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Abstract Automata on infinite words and trees are

used for specification and verification of nonterminating

programs. The verification and the satisfiability prob-

lems of specifications can be reduced to the nonempti-

ness problem of such automata. In a weak automaton,

the state space is partitioned into partially ordered sets,

and the automaton can proceed from a certain set only

to smaller sets. Reasoning about weak automata is eas-

ier than reasoning about automata with no restricted

structure. In particular, the nonemptiness problem for

weak alternating automata over a singleton alphabet can

be solved in linear time. Known translations of alter-

nating automata to weak alternating automata involve

determinization, and therefore involve a double expo-

nential blow-up. In this paper we describe simple and

efficient translations, which circumvent the need for de-

terminization, of parity and Rabin alternating word au-

tomata to weak alternating word automata. Beyond the

independent interest of such translations, they give rise

to a simple algorithm for deciding the nonemptiness of

nondeterministic parity and Rabin tree automata. In

particular, our algorithm for Rabin automata runs in
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time O(n2k+1 · k!), where n is the number of states in

the automaton and k is the number of pairs in the ac-

ceptance condition. This improves the known O((nk)3k)

bound for the problem.

1 Introduction

Finite automata on infinite objects were first introduced

in the 1960’s. Motivated by decision problems in math-

ematical logic, Büchi, McNaughton, and Rabin devel-

oped a framework for automata on infinite words and

infinite trees [Büc62, McN66, Rab69]. The framework

has proven to be very powerful. Automata, and their

tight relation to second-order monadic logics were the

key to the solution of several fundamental decision prob-

lems in mathematical logic [Tho90]. Today, automata

on infinite objects are used for specification and ver-

ification of nonterminating programs. By translating

specifications to automata, we reduce questions about

programs and their specifications to questions about

automata. More specifically, questions such as satis-

fiability of specifications and correctness of programs

with respect to their specifications are reduced to ques-

tions such as nonemptiness and language containment

[VW86, Kur94, VW94]. The automata-theoretic ap-

proach separates the logical and the algorithmic aspects

of reasoning about programs. The translation of speci-

fications to automata handles the logic and shifts all the

algorithmic difficulties to automata-theoretic problems.

Like automata on finite words, automata on infinite

words either accept or reject an input word. Since a

run on an infinite word does not have a final state, ac-

ceptance is determined with respect to the set of states

visited infinitely often during the run. There are various

ways to classify an automaton on infinite words. One

is the type of its acceptance condition. For example, in

Büchi automata, some of the states are designated as

accepting states, and a run is accepting iff it visits states

from the accepting set infinitely often [Büc62]. Dually,



in co-Büchi automata, a run is accepting iff it visits

states from the accepting set only finitely often. More

general are Muller, parity, and Rabin automata, whose

acceptance conditions involve several sets of states. For

example, in parity automata [Mos84, EJ91], the accep-

tance condition is a sequence {F1, F2, . . . , Fk} of sets of

states. A run is accepting iff the minimal index i for

which the set Fi is visited infinitely often is even.

Another way to classify an automaton on infinite

words is by the type of its branching mode. In a de-

terministic automaton, the transition function δ maps

a pair of a state and a letter into a single state. The

intuition is that when the automaton is in state q and

it reads a letter σ, then the automaton moves to state

δ(q, σ), from which it should accept the suffix of the

word. When the branching mode is existential or uni-

versal , δ maps q and σ into a set of states. In the ex-

istential mode, the automaton should accept the suffix

of the word from one of the states in the set, and in

the universal mode, it should accept the suffix from

all the states in the set. In an alternating automaton

[BL80, CKS81], both existential and universal modes

are allowed, and the transitions are given as Boolean

formulas over the set of states. For example, δ(q, σ) =

q1 ∨ (q2 ∧ q3) means that the automaton should accept

the suffix of the word either from state q1 or from both

states q2 and q3.

Since the combinatorial structure of alternating au-

tomata is rich, translating specifications to alternating

automata is much simpler than translating them to non-

deterministic automata [Var94]. Alternating automata

enable a complete partition between the logical and the

algorithmic aspects of reasoning about programs, and

they give rise to cleaner and simpler verification algo-

rithms [Var96]. The rich structure of alternating au-

tomata also makes them more succinct. For example,

translating an alternating Büchi automaton to a nonde-

terministic Büchi automaton might involve an exponen-

tial blow up [DH94]. The succinctness of alternating au-

tomata is crucial when we use automata for the verifica-

tion of branching-time specifications. In this paradigm,

each specification describes a set of allowed computa-

tion trees, which can be described by an automaton over

infinite trees. By translating branching-time specifica-

tions to alternating tree automata, we can reduce sat-

isfiability to the nonemptiness problem and reduce ver-

ification to the membership problem [BVW94, Var97].

Solving the nonemptiness problem for an alternating

tree automaton is done by translating the automaton

to a nondeterministic tree automaton. Deciding the

membership of a program in a language of an alter-

nating tree automaton is done by taking the product of

the program and the automaton. This product can be

defined as an alternating word automaton over a single-

ton alphabet, and the program is correct with respect to

the specification iff this automaton is nonempty. Thus,

reasoning about branching-time specifications concerns

two problems: the nonemptiness problem for nondeter-

ministic tree automata and the nonemptiness problem

for alternating word automata over a singleton alpha-

bet. It is shown in [BVW94] that these problems are

equivalent and that their complexities coincide. We

refer to both problems as the nonemptiness problem.

The nonemptiness problem is important also for rea-

soning about linear-time specifications of open systems,

where the interaction between a correct system and its

environment can be formulated by a tree automaton

[ALW89, PR89].

In [MSS86], Muller et al. introduced weak automata.

In a weak automaton, the automaton’s set of states is

partitioned into partially ordered sets. Each set is clas-

sified as accepting or rejecting. The transition function

is restricted so that in each transition, the automaton

either stays at the same set or moves to a set smaller

in the partial order. Thus, each run of a weak automa-

ton eventually gets trapped in some set in the partition.

Acceptance is then determined according to the classi-

fication of this set. Weak automata are a special case

of Büchi automata. Indeed, the condition of getting

trapped in an accepting set can be replaced by a condi-

tion of visiting states of accepting sets infinitely often.

The special structure of weak automata is reflected in

their attractive computational properties. In particu-

lar, the nonemptiness problem for weak automata can

be solved in linear time [BVW94]. As a comparison, the

best known upper bound for the nonemptiness problem

for Büchi automata is quadratic time.

