
The Weakness of Self-Complementation

Orna Kupferman1? and Moshe Y. Vardi2??

1 Hebrew University, The institute of Computer Science, Jerusalem 91904, Israel
Email: orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/∼orna
2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/∼vardi

Abstract. Model checking is a method for the verification of systems with respect to
their specifications. Symbolic model-checking, which enables the verification of large
systems, proceeds by evaluating fixed-point expressions over the system’s set of states.
Such evaluation is particularly simple and efficient when the expressions do not con-
tain alternation between least and greatest fixed-point operators; namely, when they be-
long to the alternation-free µ-calculus (AFMC). Not all specifications, however, can be
translated to AFMC, which is exactly as expressive as weak monadic second-order logic
(WS2S). Rabin showed that a set T of trees can be expressed in WS2S if and only if
both T and its complement can be recognized by nondeterministic Büchi tree automata.
For the “only if” direction, Rabin constructed, given two nondeterministic Büchi tree
automata U and U ′ that recognize T and its complement, a WS2S formula that is satis-
fied by exactly all trees in T . Since the translation of WS2S to AFMC is nonelementary,
this construction is not practical. Arnold and Niwiński improved Rabin’s construction
by a direct translation of U and U ′ to AFMC, which involves a doubly-exponential
blow-up and is therefore still impractical. In this paper we describe an alternative and
quadratic translation of U and U ′ to AFMC. Our translation goes through weak alter-
nating tree automata, and constitutes a step towards efficient symbolic model checking
of highly expressive specification formalisms.

1 Introduction

In model checking, we verify the correctness of a system with respect to a desired be-
havior by checking whether a structure that models the system satisfies a formula that
specifies this behavior. Commercial model-checking tools need to cope with the ex-
ceedingly large state-spaces that are present in real-life designs, making the so-called
state-explosion problem one of the most challenging areas in computer-aided verifica-
tion. One of the most important developments in this area is the discovery of symbolic
model-checking methods [BCM+92, McM93]. In particular, the use of BDDs [Bry86]
for model representation has yielded model-checking tools that can handle systems with
10120 states and beyond [CGL93].

? Part of this work was done when this author was visiting Cadence Berkeley Laboratories.
?? Supported in part by the NSF grants CCR-9628400 and CCR-9700061, and by a grant from the

Intel Corporation. Part of this work was done when this author was a Varon Visiting Professor
at the Weizmann Institute of Science.

Typically, symbolic model-checking tools proceed by computing fixed-point ex-
pressions over the model’s set of states. For example, to find the set of states from
which a state satisfying some predicate p is reachable, the model checker starts with the
set S of states in which p holds, and repeatedly add to S the set ∃ fS of states that have
a successor in S. Formally, the model checker calculates the least fixed-point of the ex-
pression S = p∨∃ fS. The evaluation of such expressions is particularly simple when
they contain no alternation between least and greatest fixed-point operators. Formally,
the evaluation of expressions in alternation-free µ-calculus (AFMC) [Koz83, EL86]
can be solved in time that is linear in both the size of the model and the length of the
formula [AC88, CS91]. In contrast, the evaluation of expressions in which there is a
single alternation takes time that is quadratic in the size of the model. Since the models
are very large, the difference with the linear complexity of AFMC is very significant
[HKSV97]. Hence, it is desired to translate specification to AFMC. Not all specifica-
tions, however, can be translated to AFMC [KV98a], and known translations to AFMC
involve a blow-up that makes them impractical. In this paper we describe an alternative
translation of specifications to AFMC.

Second-order logic is a powerful formalism for expressing properties of sequences
and trees. We can view all common program logics as fragments of second-order logic.
Second-order logic also serves as the specification language in the model-checking tool
MONA [EKM98, Kla98]. While in first-order logic one can only quantify individual
variables, second-order logic enables also the quantification of sets3. For example, the
formula

∃X.ε ∈ X ∧ ∀z(z ∈ X ↔ ¬(succ(z) ∈ X)) ∧ ∀z(z ∈ X → P (z))

specifies sequences in which P holds at all even positions. We distinguish between two
types of logic, linear and branching. In second-order logic with one successor (S1S), the
formulas describe sequences and contain, as the example above, the successor operator
succ. In second-order logic with two successors (S2S), formulas describe trees and
contain both left-successor and right-successor operators. For example, the S2S formula

