are these induced by the Kripke structure, the average
case corresponds to one in which we randomly assign to each unassigned leaf the value
true with probability

�� , the value false with probability
�� , and leave it unassigned with

probability
�� . The complexity described in Theorem 1 then follows from the following

result from circuit complexity.

Theorem 2. Boolean circuits shrink by at least the factor of � under a random assign-
ment that leaves the fraction of � variables unassigned and assigns true or false to
other variables with equal probability.

Theorem 2 follows from the fact that boolean circuits for parity and co-parity, which are
the most “shrink-resistant” circuits (shrinking a parity or co-parity circuit according to a
random partial assignment to the variables results in a parity or a co-parity circuit for the
remaining variables), are linear in the number of their variables (see [Weg87,Nig90]).
Let  be the size of the graph � � � � . By Theorem 2, incomplete model checking in
depth

4
of the algorithm handles graphs of size ���� , and there are

� � such graphs. Hence,
the overall average running time is

� �� ��� � � � ���� � �����	� � ������ ��� � � ��� ��� ��� : �L: � � � � � 




which is equal to � �� � � ��� � � � � . Since  is � � � � ��� � ��� � , the � � � � ��� � ��� � � ��� � � � �
complexity follows.

Remark 1. In fact, the algorithm usually performs better. First, since the graph � � � �
is induced by a top-down reasoning, it may not contain leaves for all �	� 
 ��
 � � �� � � . States � such that � � 
 ��
 does not exist in � � � � are obviously not � -covered, and
the algorithm indeed ignores them. In addition, note that in the first iteration of the
algorithm (that is, the first shrinking of � � � � ), the unassigned leaves are exactly all the
leaves of � � � � of the form � � 
 ��
 , and all the other leaves have values. While we cannot
apply Theorem 2 directly and get shrinkage with � � �: ��� : for this case (this is since we
defined the average performance of the algorithm with respect to random assignments
to � only, and since � � � � typically contains less than � � ��� � ��� � leaves), we can still
expect significant shrinkage in this call.

The algorithm can be easily adjusted to handle multiple initial states, where we
check whether the modification falsifies the specification in some initial state. A naive
adjustment repeats the algorithm for each of the initial states. A better adjustment han-
dles all the initial states together, say by adding a new single initial state with transitions
to all the initial states, and replacing the specification � by the specification � ��� .

4 Presentation of the Output

Once we found the parts of the system that are not covered, there are several ways to
make use of this information. For a circuit � and a signal � , let � -cover � � 
 � � denote
the set of states � -covered by � in � . One can compute � -cover � � 
�� � for several output
signals �$� ��� � (possibly, each of the properties that together compose the specifi-
cation has a different set of signals that are of potential relevance to it). In [HKHZ99],
coverage is defined as the ratio between the number of states that are members of � -
cover � � 
 � � for at least one signal � and the number of states in the design. This ratio
indeed gives a good estimation to the part of the system that has been relevant for the
verification process to succeed. In their implementation, Hoskote et al. also generate
computations that lead to uncovered states.

We believe that once we worked hard and calculated � -cover � � 
 � � for signals � ,
there are more helpful things that can be done with these sets. First, before merging
� -covered sets for different signals, it is good to check whether � -cover �/� 
�� � is empty
for some of the � ’s in isolation. An empty set may indicate vacuity in the specification
(see also Section 5). In addition, we can use the sets � -cover �/� 
�� � in order to generate
uncovered computations. Consider a state � of � that is not � -covered. The fact that
� is not � -covered means that the specification fails to distinguish between � and the
dual circuit

�� F � H . Therefore, possible errors caused by an erroneous value of � in � are
not captured by the specification. So, a computation that contains the state � may be
an interesting output. Even more interesting are computations that contain no covered
states or many states that are not covered. Indeed, such computations correspond to
behaviors of the circuit that are not referred to by the specification. Recall that the circuit
models an open system. Thus, these computations are induced by input sequences that
are ignored by the specification.



It is not hard to generate computations that consist of uncovered states only (if such
computations exist) — we just have to restrict the transition function of � to uncovered
states, which can also be done symbolically. In addition, computations that have many
uncovered states can be found symbolically using the following greedy heuristic: we
start from the initial state. Whenever we are in state � , we apply the post operator
(given a set

�
of states, post � � � returns the set of successors of states in

�
) until we

encounter a set of states that contains an uncovered state, from which we continue.
Alternatively, we can start with maximal computations consisting of uncovered states
only, and connect them with transitions via covered states.