When defined on words, weak alternating automata

are not less expressive than Büchi alternating automata,

and they can recognize all the ω-regular languages. To

prove this, [MSS86, Lin88] suggest a linear translation

of deterministic Muller automata to weak alternating

automata. Using, however, the constructions in [MSS86,

Lin88] in order translate a nondeterministic automaton



A into a weak alternating automaton, one has no choice

but to first translate A into a deterministic Muller au-

tomaton. Such a determinization involves an expo-

nential blow-up [Mic88, Saf88, Saf92]. Even worse, if

A is an alternating automaton, then its determiniza-

tion involves a doubly-exponential blow-up [DH94], and

hence, so does the translation to weak alternating au-

tomata. Can these blow-ups be avoided? In [KV97],

we described a quadratic translation of Büchi and co-

Büchi alternating word automata to weak alternating

word automata, answering this question positively for

the case A is either a Büchi or a co-Büchi automaton.

In this paper we extend the ideas in [KV97] and de-

scribe an efficient translation of stronger types of alter-

nating automata to weak alternating automata. Since

the nonemptiness problem for weak automata can be

solved in linear time, this enables us to improve the

known upper bounds for the nonemptiness problem.

We start with parity automata. It is shown in [EJ91]

that formulas of the µ-calculus [Koz83] can be linearly

translated to alternating parity tree automata1. Since

many properties of programs are naturally specified by

means of fixed points, the µ-calculus is an expressive

and important specification language [EL86]. Follow-

ing [EJ91], the verification problem for µ-calculus can

be linearly reduced to the nonemptiness problem for

parity automata. This makes the nonemptiness prob-

lem for parity automata of particular interest; the ver-

ification problem for µ-calculus is known to be in NP

∩ co-NP [EJS93] and its precise complexity is an open

problem. Given an alternating parity word automaton

with n states and k sets, we construct an equivalent

weak alternating word automaton with O(nk) states.

The construction goes through a sequence of k inter-

mediate automata. Each automaton in the sequence

refines the state space of its predecessor and has one

less set in its parity acceptance condition.

Parity automata can be viewed as a special case of

Rabin automata. In Rabin automata, the acceptance

condition is a set α = {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉}

of pairs of sets of states. A run is accepting if there

exists an index i for which the set Gi is visited in-

finitely often and the set Bi is visited only finitely of-

ten. In [Rab69], Rabin describes a translation of for-

1In fact, alternating parity tree automata are exactly as ex-

pressive as the µ-calculus [Niw88, EJ91]. On the other hand,

weak alternating tree automata are exactly as expressive as the

alternation-free fragment of µ-calculus [KV98].

mulas of monadic second order logic to Rabin tree au-

tomata. Today, Rabin automata are used in order to

reason about specifications of the full branching time

logic CTL? [ES84, VS85], as well as to model programs

with fairness conditions. The nonemptiness problem

for Rabin automata plays a crucial role in solving var-

ious decision problems in logic. As a result, many ef-

forts have been put in developing simple algorithms for

nonemptiness checking. In [Rab69], Rabin described a

non-elementary procedure for checking the nonempti-

ness of a given Rabin automaton and showed that the

problem is decidable. In [HR72, Rab72], improved al-

gorithms were described, of complexity exponential in

both n and k. Only in [EJ88, PR89], algorithms that

are exponential in k and only polynomial in n have

been describes. Both works described algorithms that

run in time O((nk)3k). Given an alternating Rabin

word automaton with n states and k pairs, we con-

struct an equivalent weak alternating word automaton

with O(n2k+1 ·k!) states. Our constructions yield O(nk)

and O(n2k+1 · k!) upper bounds for the nonemptiness

problem for parity and Rabin automata, respectively,

matching the known bound for parity automata [EJS93]

and improving the known O(nk)3k bound for Rabin au-

tomata.

2 Alternating Automata

Alternation was studied in [CKS81] in the context of

Turing machines and in [BL80, CKS81, MH84] for finite

automata. In particular, [MH84] studied alternating

automata on infinite words. Alternation enables us to

have both existential and universal branching choices.

For a given set X , let B+(X) be the set of positive

Boolean formulas over X (i.e., Boolean formulas built

from elements in X using ∧ and ∨), where we also allow

the formulas true and false. For Y ⊆ X , we say that

Y satisfies a formula θ ∈ B+(X) iff the truth assign-

ment that assigns true to the members of Y and assigns

false to the members of X \ Y satisfies θ. For example,

the sets {q1, q3} and {q1, q3} both satisfy the formula

(q1 ∨ q2)∧ q3, while the set {q1, q2} does not satisfy this

formula.

Given an alphabet Σ, an infinite word over Σ is an

infinite sequence w = σ0·σ1·σ2 · · · of letters in Σ. We de-

note by wl the suffix σl ·σl+1 ·σl+2 · · · of w. An alternat-

ing automaton on infinite words is A = 〈Σ, Q, qin, δ, α〉,

where Σ is the input alphabet, Q is a finite set of states,



δ : Q × Σ → B+(Q) is a transition function, qin ∈ Q is

an initial state, and α is an acceptance condition. Intu-

itively, δ(q, σ) describes possible configurations that A

can move into when it is in state q and it reads the letter

σ. For example, a transition δ(q, σ) = (q1∧q2)∨(q3∧q4)

means that A accepts a suffix wl of w from state q, if it

accepts wl+1 from both q1 and q2 or from both q3 and

q4. The acceptance condition α defines a subset of Qω.

For a word η = q0 ·q1 · · · in Qω, we define the set Inf (η)

of states that η visits infinitely often, i.e.,

Inf (η) = {q ∈ Q : for infinitely many l ≥ 0,

we have ql = q}.

As Q is finite, it is guaranteed that Inf (η) 6= ∅. The

way α refers to Inf (η) depends on its type. In Büchi

automata, α ⊆ Q, and η satisfies α iff Inf (η) ∩ α 6= ∅.

Dually, in co-Büchi automata, η satisfies α iff Inf (η) ∩

α = ∅.

In order to define a run of an alternating automa-

ton, we first define trees. A tree is a (finite or infinite)

nonempty set T ⊆ IN∗ such that for all x · c ∈ T , with

x ∈ IN∗ and c ∈ IN, we have x ∈ T . The elements of

T are called nodes, and the empty word ε is the root of

T . For every x ∈ T , the nodes x · c ∈ T where c ∈ IN

are the children of x. A node with no children is a leaf .

We refer to the length |x| of x as its level in the tree.