∃X.ε ∈ X ∧ ∀z(z ∈ X → (P (z) ∧ (succl(z) ∈ X ∨ succr(z) ∈ X)))

specifies trees in which P holds along at least one path.
Second-order logic motivated the introduction and study of finite automata on infi-

nite objects. Like automata on finite objects, automata on infinite objects either accept or
reject their input. Since a run on an infinite object does not have a final state, acceptance
is determined with respect to the set of states visited infinitely often during the run. For
example, in Büchi automata, some of the states are designated as accepting states, and a
run is accepting iff it visits states from the accepting set infinitely often [Büc62] (when
the run is a tree, it is required to visit infinitely many accepting states along each path).
More general are Rabin automata, whose acceptance conditions involve a set of pairs of
sets of states. The tight relation between automata on infinite objects and second-order
logic was first established for the linear paradigm. In [Büc62], Büchi translated S1S

3 Thus, we consider monadic second-order logic, where quantification is over unary relations

formulas to nondeterministic Büchi word automata. Then, in [Rab69], Rabin translated
S2S formulas to nondeterministic Rabin tree automata. These fundamental works led to
the solution of the decision problem for S1S and S2S, and were the key to the solution
of many more problems in mathematical logic [Tho90].

Recall that we are looking for a fragment of S2S that can be translated to AFMC.
Known results about the expressive power of different types of automata enabled the
study of definability of properties within fragments of second-order logic. In [Rab70],
Rabin showed that nondeterministic Büchi tree automata are strictly less expressive
than nondeterministic Rabin tree automata, and that they are not closed under comple-
mentation. Rabin also showed that for every set T of trees, both T and its complement
can be recognized by nondeterministic Büchi tree automata iff T can be specified in a
fragment of S2S, called weak second-order logic (WS2S), in which set quantification
is restricted to finite sets. For the “only if” direction, Rabin constructed, given two non-
deterministic Büchi tree automata U and U ′ that recognize T and its complement, a
WS2S formula that is satisfied by exactly all trees in T .

It turned out that WS2S is exactly the fragment of S2S we are looking for, thus
WS2S=AFMC. In [AN92], Arnold and Niwiński showed that every AFMC formula
can be translated to an equivalent WS2S formula. For the other direction, they con-
structed, given U and U ′ as above, an AFMC formula that is satisfied by exactly all
trees accepted by U . The translation in [AN92] is doubly exponential. Thus, if U and
U ′ has n and m states, respectively, the AFMC formula is of length 22

nm

. While this
improves the nonelementary translation of Rabin’s WS2S formula to AFMC, it is still
not useful in practice. In this paper we present a quadratic translation of U and U ′ to
an AFMC formula that is satisfied by exactly all trees accepted by U . Our translation
goes through weak alternating automata [MSS86]. Thus, while the characterizations
of WS2S in [Rab70, AN92] go from logic to automata and then back to logic, our
construction provides a clean, purely automata-theoretic, characterization of WS2S.

In an alternating automaton [BL80, CKS81], the transition function can induce
both existential and universal requirements on the automaton. For example, a transition
δ(q, σ) = q1 ∨ (q2 ∧ q3) of an alternating word automaton means that the automaton
in state q accepts a word σ · τ iff it accepts the suffix τ either from state q1 or from
both states q2 and q3. In a weak automaton, the automaton’s set of states is partitioned
into partially ordered sets. Each set is classified as accepting or rejecting. The transition
function is restricted so that in each transition, the automaton either stays at the same
set or moves to a set smaller in the partial order. Thus, each run of a weak automaton
eventually gets trapped in some set in the partition. Acceptance is then determined
according to the classification of this set. It is shown in [MSS86] that formulas of WS2S
can be translated to weak alternating tree automata. Moreover, it is shown in [KV98a]
that weak alternating automata can be linearly translated to AFMC.

Given two nondeterministic Büchi tree automata U and U ′ that recognize a lan-
guage and its complement, we construct a weak alternating tree automaton A equiva-
lent to U . The number of states in A is quadratic in the number of states of U and U ′.
Precisely, if U and U ′ has n and m states, respectively, the automaton A has (nm)2

states. The linear translation of weak alternating tree automata to AFMC then com-
pletes a translation to AFMC of the same complexity. Our translation can be viewed

