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1 Introduction

Property testing was first introduced in [RS96], where Rubinfeld and Sudan checked
whether a given function computes a low-degree polynomial or is far from comput-
ing it. The work in [RS96] have led to the study of combinatorial property testing,
defined by Goldreich et al. in [GGR98]. Generally speaking, given a property ψ,
an input x, and 0 < ε ≤ 1, we say that x is ε-far from satisfying ψ if we need to
change an ε-fraction of x in order for it to satisfy ψ. For example, a graph with n
vertices is ε-far from being bipartite if we need to change at least εn2 entries in the
graph’s adjacency matrix in order to make it bipartite 2 . Then, an ε-test for ψ is a
randomized algorithm that given ψ, x, and ε, behaves as follows.

• If x satisfies ψ, the algorithm returns “yes” with probability at least 2/3.
• If x is ε-far from ψ, the algorithm returns “no” with probability at least 2/3.

An ε-test may have a one-sided error, in which case if x satisfies ψ, the algorithm
always returns “yes”. In both cases, the algorithm has no obligation for x that nei-
ther satisfies ψ nor is ε-far from ψ. We say that a property ψ is ε-testable if there
exists an ε-test for ψ that uses only f(ε) queries on the input, where f is indepen-
dent of the size of the input. 3 It turned out that several properties are ε-testable.
For example, it is possible to check bipartiteness by randomly testing poly(1/ε)
edges of the graph [GGR98], and similar results hold for k-connectivity, acyclicity,
k-colorability, and more [GR97,AK99,GR99,BR00,PRR01,PRS01].

Recently, there have been several general results on ε-testability of certain classes
of properties, especially graph properties [GT03,KKR03]. One of the few general
results for non-graph properties is described in [AKNS99], which studies the testa-
bility of formal languages. For a word w ∈ {0, 1}n and a regular language L,
we say that w is ε-far from a language L ⊆ {0, 1}∗, if no word of length n that
differs from w in at most εn positions is a member of L. Alon et al. proved that
regular languages are ε-testable with a one-sided error and with query complexity
Õ(1/ε). More precisely, for every deterministic automaton A on finite words, in-
teger n, and small enough ε > 0, there is an algorithm that gets as input a word
w ∈ {0, 1}n, samples only c log3(1/ε)/ε letters in w, where c depends only on A,
returns “yes” if w ∈ L(A), and returns “no” with probability 2/3 if w is ε-far from
L(A) [AKNS99].

2 The definition of ε-far depends on the size of the input. Thus, if a graph G with m edges
is given by an adjacency list, rather than an adjacency matrix, thenG is ε-far from satisfying
a property if we need to change at least εm edges (rather than εn2 edges) in order for it to
satisfy the property [PR99].
3 Alternative definitions of ε-test allow a number of queries that depend on the input (usu-
ally in some sub-linear way), and other bounds on the error. The definition above is com-
monly used in the literature, and is the one we use in this paper.
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In this paper we extend the result of [AKNS99] to ω-regular languages. An ω-
regular language over an alphabet Σ is a set L ⊆ Σω of infinite words over Σ.
ω-regular languages are described by automata on infinite words, first introduced
in the 1960’s. Motivated by decision problems in mathematical logic, Büchi, Mc-
Naughton, and Rabin developed a framework of automata on infinite words and
infinite trees [Büc62,McN66,Rab69]. The framework has proven to be very pow-
erful. Automata, and their tight relation to second-order monadic logics were the
key to the solution of several fundamental decision problems in mathematical logic
[Tho90]. Today, automata on infinite objects are used for specification and veri-
fication of nonterminating programs. Like automata on finite words, automata on
infinite words either accept or reject an input word. Since a run on an infinite word
does not have a final state, acceptance is determined with respect to the set of states
visited infinitely often during the run. There are various ways to refer to this set. In
Büchi automata, some of the states are designated as accepting states, and a run is
accepting iff it visits states from the accepting set infinitely often [Büc62].