A path π of a tree T is a set π ⊆ T such that ε ∈ π

and for every x ∈ π, either x is a leaf, or there exists a

unique c ∈ IN such that x · c ∈ π. Given a finite set Σ,

a Σ-labeled tree is a pair 〈T, V 〉 where T is a tree and

V : T → Σ maps each node of T to a letter in Σ. A run

of A on an infinite word w = σ0 · σ1 · · · is a Q-labeled

tree 〈Tr, r〉 such that the following hold:

• r(ε) = qin.

• Let x ∈ Tr with r(x) = q and δ(q, σ|x|) = θ. There

is a (possibly empty) set S = {q1, . . . , qk} such

that S satisfies θ and for all 1 ≤ c ≤ k, we have

x · c ∈ Tr and r(x · c) = qc.

For example, if δ(qin, σ0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then

possible runs of A on w have a root labeled qin, have

one node in level 1 labeled q1 or q2, and have another

node in level 1 labeled q3 or q4. Note that if θ = true,

then x need not have children. This is the reason why

Tr may have leaves. Also, since there exists no set S as

required for θ = false, we cannot have a run that takes

a transition with θ = false.

A run 〈Tr, r〉 is accepting iff all its infinite paths,

which are labeled by words in Qω, satisfy the accep-

tance condition. A word w is accepted iff there exists

an accepting run on it. Note that while conjunctions

in the transition function of A are reflected in branches

of 〈Tr, r〉, disjunctions are reflected in the fact we can

have many runs on the same word. The language of A,

denoted L(A), is the set of infinite words that A ac-

cepts. Thus, each word automaton defines a subset of

Σω. We denote by L(A) the complement language of

A, that is the set of all words in Σω \ L(A).

In [MSS86], Muller et al. introduce weak alternating

automata (WAAs). In a WAA, the acceptance condition

is α ⊆ Q, and there exists a partition of Q into disjoint

sets, Qi, such that for each set Qi, either Qi ⊆ α, in

which case Qi is an accepting set, or Qi∩α = ∅, in which

case Qi is a rejecting set. In addition, there exists a

partial order ≤ on the collection of the Qi’s such that for

every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, σ),

for some σ ∈ Σ, we have Qj ≤ Qi. Thus, transitions

from a state in Qi lead to states in either the same Qi

or a lower one. It follows that every infinite path of a

run of a WAA ultimately gets “trapped” within some

Qi. The path then satisfies the acceptance condition if

and only if Qi is an accepting set. Thus, we can view a

WAA with an acceptance condition α as both a Büchi

automaton with an acceptance condition α, and a co-

Büchi automaton with an acceptance condition Q \ α.

Indeed, a run gets trapped in an accepting set iff it visits

infinitely many states in α, which is true iff it visits only

finitely many states in Q \ α.

3 Observations on Runs of Alternating Co-Büchi

Automata

Let A = 〈Σ, Q, qin, δ, α〉 a co-Büchi alternating automa-

ton. Consider an accepting run 〈Tr, r〉 of A on a word

w. For two nodes x1 and x2 in Tr, we say that x1 and

x2 are similar iff |x1| = |x2| and r(x1) = r(x2). We

say that the run 〈Tr, r〉 is memoryless iff for all simi-

lar nodes x1 and x2, and for all y ∈ IN∗, we have that

x1 · y ∈ Tr iff x2 · y ∈ Tr, and r(x1 · y) = r(x2 · y). Intu-

itively, similar nodes correspond to two copies of A that

have the same “mission”: they should both accept the

suffix w|x1| from the state r(x1). In a memoryless run,

subtrees of 〈Tr, r〉 with similar roots coincide. Thus,

same missions are fulfilled in the same way. It turns

out that when we consider runs of co-Büchi automata,



we can restrict ourselves to memoryless runs. Formally,

if a co-Büchi automaton A accepts a word w, then there

exists a memoryless accepting run of A on w [EJ91].

Let |Q| = n. It is easy to see that for every run

〈Tr, r〉, every set of more than n nodes of the same

level contains at least two similar nodes. Therefore, in

a memoryless run of A, every level contains at most n

nodes that are roots of different subtrees. Accordingly,

we represent a memoryless run 〈Tr, r〉 by an infinite dag

(directed acyclic graph) Gr = 〈V, E〉, where

• V ⊆ Q × IN is such that 〈q, l〉 ∈ V iff there exists

x ∈ Tr with |x| = l and r(x) = q. For example,

〈qin, 0〉 is the only vertex of Gr in Q × {0}.

• E ⊆
⋃

l≥0(Q × {l}) × (Q × {l + 1}) is such that

E(〈q, l〉,

〈q′, l + 1〉) iff there exists x ∈ Tr with |x| = l,

r(x) = q, and r(x · c) = q′ for some c ∈ IN.

Thus, Gr is obtained from 〈Tr, r〉 by merging similar

nodes into a single vertex. We say that a vertex 〈q, l〉 in

Gr is an α-vertex iff q ∈ α. It is easy to see that 〈Tr, r〉

is accepting iff all paths in Gr have only finitely many α-

vertices. Consider a (possibly finite) dag G ⊆ Gr. We

say that a vertex 〈q, l〉 is eventually safe in G iff only

finitely many vertices in G are reachable from 〈q, l〉.

We say that a vertex 〈q, i〉 is currently safe in G iff

all the vertices in G that are reachable from 〈q, l〉 are

not α-vertices. Note that, in particular, 〈q, i〉 is not an

α-vertex.

Given a memoryless accepting run 〈Tr, r〉, we define

an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of dags

inductively as follows.

• G0 = Gr.

• G2i+1 = G2i\{〈q, l〉 | 〈q, l〉 is eventually safe in G2i}.

• G2i+2 = G2i+1\{〈q, l〉 | 〈q, l〉 is currently safe in G2i+1}.

It is shown in [KV97] that every vertex 〈q, l〉 in Gr

has a unique index i ≥ 0 such that 〈q, l〉 is either eventu-

ally safe in G2i or currently safe in G2i+1. Given a ver-

tex 〈q, l〉, we define the rank of 〈q, l〉, denoted rank(q, l),

to be:

• 2i, if 〈q, l〉 is eventually safe in G2i.

• 2i + 1, if 〈q, l〉 is currently safe in G2i+1.