as a step towards efficient symbolic model checking of highly expressive specification
formalisms such as the fragment of the branching temporal logic CTL? that can be
translated to WS2S. A step that is still missing in order to complete this goal is a trans-
lation of CTL? formulas to nondeterministic Büchi tree automata, when such a trans-
lation exists. From a theoretical point of view, our translation completes the picture of
“quadratic weakening” in both the linear and the branching paradigm. The equivalence
in expressive power of nondeterministic Büchi and Rabin word automata [McN66] im-
plied that WS1S is as expressive as S1S [Tho90]. The latter equivalence is supported by
an automaton construction: given a nondeterministic Büchi word automaton, one can
construct an equivalent weak alternating word automaton of quadratic size [KV97]. In
the branching paradigm, WS2S is strictly less expressive than S2S, and a nondetermin-
istic Büchi tree automaton can be translated to a weak alternating tree automaton only if
its complement can also be recognized by a nondeterministic Büchi tree automaton. It
follows from our construction that the size of the equivalent weak alternating automaton
is then quadratic in the sizes of the two automata.

2 Tree Automata

A full infinite binary tree (tree) is the set T = {l, r}∗. The elements of T are called
nodes, and the empty word ε is the root of T . For every x ∈ T , the nodes x · l and x · r
are the successors of x. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for
every x ∈ π, exactly one successor of x is in π. For two nodes x1 and x2 of T , we say
that x1 ≤ x2 iff x1 is a prefix of x2; i.e., there exists z ∈ {l, r}∗ such that x2 = x1 · z.
We say that x1 < x2 iff x1 ≤ x2 and x1 6= x2. A frontier of an infinite tree is a set
E ⊂ T of nodes such that for every path π ⊆ T , we have |π∩E| = 1. For example, the
set E = {l, rll, rlr, rr} is a frontier. For two frontiers E1 and E2, we say that E1 ≤ E2

iff for every node x2 ∈ E2, there exists a node x1 ∈ E1 such that x1 ≤ x2. We say that
E1 < E2 iff for every node x2 ∈ E2, there exists a node x1 ∈ E1 such that x1 < x2.
Note that while E1 < E2 implies that E1 ≤ E2 and E1 6= E2, the other direction does
not necessarily hold. Given an alphabet Σ, a Σ-labeled tree is a pair 〈T, V 〉 where T is
a tree and V : T → Σ maps each node of T to a letter in Σ. We denote by VΣ the set
of all Σ-labeled trees. For a Σ-labeled tree 〈T, V 〉 and a set A ⊆ Σ, we say that E is
an A-frontier iff E is a frontier and for every node x ∈ E, we have V (x) ∈ A.

Automata on infinite trees (tree automata) run on infinite Σ-labeled trees. We first
define nondeterministic Büchi tree automata (NBT). An NBT is U = 〈Σ,Q, δ, q0, F 〉
where Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ → 2Q×Q is
a transition function, q0 ∈ Q is an initial state, and F ⊆ Q is a Büchi acceptance
condition. Intuitively, each pair in δ(q, σ) suggests a nondeterministic choice for the
automaton’s next configuration. When the automaton is in a state q as it reads a node
x labeled by a letter σ, it proceeds by first choosing a pair 〈ql, qr〉 ∈ δ(q, σ), and then
splitting into two copies. One copy enters the state ql and proceeds to the node x · l (the
left successor of x), and the other copy enters the state qr and proceeds to the node x · r
(the right successor of x). Formally, a run of U on an input tree 〈T, V 〉 is a Q-labeled
tree 〈T, r〉, such that the following hold:

– r(ε) = q0.
– Let x ∈ T with r(x) = q. There exists 〈ql, qr〉 ∈ δ(q, V (x)) such that r(x · l) = ql

and r(x · r) = qr.

Note that each node of the input tree corresponds to exactly one node in the run tree.
Given a run 〈T, r〉 and a path π ⊆ T , let inf(π) ⊆ Q be such that q ∈ inf(π) if and

only if there are infinitely many x ∈ π for which r(x) = q. That is, inf(π) contains
exactly all the states that are visited infinitely often in π. A path π satisfies a Büchi
acceptance condition F ⊆ Q if and only if inf(π) ∩ F 6= ∅. A run 〈T, r〉 is accepting
iff all its paths satisfy the acceptance condition. Equivalently, 〈T, r〉 is accepting iff
〈T, r〉 contains infinitely many F -frontiers G0 < G1 < A tree 〈T, V 〉 is accepted
by U iff there exists an accepting run of U on 〈T, V 〉, in which case 〈T, V 〉 belongs
to the language, L(U), of U . We say that a set T of trees is in NBT iff there exists an
NBT U such that L(U) = T . We say that T is in co-NBT iff the complement of T is
in NBT; i.e., there exists an NBT U such that L(U) = VΣ \ T .