Nondeterministic Büchi automata recognize all the ω-regular languages [Lan69]
and our algorithm assumes that L is given by such an automaton. The input to our
algorithm are infinite words. We consider infinite words that have a finite repre-
sentation. A general such representation maps each letter σ ∈ Σ to a predicate
Pσ ⊆ IN that describes the positions of the word that are labeled σ. A special
case we consider here is of lasso-shape (also known as ultimately periodic) infinite
words, which are of the form x · yω, for x ∈ Σ∗ and y ∈ Σ∗. Thus, every lasso-
shaped word has a position from which it is cyclic. As we discuss in Section 7, this
special case is of particular interest in the context of specification and verification.
In particular, it is easy to see that the language of a Büchi automaton is not empty iff
the automaton accepts some lasso-shape word. Following similar considerations, if
a system violates an ω-regular property, it has a lasso-shape computation violating
the property [CD88,VW94]. Given a lasso-shaped word w, our algorithm tests the
membership of w in the language of a nondeterministic Büchi automaton 4 .

For some problems on automata, the transition from finite to infinite words is com-
plicated. For example, one cannot determinize Büchi automata [Lan69], making
the complementation problem for nondeterministic Büchi automata very challeng-
ing [Saf88]. For other problems, the transition is simple. For example, while the
nonemptiness problem for automata on finite words can be reduced to one reacha-
bility test (from an initial state to the accepting set α), the nonemptiness problem
for Büchi automata can be reduced to 2|α| reachability tests (from an initial to an
accepting state and from the accepting state to itself). It is easy to see then, that

4 So, we actually extend [AKNS99] by three aspects: we consider a general (rather than
binary) alphabet, we consider languages given by nondeterministic (rather than determin-
istic) automata, and we consider ω-regular, rather than regular, languages. It is not hard to
see that the algorithm in [AKNS99] can be applied also to general alphabets and nondeter-
ministic automata, thus the only real contribution is the extension to infinite words.
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given an oracle for the nonemptiness problem for automata on finite words, the
nonemptiness problem for Büchi automata can be solved by 2|α| calls to the ora-
cle.

Consider a nondeterministic Büchi automatonA and a lasso-shape wordw = x·yω.
As we explain in Section 4, the membership of w inA can be reduced to a sequence
of membership tests for automata on finite words, where the ε-test of [AKNS99]
can be used as an oracle. The problem with this simple reduction is that the number
of calls to the oracle depends on the length, |x| + |y|, of w. Finding an algorithm
with a query complexity that does not depend on w turns out to be much more
difficult, and is the main technical contribution of this paper. Essentially, we show
that for every word w there is a set D of positions such that the size of D depends
only onA and the following holds: if w ∈ L(A) then there is a word v ∈ L(A) such
that v differs from w only in positions in D and the membership of v in L(A) can
be verified by a constant number of applications of (some variant of) the algorithm
of [AKNS99]. Moreover, if w is ε-far from L(A), then the above check would fail
for all the words v that differ from w only in positions in D. The full details are
described in Section 4. The query complexity of our algorithm is Õ(1/ε), as the
one of [AKNS99]. In addition, we study the special case where the language of
the Büchi automaton is a safety language; that is, every word not in L has a finite
“bad” prefix that cannot be extended to a word in L 5 . We also prove an Ω(1/ε)
lower bound for the problem 6 .

We hope that the ε-test for ω-regular languages would stimulate further efforts to
apply the study of combinatorial property testing to formal verification. In formal
verification, we verify that a system meets a desired behavior by executing an al-
gorithm that checks whether a mathematical model of the system satisfies a formal
specification that describes the behavior [CGP99]. Almost all current efforts and
heuristics to cope with the large state spaces that commercial formal-verification
tools handle do not deviate from the strict definition of formal verification, where
the algorithm is not allowed to err. We believe that a major improvement of cur-
rently used heuristics should involve a deviation from the strict definition of formal
verification. The setting of property testing seems very appealing for this task: the
specifications are small, the systems are exceedingly large, and it is the complexity
in terms of the system that we wish to bound, which is exactly what property testing
does. In Section 7, we discuss this direction in detail.