For m ∈ IN, let [m] denote the set {0, 1, . . . , m}, and

let [m]even and [m]odd denote the sets of even and odd

members of [m], respectively. In [KV97], we proved that

the rank of every vertex in Gr is in [2n]. Recall that

when 〈Tr, r〉 is accepting, all the paths in Gr visit only

finitely many α-vertices. Intuitively, rank(q, l) hints

how difficult it is to get convinced that all the paths

of Gr that visit the vertex 〈q, l〉 visit only finitely many

α-vertices. Easiest to get convinced about are vertices

that are eventually safe in G0. Accordingly, they get

the minimal rank 0. Then come vertices that are cur-

rently safe in the graph G1, which is obtained from G0

by throwing vertices with rank 0. These vertices get the

rank 1. The process repeats with respect to the graph

G2, which is obtained from G1 by throwing vertices with

rank 1. As before, we start with the eventually safe ver-

tices in G2, which get the rank 2. We continue with the

currently safe vertices in G3, which get the rank 3. The

process repeats until all vertices get some rank. Note

that no α-vertex gets an odd rank.

In the lemmas below, proven in [KV97], we make

this intuition formal.

Lemma 3.1 For every two vertices 〈q, l〉 and 〈q′, l′〉 in

Gr, if 〈q′, l′〉 is reachable from 〈q, l〉, then rank(q′, l′) ≤

rank(q, l).

Lemma 3.2 In every infinite path in Gr, there exists a

vertex 〈q, l〉 with an odd rank such that all the vertices

〈q′, l′〉 in the path that are reachable from 〈q, l〉 have

rank(q′, l′) = rank(q, l).

We have seen that if a co-Buchi alternating automa-

ton has an accepting run on w, then it also has a very

structured accepting run on w. In [KV97] we employed

this structured run in order to translate co-Büchi alter-

nating automata to weak alternating automata:

Theorem 3.3 [KV97] Let A be an alternating co-Büchi

automaton. There is a weak alternating automaton A′

such that L(A′) = L(A) and the number of states in A′

is quadratic in that of A.

We describe the automatonA′. Let A = 〈Σ, Q, qin, δ, α〉,

and let n = |Q|. The state space of the automaton A′ is

Q×[2n]. Intuitively, when A′ is in state 〈q, j〉 as it reads

the letter σl (the l’th letter in the input), it guesses that

in a memoryless accepting run of A on w, the rank of

〈q, l〉 is j. Accordingly, when A′ is in state 〈q, j〉 and it



reads a letter σ, it follows the transition δ(q, σ) allowing

the successors to move to states annotated by ranks in

[j]. If, however, q ∈ α and j is odd, then, by the defi-

nition of ranks, the current guessed rank is wrong, and

the run is rejecting. Each path in a run of A′ eventu-

ally gets trapped in a set of the form Q × {j} for some

j ∈ [2n]. The set is accepting iff j is odd.

In the next section we extend the ideas in [KV97]

in order to translate parity and Rabin alternating au-

tomata to weak alternating automata.

4 From Parity and Rabin to Weak Alternating Au-

tomata

A parity alternating automaton is A = 〈Σ, Q, qin, δ, β〉,

where β = 〈F1, F2, . . . , Fk〉 with F1 ⊂ F2 ⊂ · · · ⊂ Fk =

Q. We refer to k (the number of sets in β) as the degree

of β (or A). A word η ∈ Qω satisfies a parity condition

β iff the minimal index i for which Inf (η) ∩ Fi 6= ∅ is

even. We also refer to co-parity acceptance conditions.

A word η ∈ Qω satisfies a co-parity condition β iff the

minimal index i for which Inf (η) ∩ Fi 6= ∅ is odd; that

is, iff η does not satisfy β when referred to as a parity

condition.

Consider a parity automaton A = 〈Σ, Q, qin, δ, β〉

with β = {F1, F2, . . . , Fk}, and the co-Büchi automa-

ton Ac = 〈Σ, Q, qin, δ, F1〉. That is, Ac differs from A

only in the acceptance condition, which consists of the

minimally indexed set in β. Clearly, every accepting

run 〈Tr, r〉 of A is also an accepting run of Ac. Indeed,

all the paths of 〈Tr, r〉 must visit F1 only finitely often

(otherwise, the minimal index i for which Fi is visited

infinitely often is 1, which is odd). It follows that when

we consider accepting runs of A, we can restrict our-

selves to candidates from the set of accepting runs of

Ac.

In Theorem 3.3, we translated the co-Büchi alternat-

ing automaton Ac to a weak alternating automaton A′
c.

In the automaton A′
c, each path of a run gets trapped

in some set Q×{j}. When j is odd, no visits to F1 are

possible. Therefore, a path η that gets trapped in a set

Q×{j}, for an odd j, satisfies the parity condition β iff

it satisfies the co-parity condition β′ = {F2, F3, . . . , Fk}.

Indeed, since sets with an even index in β have an odd

index in β′, the path η satisfies β′ iff the minimal i in

{2, . . . , k} for which Inf (η)∩Fi 6= ∅ is even. In addition,

as Inf (η) ∩ F1 = ∅, it is guaranteed that i is actually

minimal in {1, . . . , k}.

The above observation suggests an inductive scheme

for translating a parity or a co-parity alternating au-

tomaton to a weak alternating automaton. Intuitively,

the translation proceeds as follows. Let A be a parity

automaton with β = {F1, . . . , Fk}. Translating the co-

Büchi automaton Ac to a weak alternating automaton

A′
c, the copies of A′

c that get trapped in sets that enable

infinitely many visits to F1 (that is, sets Q×{j} for an

even j) are rejecting. On the other hand, copies that

get trapped in sets that disable visits to F1 may satisfy

β, and we check them further, with respect to the co-

parity condition β′ obtained from β by taking out the

set F1. Checking these copies is done inductively, by re-

ferring to each set Q×{j}, for an odd j, as a co-parity

automaton. Formally, the induction proceeds by refin-

ing the state space of the parity automaton by means

of weak-parity alternating automata, defined below.

A weak-parity alternating automaton (WPAA, for

short) is A = 〈Σ, S, P, qin, δ, α, β〉, where S and P are

disjoint sets of states (called simple and parity states,

respectively), qin ∈ S ∪ P is an initial state, δ : (S ∪

P ) × Σ → B+(S ∪ P ) is a transition function, α ⊆ S is

a Büchi acceptance condition, and β is a parity accep-

tance condition over P . We refer to the number of sets

in β as the degree of β (or A). There exists a partition

of S ∪P into disjoint sets, such that the following hold.

• For each set Q in the partition, one of the following

holds.

1. Q ⊆ α, in which case Q is an accepting set,

2. Q ⊆ S and Q ∩ α = ∅, in which case Q is a

rejecting set, or

3. Q ⊆ P , in which case Q is a parity set.

For a state q ∈ S ∪ P , let [q] denote the set of

states in q’s set in the partition.