Alternating tree automata generalize nondeterministic tree automata and were first
introduced in [MS87]. In order to define alternating tree automata, we first need some
notations. For a given set X , let B+(X) be the set of positive Boolean formulas over X
(i.e., Boolean formulas built from elements in X using ∧ and ∨), where we also allow
the formulas true and false and, as usual, ∧ has precedence over ∨. For a set Y ⊆ X
and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning true to elements in
Y and assigning false to elements in X \ Y satisfies θ.

A finite alternating automaton over infinite binary trees is A = 〈Σ,Q, δ, q0, F 〉
where Σ, Q, q0, and F are as in NBT, and δ : Q×Σ → B+({l, r} ×Q) is a transition
function. A run of an alternating automaton A over a tree 〈T, V 〉 is a (T ×Q)-labeled
tree 〈Tr, r〉. The tree Tr is not necessarily binary and it may have states with no suc-
cessors. Thus, Tr ⊆ IN∗ is such that if x · c ∈ Tr where x ∈ IN∗ and c ∈ IN, then also
x ∈ Tr. For every x ∈ Tr, the nodes x · c, with c ∈ IN, are the successors of x. Each
node of Tr corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy
of the automaton that reads the node x of T and visits the state q. Note that many nodes
of Tr can correspond to the same node of T ; in contrast, in a run of a nondeterministic
automaton over 〈T, V 〉 there is a one-to-one correspondence between the nodes of the
run and the nodes of the tree. The labels of a node and its successors have to satisfy the
transition function. Formally, 〈Tr, r〉 satisfies the following:

1. ε ∈ Tr and r(ε) = (ε, q0).
2. Let y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ. Then there is a possibly empty

set S = {(c0, q0), (c1, q1), . . . , (cn, qn)} ⊆ {l, r} × Q, such that the following
hold:

– S satisfies θ, and
– for all 0 ≤ i ≤ n, we have y · i ∈ Tr and r(y · i) = (x · ci, qi).

For a run 〈Tr, r〉 and an infinite path π ⊆ Tr, we define inf(π) to be the set of states
that are visited infinitely often in π, thus q ∈ inf(π) if and only if there are infinitely
many y ∈ π for which r(y) ∈ T ×{q}. A run 〈Tr, r〉 is accepting if all its infinite paths
satisfy the Büchi acceptance condition. As with NBT, a tree 〈T, V 〉 is accepted byA iff
there exists an accepting run of A on 〈T, V 〉, in which case 〈T, V 〉 belongs to L(A).

Example 1. We define an alternating Büchi tree automaton A that accepts exactly all
{a, b, c}-labeled binary trees in which all paths have a node labeled a and there exists a
path with two successive b labels. Let A = 〈{a, b, c}, {q0, q1, q2, q3}, δ, q0, ∅〉, where δ
is defined in the table below.

q δ(q, a) δ(q, b) δ(q, c)

q0 (0, q1) ∨ (1, q1) (0, q3) ∧ (1, q3)∧ (0, q3) ∧ (1, q3)∧
((0, q2) ∨ (1, q2)) ((0, q1) ∨ (1, q1))

q1 (0, q1) ∨ (1, q1) (0, q2) ∨ (1, q2) (0, q1) ∨ (1, q1)

q2 (0, q1) ∨ (1, q1) true (0, q1) ∨ (1, q1)

q3 true (0, q3) ∧ (1, q3) (0, q3) ∧ (1, q3)

In the state q0, the automaton checks both requirements. If a is true, only the second
requirement is left to be checked. This is done by sending a copy in state q1, which
searches for two successive b’s in some branch, to either the left or the right child. If
b is true, A needs to send more copies. First, it needs to check that all paths in the
left and right subtrees have a node labeled a. This is done by sending copies in state
q3 to both the left and the right children. Second, it needs to check that one of these
subtrees contains two successive b’s. This is done (keeping in mind that the just read
b may be the first b in a sequence of two b’s) by sending a copy in state q2 to one of
the children. Similarly, if c is true, A sends copies that check both requirements. As
before, a requirement about a is sent universally and a requirement about the b’s is sent
existentially. ut

In [MSS86], Muller et al. introduce weak alternating tree automata (AWT). In an
AWT, we have a Büchi acceptance condition F ⊆ Q and there exists a partition of Q
into disjoint sets, Qi, such that for each set Qi, either Qi ⊆ F , in which case Qi is an
accepting set, orQi∩F = ∅, in which caseQi is a rejecting set. In addition, there exists
a partial order ≤ on the collection of the Qi’s such that for every q ∈ Qi and q′ ∈ Qj
for which q′ occurs in δ(q, σ), for some σ ∈ Σ, we have Qj ≤ Qi. Thus, transitions
from a state in Qi lead to states in either the same Qi or a lower one. It follows that
every infinite path of a run of an AWT ultimately gets “trapped” within some Qi. The
path then satisfies the acceptance condition if and only ifQi is an accepting set. Indeed,
a run visits infinitely many states in F if and only if it gets trapped in an accepting set.