5 We note that the result of [AKNS99] does not immediately apply ε-testability for safety
properties, even though such properties can be characterized by a regular language of bad
prefixes. The reason is that there is no a-priori bound on the length of the prefix that needs
to be checked.
6 As discussed in [AKNS99], a lower bound of order 1/ε for the query complexity of
testing is quite expected in general. In our case, given the Ω(1/ε) lower bound for testing
of regular languages, the lower bound is even more expected.
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2 Definitions

2.1 Automata

A finite word over an alphabet Σ is a finite sequence w ∈ Σ∗ of letters from Σ. We
can view a finite word as a function w : {1, . . . , n} → Σ, where n is the length of
w. An infinite word over Σ is an infinite sequence w ∈ Σω of letters from Σ, and it
can be viewed as a function w : IN \ {0} → Σ. For a word w ∈ Σω and positions
0 ≤ x ≤ y we denote by w[x, y] the sub-word of w that starts at position x and ends
at position y. A nondeterministic automaton A is A = 〈Σ, Q, δ, q0, α〉, where Σ is
an alphabet, Q is a set of states, δ : Q× Σ → 2Q is a transition relation, q0 ∈ Q is
the initial states, and α ⊆ Q is a set of accepting states. Given a finite word w ∈ Σ∗,
a run r of A on w is a function r : {0, . . . , n} → Q such that r(0) = q0 and for all
0 ≤ i ≤ n, we have r(i + 1) ∈ δ(r(i), w(i)). The run r is accepting iff r(n) ∈ α.
If for all q ∈ Q and σ ∈ Σ we have that |δ(q, σ)| = 1, then A is deterministic.

The automaton A can also get as input infinite words over Σ. Given such a word
w ∈ Σω, a run r of A on w is a function r : IN → Q such that r(0) = q0 and
for all i ≥ 0, we have r(i + 1) ∈ δ(r(i), w(i)). Since the run has no final states,
acceptance is determined with respect to the set inf (r), of states that appear in r
infinitely often. Formally, q ∈ inf (r) iff r(i) = q for infinitely many i’s. When A
is a Büchi automaton, the run r is accepting iff inf (r) ∩ α 6= ∅ [Büc62]. That is,
a run is accepting iff it visits some accepting state infinitely often. Otherwise, r is
rejecting. A path in A that corresponds to an accepting run is called an accepting
path. The language of A, denoted L(A), is the set of words w such that there is an
accepting run of A on w. Note that L(A) ⊆ Σ∗ for automata on finite words and
L(A) ⊆ Σω for automata on infinite words. We assume that L(A) 6= ∅.

An automaton A induces a directed graph GA = 〈V,E〉 in the following way. The
set of vertices of G(A) is V = Q, and for each q and q ′ in V , we have 〈q, q′〉 ∈ E
iff there exists σ ∈ Σ such that q′ ∈ δ(q, σ). For a graph G, the period of G is the
greatest common divisor of cycle lengths in G. Note that if A is a Büchi automaton
with L(A) 6= ∅, then there is at least one cycle in GA, thus the period of GA is a
finite g ≥ 1.

2.2 Infinite words

We say that an infinite word w ∈ Σω is lasso-shaped if there are w1 ∈ Σ∗ and
w2 ∈ Σ∗ such that w = w1 · (w2)

ω. That is, there exists a position from which w
is cyclic. The word w1 is called the prefix of w, and the word w2 is called the lasso
of w. When |w1| = n1 and |w2| = n2, we say that w is (n1, n2)-lasso-shaped. As
we discuss in Section 7, lasso-shaped words are of special interest in the context of
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formal verification.

For two finite words w and v of the same length, the distance between w and v,
denoted dist(w, v), is the number of letters that have to be changed in w in order to
obtain v [AKNS99]. This definition is a straightforward extension of the Hamming
distance for the case of general finite alphabet. We say that two finite words w and
v of the same length n are ε-far, for 0 < ε ≤ 1, if dist(w,v)

n
≥ ε.

For infinite words, the number of letters that have to be changed in one word in
order to obtain the other can be infinite, thus we cannot extend the definition of
[AKNS99] to infinite words in a straightforward way. Instead, the definition of dis-
tance should refer to the finite representation of an infinite word, thus to the prefix
and lasso of lasso-shaped words. Consider the lasso-shape word w = 01(10)ω. One
can represent w also as the lasso-shape words 0110(10)ω or 011(01)ω. Generally, a
lasso-shaped word w1 · (w2)

ω can be represented as w1 · (w2)
i · w3 · ((w4 · w3)

j)ω,
for some i ≥ 0, j ≥ 1, and some partition of w2 into w3 and w4. When we define
the distance between lasso-shaped words, we want our definition of distance to be
insensitive to a particular representation: the distance between different representa-
tions of the same word should be 0. Let w and v be two lasso-shaped words with
prefixes of length n1 and n′

1 and lassos of length n2 and n′
2, respectively. Without

loss of generality, assume that n′
1 ≥ n1.