• There exists a partial order ≤ on the collection of

the sets such that for every two states q and q′ for

which q′ occurs in δ(q, σ), for some σ ∈ Σ, we have

[q′] ≤ [q]. Thus, transitions from a state in a set Q

lead to states in either the same set Q or a lower

set.

It follows that every infinite path η of a run of a WPAA

ultimately gets trapped within some set Q in the parti-

tion. The path η then satisfies the acceptance condition

iff either Q is an accepting set, or Q is a parity set and η

satisfies β. Thus, a WPAA A is very similar to a WAA,



only that in some of the sets in the partition, acceptance

is determined according to a parity acceptance condi-

tion. In particular, if P = ∅, then A is a WAA. On the

other hand, every parity automaton can be viewed as a

WPAA with S = ∅ (and a trivial partition with a single

set). If there exists ρ ∈ IN such that the size of each set

in the partition is exactly ρ, we say that A is a WPAA

of width ρ.

Consider a WPAA A of width ρ with β = {F1, F2, . . . , Fk}.

With each parity set Q of A and state q ∈ Q, we can

associate a co-Büchi automaton Aq = 〈Σ, Q, q, δQ, F1〉,

where δQ is obtained from δ by replacing states not in

Q by true. Each accepting run of A (in which q is par-

ticipating) induces an accepting run Aq . Formally, if

〈Tr, r〉 is an accepting run of A on some word w, and

x ∈ Tr is such that r(x) = q, then the subtree of 〈Tr, r〉

with root x and nodes x · y for which r(x · y) ∈ Q, is

an accepting run, embedded in 〈Tr, r〉, of Aq on w|x|.

For every node z ∈ Tr such that r(z) is a parity state,

there exists a unique prefix x such that r(x) ∈ [r(z)]

and either x = ε or x = y · c with r(y) 6∈ [r(z)]; that is,

x is the first node labeled with a state in [r(z)] that is

visited along the path from the root to z. We say that

x is a seed . If we consider, among the many runs of

co-Büchi automata embedded in 〈Tr, r〉, only runs that

start in seeds, then each node z for which r(z) is a par-

ity state belongs to exactly one run. Since the size of all

parity sets (and thus also the size of the state space of

the co-Büchi automata) is ρ, we can associate with each

such node z with seed x a rank in [2ρ], corresponding

to the rank of the vertex 〈r(z), |z| − |x|〉 in the induced

accepting run of Ar(x) on w|x|.

Recall that we want to translate parity alternat-

ing automata to weak alternating automata. Thus, we

want to start with a WPAA with S = ∅, go through

a chain of WPAA of decreasing degrees, and end-up

with a WPAA with P = ∅. Defining the intermediate

automata, it is convenient to alternate between par-

ity and co-parity acceptance conditions. A co-weak-

parity alternating automaton (co-WPAA, for short) is

A = 〈Σ, S, P, qin, δ, α, β〉, with the same structure as a

WPAA, only that an infinite path η that gets trapped

within a set Q satisfies the acceptance condition iff ei-

ther Q is an accepting set, or Q is a parity set and η

satisfies the co-parity condition β. Proceeding from a

WPAA with degree k > 1 to its successor in the chain

is described in the theorem below.

Theorem 4.1 Let A be a weak-parity alternating au-

tomaton of degree k > 1 and width ρ, with m simple

states and n parity states. There is a co-weak-parity

alternating automaton A′ of degree k − 1 and width ρ,

such that L(A′) = L(A), the number of simple states in

A′ is m + n(ρ + 1), and the number of parity states in

A′ is nρ.

Proof: Let A = 〈Σ, S, P, qin, δ, α, β〉, with β = {F1, . . . , Fk}.

We define A′ = 〈Σ, S′, P ′, q′in, δ′, α′, β′〉, where

• S′ = S∪(P×[2ρ]even). That is, the simple states of

A′ are the simple states of A, with no annotation,

and the parity states of A annotated with even

ranks in [2ρ].

• P ′ = P × [2ρ]odd. That is, the parity states of A′

are parity states of A annotated with odd ranks in

[2ρ].

• If qin ∈ S, then q′in = qin. Otherwise, q′in =

〈qin, 2ρ〉.

• We define δ′ by means of two functions (both pa-

rameterized with ρ).

annotateρ : B+(S ∪ P ) → B+(S′ ∪ P ′)

and

releaseρ : B+(S ∪ P ) × [2ρ] × 2P → B+(S′ ∪ P ′).

For a formula θ ∈ B+(S∪P ), the formula annotateρ(θ)

is obtained from θ by replacing an atom q ∈ P

by the disjunction
∨

j∈[2ρ]〈q, j〉. For example, if

{p, p′} ⊆ P and s ∈ S, then

annotate4((s∨p)∧p′) = (s∨
∨

j∈[8]

〈p, j〉)∧
∨

j∈[8]

〈p′, j〉.

For a formula θ ∈ B+(S ∪ P ), a rank i ∈ [2ρ],

and a set Q ⊆ P , the formula releaseρ(θ, i, Q) is

obtained from θ by replacing an atom q ∈ Q by

the disjunction
∨

j∈[i]〈q, j〉, and replacing an atom

q ∈ P \ Q by the disjunction
∨

j∈[2ρ]〈q, j〉. For

example,

release4((s∨p)∧p′, 2, {p}) = (s∨
∨

j∈[2]

〈p, j〉)∧
∨

j∈[8]

〈p′, j〉.

Note that in annotateρ(θ) atoms in P can be an-

notated by any rank in [2ρ]. On the other hand,

in releaseρ(θ, i, Q) some atoms in P (these in Q)

can be annotated only by ranks in [i]. Now, δ′ :

(S′ ∪ P ′)×Σ → B+(S′ ∪ P ′) is defined as follows.



– For a state q ∈ S and σ ∈ Σ, we have δ′(q, σ) =

annotateρ(δ(q, σ)).

– For a state 〈q, i〉 ∈ P × [2ρ] and σ ∈ Σ, the

transition δ′(〈q, i〉, σ) is:

∗ releaseρ(δ(q, σ), i, [q]), if q 6∈ F1 or i is

even.

∗ false, if q ∈ F1 and i is odd.