2.1 Traps

Let U = 〈Σ,S, s0,M, F 〉 and U ′ = 〈Σ,S′, s′0,M ′, F ′〉 be two NBT, and let |S| ·
|S′| = m. In [Rab70], Rabin studies the composition of a run of U with a run of U ′.
Recall that an accepting run of U contains infinitely many F -frontiers G0 < G1 < . . .,
and an accepting run of U ′ contains infinitely many F ′-frontiers G′0 < G′1 < It
follows that for every tree 〈T, V 〉 ∈ L(U)∩L(U ′) and accepting runs 〈T, r〉 and 〈T, r′〉
of U and U ′ on 〈T, V 〉, the composition of 〈T, r〉 and 〈T, r′〉 contains infinitely many
frontiers Ei ⊂ T , with Ei < Ei+1, such that 〈T, r〉 reaches an F -frontier and 〈T, r′〉
reaches an F ′-frontier between Ei and Ei+1. Rabin shows that the existence of m such

frontiers, in the composition of some runs of U and U ′, is sufficient to imply that the
intersection L(U) ∩ L(U ′) is not empty. Below we repeat Rabin’s result, with some
different notations.

Let U and U ′ be as above. We say that a sequence E0, . . . , Em of frontiers of T is
a trap for U and U ′ iff E0 = ε and there exists a tree 〈T, V 〉 and runs 〈T, r〉 and 〈T, r′〉
of U and U ′ on 〈T, V 〉, such that for every 0 ≤ i ≤ m− 1, the following hold.

– 〈T, r〉 contains an F -frontier Gi such that Ei ≤ Gi < Ei+1, and
– 〈T, r′〉 contains an F ′-frontier G′i such that Ei ≤ G′i < Ei+1.

We say that 〈T, r〉 and 〈T, r′〉 witness the trap for U and U ′.

Theorem 1. [Rab70] Consider two nondeterministic Büchi tree automata U and U ′. If
there exists a trap for U and U ′, then L(U) ∩ L(U ′) is not empty.

3 From NBT and co-NBT to AWT

Theorem 2. Let U and U ′ be two NBT with L(U ′) = VΣ \L(U). There exists an AWT
A such that L(A) = L(U) and the size of A is quadratic in the sizes of U and U ′.

Proof. Let U = 〈Σ,S, s0,M, F 〉 and U ′ = 〈Σ,S′, s′0,M ′, F ′〉, and let |S| · |S′| = m.
We define the AWT A = 〈Σ,Q, q0, δ, α〉 as follows.

– Q = ((S × {⊥,>}) × S′ × {0, . . . ,m}) \ (S × {>}) × S′ × {m}. Intuitively, a
copy of A that visits the state 〈(s, γ), s′, i〉 as it reads the node x of the input tree
corresponds to runs r and r′ of U and U ′ that visit the states s and s′, respectively,
as they read the node x of the input tree. Let ρ = y0, y1, . . . , y|x| be the path from ε
to x. Consider the joint behavior of r and r′ on ρ. We can represent this behavior by
a sequence τρ = 〈t0, t′0〉, 〈t1, t′1〉, . . . , 〈t|x|, t′|x|〉 of pairs in S×S′ where tj = r(yj)

and t′j = r′(y′j). We say that a pair 〈t, t′〉 ∈ S × S′ is an F -pair iff t ∈ F and is an
F ′-pair iff t′ ∈ F ′. We can partition the sequence τρ to blocks β0, β1, . . . , βi such
that we close block βk and open block βk+1 whenever we reach the first F ′-pair
that is preceded by an F -pair in βk. In other words, whenever we open a block,
we first look for an F -pair, ignoring F ′-pairness. Once an F -pair is detected, we
look for an F ′-pair, ignoring F -pairness. Once an F ′-pair is detected, we close the
current block and we open a new block. Note that a block may contain a single pair
that is both an F -pair and an F ′-pair. The number i in 〈(s, γ), s′, i〉 is the index of
the last block in τρ. The status γ ∈ {⊥,>} indicates whether the block βi already
contains an F -pair, in which case γ = >, or βi does not contain an F -pair, in which
case γ = ⊥.
For a status γ ∈ {⊥,>} and an index i ∈ {0, . . . ,m}, letQγ,i = (S×{γ})×S′×
{i}.