Definition 2.1 Let i = n′
1 − n1 and n = lcm(n2, n

′
2) (least common multiplier).

We define

dist(w, v) = dist(w[n1 + i+ 1, n1 + i + n], v[n′
1 + 1, n′

1 + n]).

We say that a lasso-shaped wordw is ε-far from a lasso-shaped word v if dist(w, v) ≥
εn, where n is the least common multiplier of the lengths of lassos of w and v.

For a lasso-shaped word w and a language L ⊆ Σω, we say that w is ε-far from L
if w is ε-far from all lasso-shaped words v ∈ L. Intuitively, we represent w and v
as lasso-shaped words with lassos of the same length n, and count the number of
letters that should be changed in the lasso of w in order to obtain the lasso of w ′.
The number i is the “offset”, thus the comparison of letters starts from the same
place in both words. The following example shows why the “offset” is important
in measuring the distance between lasso-shaped words. Consider two words w =
(01)ω, and v = 1 · (01)ω and the language L = {w : all the letters of w in odd
positions are 0}. The lasso of w is equal to the lasso of v, however, w ∈ L and v is
very far from L. Our definition of distance does not compare the prefixes, as their
weight in the infinite words is negligible, but it does take the lengths of the prefixes
into an account, making w very far from v. The following lemma shows that the
distance between two different representations of the same lasso-shaped word is 0,
as required.
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Lemma 2.2 Let w = w1 · (w2)
ω be a lasso-shaped word. Let n1 be the length of

the prefix w1, and n2 be the length of the lasso w2. Then, for all numbers k ≥ 0 and
l ≥ 1 and all partitions of w2 to w3 and w4, we have dist(w1 · (w2)

ω, w1 · (w2)
k ·

w3 · ((w4 · w3)
l)ω) = 0.

Proof: Let n3 and n4 be the lengths of w3 and w4, respectively. The lasso of w′ is
(w2)

l of length l · n2, thus n = lcm(n2, l · n2) = l · n2. The length of the prefix of
w′ is n1 + k · n2 + n3, thus i = n1 + k · n2 + n3 − n1 = k · n2 + n3. Recall that
w = w1 · (w2)

ω. Then

dist(w,w′) = dist(w[n1 + k · n2 + n3 + 1, n1 + k · n2 + n3 + l · n2], w[n1 + k · n2 + n3 + 1, n1 + k · n2 + n3 + l · n2]) = 0.

2

An alternative, perhaps cleaner, way to define ε-farness is to say, for 0 < ε < 1,
that an infinite word w is ε-far from an infinite word v if

lim
n→∞

dist(w[1, n], v[1, n])

n
≥ ε.

Clearly, for general infinite words this limit may not exist at all. However, it is easy
to see that for lasso-shaped words this limit always exists and the two definitions
are equivalent. Indeed, by Lemma 2.2 we can assume that w and v have the same
length of prefix and the same length of lasso parts (otherwise we can unwind the
lasso several times and match the lengths of prefixes). Let x be the distance between
prefixes of w and v (assuming they are of the same length) and y the distance
between lasso parts of w and v, and let m be the length of the lasso of w and v. By
Definition 2.1, w is ε-far from v iff y

m
≥ ε. Then, for all n the number of letters we

have to change in w[1, n] in order to obtain v[1, n] is O(x + n
m
y), and dividing by

n we get O( x
n

+ y
m

), which converges to y
m

as n→ ∞.

3 Observations on Accepting Runs

In this section we analyze the structure of accepting runs of nondeterministic Büchi
automata on infinite words. We argue that for lasso-shaped infinite words it suffices
to examine a finite prefix of a word in order to decide its membership in L(A).