That is, states that originate from A’s simple states

follow their transitions in A, allowing the run to

move in its successors that belong to parity sets of

A to any rank in [2ρ]. On the other hand, states

that originate from A’s parity states follow the

transitions of the weak alternating automata that

correspond to the co-Büchi automata induced by

their parity sets. Intuitively, annotating a state

q ∈ P by a rank in [2ρ] corresponds to guessing

its rank in an accepting run of the co-Büchi alter-

nating automaton with state space [q]. The initial

state and states that are reachable by a transition

from states that originate from A’s simple states

label nodes that are seeds. Therefore, we can an-

notate them with any rank in [2ρ] (the rank of a

seed is independent of the rank of its predecessor

in the run). On the other hand, states that are

reachable by a transition from states that origi-

nate from A’s parity states label nodes that are

not seeds. Therefore, the guessed rank of such a

state is bounded by the rank of the state labeling

its predecessor.

• α′ = α. That is, getting trapped in a set Q of sim-

ple states, a path is accepting if Q is an accepting

set of A, and is rejecting if Q is either a rejecting

set of A or it corresponds to a copy of a parity set

of A annotated with an even rank. Indeed, such

sets enable infinitely many visits to F1.

• β′ = {F2 × [2ρ]odd, F3 × [2ρ]odd, . . . , Fk × [2ρ]odd}.

That is, getting trapped in a parity set of A′,

a path should satisfy the co-parity condition ob-

tained from β by taking out F1 and annotating the

other sets by odd ranks in [2ρ].

We first prove that A′ is a co-WPAA of width ρ.

The partition of S′ ∪ P ′ into sets is as follows. First,

each accepting of rejecting set Q ⊆ S in A yields the

set Q in A′. In addition, each parity set Q ⊆ P in A

yields 2ρ + 1 sets, Q × {j} for j ∈ [2ρ], in A′. Clearly,

in both cases, the size of the sets in A′ is the same as

their size in A, thus A′ is of width ρ. It is easy to see

that each of the sets of A′ is either accepting, rejecting,

or parity. The partial order on the collection of sets in

A′ is induced by the partial order in A. For two sets O

and O′ in A′, we have O < O′ iff there exist sets Q and

Q′ in A such that one of the following hold:

• Q < Q′ and the following both hold:

– O = Q or O = Q×{j} for some j ∈ [2ρ], and

– O′ = Q′ or O′ = Q′ × {j′} for some j′ ∈ [2ρ].

• Q = Q′ and the following both hold:

– O = Q × {j} for some j ∈ [2ρ],

– O′ = Q′ × {j′} for some j′ ∈ [2ρ], and

– j < j′.

It is easy to see that transitions from a state q in A′

leads to states q′ for which [q′] ≤ [q], thus the structural

conditions for a co-WPAA hold.

We now prove the correctness of the construction.

We first prove that L(A′) ⊆ L(A). Consider a word

w accepted by A′. Let 〈Tr, r
′〉 be the accepting run

of A′ on w. Consider the (S ∪ P )-labeled tree 〈Tr, r〉

where for all x ∈ Tr with r′(x) = q or r′(x) = 〈q, i〉,

we have r(x) = q. Thus, 〈Tr, r〉 projects the labels of

〈Tr, r
′〉 on their S ∪ P element. It is easy to see that

〈Tr, r〉 is a run of A on w. Indeed, the transitions of

A′ only annotate transitions of A by ranks (or replace

them by false, which cannot be taken in an accepting

run of A′). We show that 〈Tr, r〉 is an accepting run.

Consider an infinite path π ⊆ Tr. Since A′ is a co-

WPAA and 〈Tr, r
′〉 is accepting, there are two possible

fates for π in 〈Tr, r
′〉:

1. It gets trapped in an accepting set. Then, as

α′ = α, it must be that in 〈Tr, r〉, the path π

gets trapped in an accepting set as well.

2. It gets trapped in a parity set and satisfies the

co-parity condition β′. Then, as the parity sets

are P × {i} for some odd i, it is guaranteed, by

the definition of δ′ (where no run can visit a state

〈q, i〉 with an odd i and q ∈ F1), that π actually

gets trapped in the subset (P \F1)×{i} of P ×{i}.

Hence, it must be that in 〈Tr, r〉, the path π gets

trapped in a parity set and satisfies β.



It is left to prove that L(A) ⊆ L(A′). Consider a

word w accepted by A. Let 〈Tr, r〉 be a memoryless

accepting run of A on w. Consider the (S ′∪P ′)-labeled

tree 〈Tr, r
′〉 where where for every node x ∈ Tr, we have

r′(x) =




r(x) If r(x) ∈ S.

〈r(x), 2ρ〉 If r(x) ∈ P and x = ε.

〈r(x), rank(x)〉 If r(x) ∈ P and x 6= ε.

We claim that 〈Tr, r
′〉 is an accepting run of A′. We

first prove that it is a run. Since r(ε) = qin and q′in is

either qin, in the case qin ∈ S, or 〈qin, 2ρ〉, in the case

qin ∈ P , we have that r′(ε) = q′in, thus the root of the

tree 〈Tr, r
′〉 is labeled legally. We now consider the first

level of 〈Tr, r
′〉. Consider the state q′in. Note that for

every σ ∈ Σ and Q ⊆ P , we have annotateρ(δ(qin, σ)) =

releaseρ(δ(qin, σ), 2ρ, Q). Hence, by the definition of δ′,

we have (independently of whether q′in = qin or q′in =

〈qin, 2ρ〉) that δ′(q′in, σ0) is obtained from δ(qin, σ0) by

replacing an atom q ∈ P by the disjunction
∨

j∈[2ρ]〈q, j〉.

Let [k] be the set of ε’s successors in Tr and let Q =

〈q0, . . . , qk〉 be the set of labels of ε’s successors in 〈Tr, r〉.

Thus, Q satisfies δ(qin, σ0). (We refer to Q as an or-

dered set, so it may contain repetitions.) Consider the

set Q′ = 〈q′0, . . . , q
′
k〉, where for all c ∈ [k], we have

q′c = qc in the case qc ∈ S, and q′c = 〈qc, rank(c)〉 in the

case qc ∈ P . As 2ρ is the maximal rank that a node

can get, each successor c of ε in Tr has rank(c) ≤ 2ρ.

Therefore, the set Q′ satisfies δ′(q′in, σ0). Hence, the

first level of 〈Tr, r
′〉 is also labeled legally.