– q0 = 〈(s0,⊥), s′0, 0〉.
– In order to define the transition function δ, we first define two functions, newγ :
Q \Q⊥,m → {⊥,>} and newi : Q \Q⊥,m → {0, . . . ,m}, as follows.

newγ(〈(s, γ), s′, i〉) =
[
> If s′ 6∈ F ′ and (γ = > or s ∈ F).
⊥ Otherwise.

newi(〈(s, γ), s′, i〉) =
[
i+ 1 If s′ ∈ F ′ and (γ = > or s ∈ F).
i Otherwise.

Intuitively, newγ and newi are responsible for the recording and tracking of blocks.
Recall that the status γ indicates whether an F -pair in the current block has already
been detected. As such, the new status is > whenever s is in F or γ is >, unless s′

is in F ′, in which case 〈s, s′〉 is the last pair in the current block, and the new status
is ⊥. Similarly, the index i is increased to i+1 whenever we detect an F ′-pair that
is either also an F -pair or, as indicated by γ, preceded by an F -pair in the same
block.
The automaton A proceeds as follows. Essentially, for every run 〈T, r′〉 of U ′, the
automaton A guesses a run 〈T, r〉 of U such that for every path ρ of T , the run
〈T, r〉 visits F along ρ at least as many times as 〈T, r′〉 visits F ′ along ρ. Since
L(U) ∩ L(U ′) = ∅, no run 〈T, r〉 can witness with 〈T, r′〉 a trap for U and U ′.
Consequently, recording of visits to F and F ′ along ρ can be completed once A
detects that τρ contains m blocks as above.
Formally, let q = 〈(s, γ), s′, i〉 be such that M(s, σ) = {〈u1, v1〉, . . . , 〈un, vn〉}
and M ′(s′, σ) = {〈u′1, v′1〉, . . . , 〈u′n′ , v′n′〉}. We distinguish between two cases.
• If q 6∈ Q⊥,m, then δ(q, σ) is∧

1≤k≤n′

∨
1≤p≤n

(l, 〈(up,newγ(q)), u′k,newi(q)〉)∧(r, 〈(vp,newγ(q)), v′k,newi(q)〉).

• If q ∈ Q⊥,m, then δ(q, σ) is
∗
∧

1≤k≤n′
∨

1≤p≤n(l, 〈(up,⊥), u′k,m〉) ∧ (r, 〈(vp,⊥), v′k,m〉), if s 6∈ F .
∗ true, otherwise.

– α = (S × {>}) × S′ × {0 . . . ,m − 1}. Thus, α makes sure that infinite paths of
the run visits infinitely many states in which the status is >.

The automaton A is indeed an AWT. Clearly, each set Qγ,i is either contained in α
or is disjoint from α. The partial order on the sets is defined by Qγ′,i′ ≤ Qγ,i iff either
i < i′, or i = i′ and γ′ = >. Note that, by the definition of α, a run is accepting iff no
path of it gets trapped in a set of the form Q⊥,i, namely a set in which A is waiting for
a visit of U in a state in F . The size of A is O(m2).

We prove that L(A) = L(U). We first prove that L(U) ⊆ L(A). Consider a tree
〈T, V 〉. With every run 〈T, r〉 of U on 〈T, V 〉 we can associate a single run 〈TR, R〉 of
A on 〈T, V 〉. Intuitively, the run 〈T, r〉 directs 〈TR, R〉 in the only nondeterminism in
δ. Formally, recall that a run of A on a tree 〈T, V 〉 is a (T × Q)-labeled tree 〈TR, R〉,
where a node y ∈ TR with R(y) = 〈x, q〉 corresponds to a copy of A that reads the
node x ∈ T and visits the state q. We define 〈TR, R〉 as follows.

– ε ∈ TR and R(ε) = (ε, 〈(s0,⊥), s′0, 0〉).