Let A = 〈Σ, Q, δ, q0, α〉 be a Büchi automaton. For simplicity, we describe our
algorithm for the case α = {qacc} is a singleton. Later we show how to extend
our results to the case of multiple accepting states. We denote by Afin the au-
tomaton A viewed as an automaton on finite words. Let Cacc be the maximal
strongly connected component of GA that contains qacc. We define the automa-
ton Bfin = 〈Σ, Cacc, δ

q
fin , qacc, {qacc}〉 as the automaton on finite words that is

derived from the graph Cacc, with initial state and accepting state qacc. Formally,
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Bfin = 〈Σ, Q ∩ Cacc, δfin , qacc, {qacc}〉, where δfin : Cacc × Σ → 2Cacc is such that
q′ ∈ δfin(q, σ) iff q′ ∈ δ(q, σ) ∩ Cacc. In Lemma 3.1 we show that for lasso-shaped
words, the membership problem of a word in the language can be reduced to the
membership problem of two prefixes of a bounded length in languages on finite
words.

Lemma 3.1 An (n1, n2)-lasso-shaped word w belongs to L(A) iff there exist n1 ≤
p ≤ n1 + |Q|n2 and 1 ≤ i ≤ |Cacc|, where |Cacc| is the size of the maximal strongly
connected component that contains the accepting state, such thatw[1, p] ∈ L(Afin),
and w[p+ 1, p+ i · n2] ∈ L(Bfin).

Proof: Assume first that w ∈ L(A). We show that then there exist p and i as
required. For that, we first define the function pos : IN → {1, . . . , n1 + n2}, where
for all i ∈ IN we have

pos(i) =







i if i ≤ n1.

n1 + 1 + ((i− (n1 + 1)) mod n2) if i > n1.

Intuitively, since w is an (n1, n2)-lasso-shaped word, the letter w(i), for all i ∈ IN,
is equal to the letter w(pos(i)).

In order to reason about the runs ofA on w, we consider the graphG that represents
the possible runs of A on w. Formally, G = 〈V,R〉, where V = Q× {1, . . . , n1 +
n2}, and R(〈q, i〉, 〈q′, i′〉) iff q′ ∈ δ(q, w(i)) and i′ = pos(i + 1). We say that a
vertex 〈q, i〉 of G is accepting iff q ∈ α. It is easy to see that w is accepted by A iff
the graph G has an accepting vertex 〈qacc, p〉 such that 〈qacc, p〉 is reachable from
〈q0, 1〉 and from itself.

The vertices of G can be partitioned to V1 and V2 with the corresponding induced
subgraphs G1 = 〈V1, R1〉 and G2 = 〈V2, R2〉. The subgraph G1 has V1 = Q ×
{1, . . . , n1}, R1 = R ∩ (V1 × V1), and it represents the possible runs of A on
the prefix of w. The subgraph G2 has V2 = Q × {n1 + 1, . . . , n1 + n2}, R2 =
R ∩ (V2 × V2), and it represents the possible runs of A on the lasso of w. The
transitions in R ∩ ((Q× {n1}) × (Q× {n1 + 1})) connect the two subgraphs.

Since for i ≤ n1 + 1, we have pos(i) = i, the graph G1 does not contain cycles.
Since w ∈ L(A), the graph G2 contains at least one cycle that contains a vertex
〈qacc, j〉 for some n1 + 1 ≤ j ≤ n1 + n2, and 〈qacc, j〉 is also reachable from the
vertex 〈q0, 1〉 Since the cycles in G2 are induced by the lasso of w, the length of the
cycle is divisible by n2, and is bounded by |Q|n2, which is the number of vertices
in G2. In order to prove the stronger bound on i we note that cycles that contain
〈qacc, p〉 are induced by the lasso of w and also by the cycles in the graph of A. The
length of (simple) cycles in the graph of A that contain the state qacc is bounded by
the size of the maximal strongly connected component Cacc, which contains qacc.
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Thus, the length of cycles that contain 〈qacc, p〉 is bounded by |Cacc|n2, as required.
Since G1 does not contain cycles, the length of the shortest path inG from 〈q0, 1〉 to
〈qacc, j〉 is at least n1, in case the vertex 〈qacc, n1〉 is reachable in G, and is at most
n1 + |Q|n2, in case the smallest j for which 〈qacc, j〉 is reachable in G is n1 + |Q|n2.
Let p be the length of this path. It follows that A has an accepting run on w that
visits qacc in steps p and p + i · n2, for n1 ≤ p ≤ n1 + |Q|n2, and q ≤ i ≤ |Cacc|,
thus w[1, p] ∈ L(Afin) and w[p+ 1, p+ i · n2] ∈ L(Bfin).