For the other levels, consider a node x ∈ Tr such that

x 6= ε. Let [x·0, . . . , x·k] be the set of x’s successors in Tr

and let Q = 〈q0, . . . , qk〉 be the set of labels of x’s succes-

sors in 〈Tr, r〉. Consider the set Q′ = 〈q′0, . . . , q
′
k〉, where

for all c ∈ [k], we have q′c = qc in the case qc ∈ S, and

q′c = 〈qc, rank(x · c)〉 in the case qc ∈ P . We claim that

Q′ satisfies δ′(r′(x), σ|x|). To prove this, we distinguish

between two cases. Assume first that r′(x) = q ∈ S.

Then, δ′(r′(x), σ|x|) = annotateρ(δ(q, σ|x|)). As 2ρ is

the maximal rank that a node can get, each successor

x · c of x in Tr has rank(x · c) ≤ 2ρ, and we are done.

Assume now that r′(x) = 〈q, i〉 ∈ P × [2ρ]. Then, by

the definition of r′, we have that i = rank(x). Since r

is accepting, then, by the definition of ranks, it cannot

be that q ∈ F1 and i is odd. Hence, δ′(r′(x), σ|x|) =

releaseρ(δ(q, σ|x|), i, [q]). Since for each atom qc ∈ [q],

we have, by Lemma 3.1, that rank(x ·c) ≤ rank(x), and

since for each atom qc ∈ P \[q], we have rank(x·c) ≤ 2ρ,

the set Q′ satisfies releaseρ(δ(q, σ|x|), i, [q]), and we are

done. Hence, the tree 〈Tr, r
′〉 is a run of A′ on w.

Finally, to see that 〈Tr, r
′〉 is accepting, consider an

infinite path π ⊆ Tr. Since A is a WPAA and 〈Tr, r〉 is

accepting, there are two possible fates for π in 〈Tr, r〉:

1. It gets trapped in an accepting set. Then, for all

x ∈ π we have r(x) = r′(x) and therefore, as

α′ = α, it must be that in 〈Tr, r
′〉, the path π

gets trapped in an accepting set as well.

2. It gets trapped in a parity set and satisfies β.

Then, it visits F1 only finitely often, which im-

plies, according to Lemma 3.2, that in 〈Tr, r
′〉, the

path π gets trapped in a parity set P × {i} for

some odd i. In addition, since π satisfies the par-

ity condition β in 〈Tr, r〉, it satisfies the co-parity

condition β′ as well.

As discussed in [MS87], one can complement an al-

ternating automaton by dualizing its transition func-

tion and acceptance condition. Formally, given a tran-

sition function δ, let δ̃ denote the dual function of δ.

That is, for every q and σ with δ(q, σ) = θ, we have

δ̃(q, σ) = θ̃, where θ̃ is obtained from θ by switching

∨ and ∧ and by switching true and false. If, for ex-

ample, θ = q1 ∨ (true ∧ q2) then θ̃ = q1 ∧ (false ∨ q2).

The dual of an acceptance condition γ is a condition

that accepts exactly all the words that are not accepted

by γ. In particular, when we dualize a WPAA, we get

a co-WPAA. Consider a co-WPAA A. Let Ã be its

dual WPAA, and let Ã′ be the co-WPAA constructed

from Ã in Theorem 4.1. By dualizing Ã′, we obtain a

WPAA that is equivalent to A. Hence, the construction

in Theorem 4.1 can be used also to go from a co-WPAA

of degree k > 1 to a WPAA of degree k − 1.

Recall that a parity automaton A with n states can

be viewed as a WPAA with S = ∅ and width n. By

repeatedly employing the construction in Theorem 4.1

(and its dual construction), we can translate A to a

WPAA or a co-WPAA A′ of degree 1. Such an au-

tomaton, however, can be viewed as a WAA. Indeed,

its parity sets are either rejecting, in the case A′ is a

WPAA, or accepting, in the case A′ is a co-WPAA. We

can therefore conclude with the following theorem.

Theorem 4.2 Let A be a parity alternating automaton

with n states and degree k. There is a weak alternating



automaton A′, such that L(A′) = L(A) and the number

of states in A′ is O(nk).

Proof: Given A, consider the chain A0, . . . , Ak−1 of

WPAA and co-WPAA, where A0 = A, and Ai+1 is

obtained from Ai following the construction in Theo-

rem 4.1 (or its dual construction). For i ∈ [k], let mi

and ni denote the number of simple and parity states

in Ai, respectively. In particular, m0 = 0 and n0 = n.

As the width ρ of all the automata in the chain is n,

then for i ∈ [k − 2], we have mi+1 = mi + ni · (n + 1),

and ni+1 = ni · n. Hence, ni = ni+1. Accordingly,

mi = n·(n+1)·(ni−1)
n−1 . In particular, both nk−1 and mk−1

are O(nk). The automaton Ak−1 is of degree 1, and can

therefore be viewed as a WAA with nk−1+mk−1 states.

Hence, we are done.

A Rabin alternating automaton is A = 〈Σ, Q, qin, δ, β〉,

where β = {〈G1, B1〉, . . . , 〈Gk, Bk〉} ⊆ 2Q × 2Q. We re-

fer to k (the number of pairs in β) as the degree of β

(or A). A word η ∈ Qω satisfies a Rabin condition β iff

there exists an index i for which Inf (η) ∩ Gi 6= ∅ and

Inf (η)∩Bi 6= ∅. Note that a parity condition β with ei-

ther an even degree k or an odd degree k+1 is equivalent

to the Rabin condition {〈F2, F1〉, 〈F4, F3〉, . . . , 〈Fk , Fk−1〉}.

Rabin automata can be translated to parity automata

with an exponential blow up [Tho97].

In the full paper we show how the same ideas used for

parity automata can be used in order to translate alter-

nating Rabin automata to weak alternating automata.

As in the parity case, the construction goes through a

sequence of intermediate automata. Each automaton

in the sequence refines the state space of its predecessor

and has one less pair in its Rabin acceptance condition.

Unlike the parity case, where the sets in the acceptance

condition are ordered, here there is no order between

the pairs the acceptance condition. Therefore, while in

the parity case refinement essentially requires n copies

of each state, resulting in an O(nk) overall blow-up,

here refinement also requires a guess of the pair to be

removed, resulting in an additional k! blow up.

Theorem 4.3 Let A be a Rabin alternating automaton

with n states and degree k. There is a weak alternating

automaton A′, such that L(A′) = L(A) and the number

of states in A′ is O(n2k+1 · k!).

Note that while the degree of a parity condition β

denotes the number of sets in β, the degree of a Ra-

bin condition β denotes the number of pairs, which is

half the number of sets, in β. Thus, the blow ups in

Theorems 4.2 and 4.3 indeed differ only in k! (the ex-

planation to the additional +1 factor in the blow up in

Theorem 4.3 is the fact that a parity condition of an

odd degree 2k + 1 is equivalent to a Rabin condition

with k pairs).