– Consider a node y ∈ TR with R(y) = (x, 〈(s, γ), s′, i〉). By the definition of
〈TR, R〉 so far, we have r(x) = s. Let r(x · l) = u and r(x · r) = v. Also,
let M ′(s′, σ) = {〈u′1, v′1〉, . . . , 〈u′n′ , v′n′〉}, γ′ = newγ(〈(s, γ), s′, i〉), and i′ =
newi(〈(s, γ), s′, i〉). We define S = {(l, 〈(u, γ′), u′1, i′〉), (r, 〈(v, γ′), v′1, i′〉), . . . ,
(l, 〈(u, γ′), u′n′ , i′〉), (r, 〈(v, γ′), v′n′ , i′〉)}. By the definition of δ, the set S satisfies
δ(〈(s, γ), s′, i〉, V (x)). For all 0 ≤ j ≤ n′−1, we have y ·2j ∈ TR withR(y ·2j) =
(x·l, 〈(u, γ′), u′j , i′〉), and y·2j+1 ∈ TR withR(y·2j+1) = (x·r, 〈(v, γ′), v′j , i′〉).

Consider a tree 〈T, V 〉 ∈ L(U). Let 〈T, r〉 be an accepting run of U on 〈T, V 〉, and
let 〈TR, R〉 be the run of A on 〈T, V 〉 induced by 〈T, r〉. It is easy to see that 〈TR, R〉
is accepting. Indeed, as 〈T, r〉 contains infinitely many F -frontiers, no infinite paths of
〈TR, R〉 can get trapped in a set Q⊥,i.

It is left to prove that L(A) ⊆ L(U). For that, we prove that L(A) ∩ L(U ′) = ∅.
Since L(U) = VΣ \ L(U ′), it follows that every tree that is accepted by A is also
accepted by U . Consider a tree 〈T, V 〉. With each run 〈TR, R〉 of A on 〈T, V 〉 and run
〈T, r′〉 of U ′ on 〈T, V 〉, we can associate a run 〈T, r〉 of U on 〈T, V 〉. Intuitively, 〈T, r〉
makes the choices that 〈TR, R〉 has made in its copies that correspond to the run 〈T, r′〉.
Formally, we define 〈T, r〉 as follows.

– r(ε) = s0.
– Consider a node x ∈ T with r(x) = s. Let r′(x) = s′. The run 〈T, r′〉 fixes a pair
〈u′, v′〉 ∈M ′(s′, V (x)) that U ′ proceeds with when it reads the node x. Formally,
let 〈u′, v′〉 be such that r′(x · l) = u′ and r′(x · r) = v′. By the definition of r(x)
so far, the run 〈TR, R〉 contains a node y ∈ TR with R(y) = 〈x, 〈(s, γ), s′, i〉〉 for
some γ and i. If δ(〈(s, γ), s′, i〉, V (x)) = true, we define the reminder of 〈T, r〉
arbitrarily. Otherwise, by the definition of δ, the successors of y in TR fix the pair in
M(s, V (x)) that A proceeds with per each pair in M ′(s′, V (x)). In particular, TR
contains at least two nodes y·c1 and y·c2 such thatR(y·c1) = 〈x · l, 〈(u, γ′), u′, i′〉〉
andR(y ·c2) = 〈x · r, 〈(v, γ′), v′, i′〉〉, for some γ′ and i′. We then define r(x · l) =
u and r(x · r) = v.

We can now prove that L(A) ∩ L(U ′) = ∅. Assume, by way of contradiction, that
there exists a tree 〈T, V 〉 such that 〈T, V 〉 is accepted by both A and U ′. Let 〈TR, R〉
and 〈T, r′〉 be the accepting runs of A and U ′ on 〈T, V 〉, respectively, and let 〈T, r〉
be the run of U on 〈T, V 〉 induced by 〈TR, R〉 and 〈T, r′〉. We claim that then, 〈T, r〉
and 〈T, r′〉 witness a trap for U and U ′. Since, however, L(U)∩L(U ′) = ∅, it follows
from Theorem 1, that no such trap exists, and we reach a contradiction. To see that
〈T, r〉 and 〈T, r′〉 indeed witness a trap, define E0 = ε, and define, for 0 ≤ i ≤ m− 1,
the set Ei+1 to contain exactly all nodes x for which there exists y ∈ TR with R(y) =
〈x, 〈(r(x), γ), r′(x), i〉〉 and newi(〈(r(x), γ), r′(x), i〉) = i+1. That is, for every path
ρ of T , the set Ei+1 consists of the nodes in which the i’th block is closed in τρ. By
the definition of δ, for all 0 ≤ i ≤ m − 1, the run 〈T, r〉 contains an F -frontier Gi
such that Ei ≤ Gi < Ei+1 and the run 〈T, r′〉 contains an F ′-frontier G′i such that
Ei ≤ G′i < Ei+1. Hence, E0, . . . , Em is a trap for U and U ′. ut