Assume now that there exist n1 ≤ p ≤ n1 + |Q|n2 and 1 ≤ i ≤ |Cacc| such that
w[1, p] ∈ L(Afin) and w[p + 1, p + i · n2] ∈ L(Bfin). Let r1 be an accepting run
of Afin on w[1, p] and let r2 be an accepting run of Bfin on w[p+ 1, p+ i · n2]. We
define the run r in the following way.

r(j) =







r1(j) j ≤ p.

r2(p+ (j − p)) mod i · n2 j > p.

Intuitively, once r reaches qacc in position p, it loops there forever, following the
behavior of r2. It is easy to see that r is a legal and accepting run of A on w. 2

So, by iterating over all the possible values of p and i, we can reduce the member-
ship problem for Büchi automata and lasso-shaped infinite words to a sequence of
membership tests for finite words. However, since the number of possible values
for p depends on n2, so is the query complexity of an algorithm that is based on
such a reduction. In Section 4 we describe the long journey required in order to
avoid this dependency in n2.

4 The Algorithm

In this section we describe an ε-test for lasso-shaped words with respect to prop-
erties given by a nondeterministic Büchi automaton. The query complexity of the
test is Õ(1/ε). The basic idea is to use the ε-test of finite words as an oracle, and
reduce an ε-test for an infinite word to a sequence of ε-tests for finite subwords
of it. As explained in Section 3, Lemma 3.1 suggests such a reduction, only that
the number of calls to the oracle depends on the length of the input word. We now
describe how to avoid such a dependency. Fortunately, some of the techniques de-
veloped in [AKNS99] in order to ε-test finite words turned out to be useful also for
bounding the number of calls to the algorithm in [AKNS99]. In particular, we need
the following lemma about strongly connected graphs.

Lemma 4.1 [AKNS99] Let G = 〈V,E〉 be a nonempty, strongly connected graph
with a finite period g. Then there exists a partition of V to pairwise disjoint sets
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V (G) = V0, . . . , Vg−1 and a constant m ≤ 3|V |2 such that:

(1) For every 0 ≤ i, j ≤ g − 1, and for every u ∈ Vi, v ∈ Vj, the length of every
directed path from u to v in G is (j − i) mod g.

(2) For every 0 ≤ i, j ≤ g− 1, and for every u ∈ Vi, v ∈ Vj, and for every l ≥ m
such that l = (j − i) mod g, there exists a directed path from u to v in G of
length l.

The proof of Lemma 4.1 follows from the well known fact that for a set of integers
{ai} with the greatest common divisor g, each large enough integer (greater that
some number m that depends on {ai}) that is divisible by g is a linear combination
of the numbers {ai} with non-negative coefficients. The integers ai are the lengths
of cycles in G, and the constant m from Lemma 4.1 is called the reachability con-
stant of G. It is smaller than the square of the maximal number among g1, . . . , gk

[Lew72,Dix90].

We use Lemma 4.1 in order to change the input word slightly in a way that enables
us to restrict attention to runs of A that visit qacc at specific positions whose number
depends on the period of Cacc rather than on n2. This involves two arguments.
First, in Lemma 4.2 we show that when w is in L(A), we can change w slightly
so that A accepts the resulted word v by visiting qacc at specific positions. Then,
in Lemma 4.3, we prove that if w is ε-far from L(A), then all words v that are
slightly different from w cannot be accepted by runs that visit qacc in these specific
positions. In what follows, we fix g and m to denote the period and the reachability
constant of Cacc, respectively. Also, let

D =
⋃

k≥0

{n1 + (|Q| + k)n2, . . . , n1 + (|Q| + k)n2 + 2m+ g − 1}.