5 The Nonemptiness Problem

In this section we show how the translations described

in Section 4 can be used in order to solve the nonempti-

ness problem for nondeterministic tree automata. A

nondeterministic tree automaton is A = 〈Σ, d, Q, qin, δ, α〉,

where Σ, Q, qin, and α are as in alternating word au-

tomata, d ∈ IN is a branching degree, and δ : Q × Σ →

2Qd

is a transition function that maps a state and a let-

ter to a set of d-tuples over Q. The automaton A runs

on infinite Σ-labeled trees 〈T, V 〉 of branching degree

d, thus T = {1, . . . , d}∗. As with alternating word au-

tomata, δ(q, σ) describes a possible configuration that

A can move into when it is in state q and reads the

letter σ, which labels the root of the input tree. For ex-

ample, a transition δ(q, σ) = {〈q1, q2〉, 〈q3, q4〉} means

that A accepts a binary tree with root labeled σ from

state q if it accepts the left subtree from state q1 and

the right subtree from state q2, or it accepts the left

subtree from state q3 and the right subtree from state

q4. A run of A on 〈T, V 〉 is a Q-labeled tree 〈T, r〉, such

that the following hold:

• r(ε) = qin.

• Let x ∈ T with r(x) = q. There exists 〈q1, . . . , qd〉 ∈

δ(q, V (x)) such that for all 1 ≤ c ≤ d, we have

r(x · c) = qc.

Note that each node of the input tree corresponds to ex-

actly one node in the run tree. A run 〈T, r〉 is accepting

iff all its paths satisfy the acceptance condition.

It is shown in [BVW94] that the nonemptiness prob-

lem for nondeterministic tree automata and the nonempti-

ness problem for alternating word automata over a sin-

gleton alphabet are equivalent and that their complexi-

ties coincide. We refer to both problems as the nonempti-

ness problem. Since the nonemptiness problem for weak

alternating automata can be solved in linear time [BVW94],

Theorems 4.2 and 4.3 imply the following.

Theorem 5.1



(1) The nonemptiness problem for parity automata with

n states and degree k can be solved in time O(nk).

(2) The nonemptiness problem for Rabin automata with

n states and degree k can be solved in time O(n2k+1·

k!).

The O(n2k+1 · k!) bound in Theorem 5.1 improves

the known O((nk)3k) upper-bound for the nonempti-

ness problem [EJ88, PR89] for Rabin automata. A

similar bound for Streett automata follows. Solving,

however, the nonemptiness problem by translating a

given automaton to an equivalent weak automaton is

not very appealing in practice, as such a solution never

performs better than its worst-case complexity. Indeed,

the blow-up is introduced already in the translation of

A to A′. We now describe an algorithm that uses the

special structure of A′ without constructing it first. The

worst-case complexity of this algorithm is as above, yet

in practice it may perform better. We consider here the

case where A is a parity automaton. The algorithm of

Rabin automata follows the same ideas and is described

in the full paper.

An extended parity automaton is A = 〈Σ, Q, qin, δ, α〉,

where α = 〈β, V, A〉 is an acceptance condition con-

sisting of a parity condition β over Q, a visiting set

V ⊆ Q, and an avoiding set A ⊆ Q. It is required that

A∩V = ∅. The extended parity automaton A is equiv-

alent to the parity automaton A′ = 〈Σ, Q, qin, δ′, β〉,

where δ′ is defined, for all σ ∈ Σ, as follows:

• For all q ∈ V , we have δ′(q, σ) = true.

• For all q ∈ A, we have δ′(q, σ) = false.

• For all q ∈ Q \ (V ∪A), we have δ′(q, σ) = δ(q, σ).

Thus, in a run 〈Tr, r〉 of A, no node x ∈ Tr has r(x) ∈ A,

a node x ∈ Tr with r(x) ∈ V need not have children,

and 〈Tr, r〉 is accepting iff all its infinite paths satisfy the

parity condition β. An extended co-parity alternating

automaton is defined similarly with α = 〈β, V, A〉 for a

co-parity condition β. For a parity condition β, let ∼ β

be β when referred to as a co-parity condition.

Let A be an alternating word automaton with a sin-

gleton alphabet Σ, state space Q, and transition func-

tion δ. For a generalized parity or co-parity condition

α, let accA(α) be the set of states in Q for which the

automaton Aq = 〈Σ, Q, q, δ, α〉 is not empty. Similarly,

let ãccA(α) be the set of states in Q for which the au-

tomaton Aq = 〈Σ, Q, q, δ̃, α〉 is not empty. Clearly, a

parity alternating automaton A = 〈Σ, Q, qin, δ, β〉 is not

empty iff qin ∈ accA(〈β, ∅, ∅〉).

Recall that our translation of parity and co-parity

alternating automata to WAA proceeds inductively. In

each iteration, we remove from the parity or the co-

parity condition the minimally indexed set and continue

with a refined state space and a dual acceptance con-

dition. The algorithm that follows works similarly. In

each iteration, we calculate the set of accepting states in

an automaton with an acceptance condition {F1, F2, . . . , Fk}

by calculating, recursively, the accepting states in a dual

automaton with an acceptance condition {F2, . . . , Fk}.

Formally, the algorithm employs the following two equiv-

alences.

Reduce:

accA({F1, F2, . . . , Fk}, V, A) =

µY.accA(∼ {F2, . . . , Fk}, V ∪ Y, A ∪ F1 \ Y ),

where µ is the least fixed-point operator (see the

explanation below).

Dual:

accA(∼ β, V, A) = Q \ ãccA(β, A, V ).

Using Reduce, we calculate accA({F1, F2, . . . , Fk}, V, A)

as the least fixed-point of the equation

Y = accA(∼ {F2, . . . , Fk}, V ∪ Y, A ∪ F1 \ Y ).

Let Y0 = ∅ and Yj+1 = accA(∼ {F2, . . . , Fk}, V ∪Yj , A∪

F1 \ Yj). Intuitively, the set Yi, for i ≥ 1, contains all

states q for which there exists an accepting run of Aq

in which all paths either satisfy the co-parity condition

{F2, . . . , Fk}, or visit F1 at most j − 1 times.

Using Dual, we can calculate the set of accepting

states in an extended co-parity automaton by comple-

menting the set of accepting states in an extended parity

automaton with a dual transition function and accep-

tance condition.
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