The above methodology can be applied also to the logic-based definition of cover-
age. Obviously, if we discover that a control signal � can be fixed to � or to � without
violating the specification, this means that � is useless in the circuit according to the
specification. This should not happen in a correct implementation of a complete speci-
fication. Therefore, a valuable output in this case is the list of uncovered control signals.

Recall that model-checking tools accompany a negative answer to the correctness
query by a counterexample to the satisfaction of the specification. When model check-
ing succeeds, we suggest to accompany the positive reply with two computations: one
is the interesting witness of [BBER97], which describes a behavior of the system that
cares about the satisfaction of all the subformulas of the specification. The second is
a non-interesting witness: a computation that is not covered by the specification. We
believe that both outputs are of great importance to the user. While the first describes
some nontrivial correct behavior of the system, the second describes a possibly incorrect
behavior of the system that escaped the verification efforts.

5 Discussion

In this section we briefly discuss some more aspects of coverage metrics for temporal
logic model checking. An extended discussion can be found in the full version.

Definition of coverage metrics There are several interesting possible relaxations of
the definitions given in Section 2. One of them is allowing nondeterministic circuits.
In nondeterministic circuits we can examine more coverage criteria: check the circuit
obtained by merging � and ��?A@ �NB��ED � , check the circuit obtained by fixing a control
signal to “don’t care” (i.e., replace a transition to  ��� , with two transitions, to  � � ���
and to !" � ��� ), etc. Another possibility is to allow different types of modifications in
the system, for example flipping the value of � simultaneously in several states. Our
definitions and algorithms can be easily modified to handle simultaneous modifications
of the system. The corresponding algorithms, however, need to examine exponentially
many modified systems and their complexity is much higher. Finally, we can think of
	 as a function that maps the output signals to true, false, or don’t care, thus allowing
the designer to specify in advance that the values of certain signals are not important in
some states. In this case we say that a system satisfies a specification � if � is satisfied
no matter how � is assigned in states where its value is don’t care. Our definitions of
coverage apply also to designs with incomplete 	 as above. Our algorithms can be easily
adjusted to such designs.



Properties of coverage metrics The covered sets defined in Section 2 are sensitive to
abstraction, in the sense that there is no correlation between the covered states in a sys-
tem and its abstraction. From the other hand, the set of covered states is not sensitive to
applying cone of influence reduction, where we abstract away parts of the systems that
do not contain variables appearing in the specification or influence variables that appear
in the specification [CGP99]. We also note that the notions of coverage and vacuity
[BBER97,KV99] are closely related. Vacuity can be viewed as a coverage metric for
the specification. Also, if there is a signal � that does not influence the satisfaction of �
in the system, then no state in the system is � -covered by � . Our coverage metrics are
compositional, in the sense that the intersection of the uncovered sets for the underlying
conjuncts is equivalent to the uncovered set for their conjunction. Formally, if � � is the
set of states not � -covered by � � and � � is the set of states not � -covered by � � , then
� � � � � is the set of states not � -covered by � � � � � . On the other hand, the cover-
age criteria defined in [KGG99], as well as the covered sets found by the algorithm in
[HKHZ99] are not compositional.

There are still several open issues in the adoption of coverage metrics to temporal
logic model checking. For example, it is not clear whether and how a coverage metric
that aims at checking incompleteness of the specification should be different from a
metric that aims at finding redundancies in the system. Another issue is the feasibility
of coverage algorithms. While the algorithms that we presented have better complexity
that the naive algorithm, their complexity is still larger than model checking. This may
prevent a wide use of coverage metrics for temporal logic in formal verification. Clearly,
there is room for improving the current algorithms, as well as searching for the new
ones both for CTL and for other temporal logics, in particular LTL logic. Finally, while
it is clear that outputs as these described in Section 4 are very helpful to the user, it
is not clear whether high coverage is something one should seek for. Indeed, there is
a trade-off between complete and abstract specifications, and neither completeness nor
abstraction has clear priority.
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