4 Discussion

Today, automata on infinite objects are used for specification and verification of non-
terminating programs. By translating specifications to automata, we reduce questions
about programs and their specifications to questions about automata. More specifically,
questions such as satisfiability of specifications and correctness of programs with re-
spect to their specifications are reduced to questions such as nonemptiness and lan-
guage containment [VW86, BVW94, Kur94, VW94]. The automata-theoretic approach
separates the logical and the combinatorial aspects of verification. The translation of
specifications to automata handles the logic and shifts all the combinatorial difficulties
to automata-theoretic problems. There are many types of automata, and choosing the
appropriate type for the application is important.

We believe that weak alternating automata are often a good choice. The special
structure of weak alternating automata is reflected in their attractive computational
properties. For example, while the best known complexity for solving the 1-letter empti-
ness problem for Büchi alternating automata is quadratic time, we know how to solve
the problem for weak alternating automata in linear time [BVW94]. In addition, weak
alternating automata can be very easily complemented. In the linear paradigm, where
WS1S=S1S, weak alternating word automata (AWW) can recognize all the ω-regular
languages. In particular, the translation of LTL formulas to AWW is linear, and fol-
lows the syntax of the formula [Var96]. Moreover, it is known how to translate other
types of automata to AWW efficiently [KV97, KV98b]. In the branching paradigm,
where WS2S<S2S, AWT can recognize exactly all specifications that can be efficiently
checked symbolically. The translation of CTL and AFMC formulas to AWT is linear
and simple [BVW94]. As we have seen in this paper, the translation of two NBT for
a specification and its complementation to AWT involves only a quadratic blow up. In
particular, we believe that model-checking tools like MONA [EKM98, Kla98], which
have WS1S and WS2S as their specification languages, may benefit from employing
weak alternating automata.

References

[AC88] A. Arnold and P. Crubille. A linear algorithm to solve fixed-point equations. Infor-
mation Processing Letters, 29(2):57–66, September 1988.

[AN92] A. Arnold and D. Niwiński. Fixed point characterization of weak monadic logic
definable sets of trees. In Tree Automata and Languages, pp. 159–188, 1992. Elsevier.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

[BL80] J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical
Computer Science, 10:19–35, 1980.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE
Trans. on Computers, C-35(8), 1986.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12, 1962.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Proc. 6th CAV, LNCS 818, pages 142–155, 1994.

[CGL93] E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In Decade of Concurrency – Reflections and Perspectives (Proceedings of
REX School), LNCS 803, pages 124–175, 1993.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Associ-
ation for Computing Machinery, 28(1):114–133, January 1981.

[CS91] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal µ-calculus. In Proc. 3rd CAV, LNCS 575, pages 48–58, 1991.

[EKM98] J. Elgaard, N. Klarlund, and A. Möller. Mona 1.x: new techniques for WS1S and
WS2S. In Proc 10th CAV, LNCS 1427, pages 516–520, 1998.

[EL86] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the proposi-
tional µ-calculus. In Proc. 1st LICS, pages 267–278, 1986.

[HKSV97] R.H. Hardin, R.P. Kurshan, S.K. Shukla, and M.Y. Vardi. A new heuristic for bad
cycle detection using BDDs. In Proc. 9th CAV, LNCS 1254, pages 268–278, 1997.

[Kla98] N. Klarlund. Mona & Fido: The logic-automaton connection in practice. In Com-
puter Science Logic, ’97, Lecture Notes in Computer Science, 1998.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

[KV97] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In
Proc. 5th ISTCS, pages 147–158. IEEE Computer Society Press, 1997.

[KV98a] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-
time to branching-time. In Proc. 13th LICS, pages 81-92, 1998.

[KV98b] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata empti-
ness. In Proc. 30th STOC, pages 224–233, 1998.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton.

Information and Control, 9:521–530, 1966.
[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical

Computer Science, 54,:267–276, 1987.
[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic

theory of the tree and its complexity. In Proc. 13th ICALP, 1986.
[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees.

Transaction of the AMS, 141:1–35, 1969.
[Rab70] M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math.

Logic and Foundations of Set Theory, pages 1–23. North Holland, 1970.
[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Sci-

ence, pages 165–191, 1990.
[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller

and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata,
LNCS 1043, pages 238–266, 1996.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st LICS, pages 322–331, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, November 1994.