As illustrated in Figure 1, when we formalize in Lemmas 4.2 and 4.3 the notion of
“change w slightly”, we mean that w can be changed only in positions in D (the
gray areas in Figure 1).

b + n2 b + n2 + ∆ b + 2n2 b + 2n2 + ∆ b + 3n2b + ∆b b + 3n2 + ∆

. . .

Fig. 1. The positions in which w and v may differ, with b = n1+|Q|n2 and ∆ = 2m+g−1.
Lemma 4.2 Let w ∈ L(A) be an (n1, n2)-lasso-shaped word with n2 > 2m + g.
There exists a lasso-shaped word v ∈ L(A) that satisfies the following.

(1) For all j 6∈ D, we have w(j) = v(j), and
(2) The length of the prefix of v is pv, where n1 + |Q|n2 +m ≤ pv ≤ n1 + |Q|n2 +

m+ g− 1, and the length of the lasso of v is ivn2, where 1 ≤ iv ≤ |Cacc|, and
we have v[1, pv] ∈ L(Afin) and v[pv + 1, pv + iv · n2] ∈ L(Bfin).

Proof: Since w ∈ L(A), then by Lemma 3.1 there exists a run r of A on w and
integers n1 ≤ p ≤ n1 + |Q|n2 and 1 ≤ i ≤ |Cacc| such that r(p) = r(p+ i · n2) =
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qacc. In fact, the run constructed in the proof of Lemma 3.1 continues to loop at
qacc. Thus, r(p + j) = r(p + (j mod (i · n2))) for all j > 0. Note that for all
j ≥ p, r(j) ∈ Cacc. Let V0, . . . , Vg−1 be a partition of Cacc as in Lemma 4.1. Let
q = r(n1 + |Q|n2). We know that q ∈ Cacc. Let 0 ≤ i1 ≤ g−1 be such that q ∈ Vi1 ,
let i2 be such that qacc ∈ Vi2 , and let m ≤ l ≤ m + g − 1 be the integer for which
l = (i2− i1) mod g. Then by Lemma 4.1 there exists a path from q to qacc of length
l, implying that there is a word v1 ∈ Σ∗ of length l that belongs to Bfin . Let p1 be
this path from q to qacc. Let q′ = r(n1+|Q|n2+l), and let q′′ = r(n1+|Q|n2+l+m).
There exists a path from q to q′ of length l, thus q′ ∈ Vi2 . There also exists a path
from q′ to q′′ of length m, thus q′′ ∈ Vi3 for i3 such that m = (i3 − i2) mod g.
Thus, by Lemma 4.1, there exists a path of length m from qacc to q′′. Let p2 be this
path, and let v2 be a word of length m that corresponds to this path. Now we define
v as w[1, n1 + |Q|n2] · (v1 · v2 · w[n1 + |Q|n2 + m + l + 1, n1 + (|Q| + 1)n2])

ω.
Obviously, v differs from w only in letters that are located between the positions
n1 + (k+ |Q|)n2 and n1 + (k+ |Q|)n2 +m+ l, for all k ≥ 1. By the construction
of v, we have v ∈ L(A), and there exists an integer pv such that n1 + |Q|n2 +m ≤
pv ≤ n1+ |Q|n2+m+g−1 and v[q, pv] ∈ L(Afin). The word v is (n1+ |Q|n2, n2)-
lasso-shaped, thus, according to Lemma 3.1, there exists an integer 1 ≤ iv ≤ |Cacc|
such that v[pv + 1, pv + iv · n2] ∈ L(Bfin).

We note that iv = i, where i is the parameter derived from Lemma 3.1 for the
word w. To see this, consider the run r of A on w that satisfies the conditions of
Lemma 3.1. Let r′ be the run r(1), . . . , r(n1 + |Q|n2), (p1 · p2, r(n1|Q|n2 + m +
l + 1), . . . , r(n1 + (|Q| + 1)n2))

ω. From the construction of r′, we have that r′ is
a legal run of A on v. The length of the loop of r′ is the same as the length of the
loop of r, and is equal to i. Thus, iv = i. 2

In particular, Lemma 4.2 implies that dist(w, v) ≤ m+ g.

Lemma 4.3 For each 0 < c < 1, there exists Nc ∈ IN such that for every (n1, n2)-
lasso-shaped word w, if w is ε-far from L(A), with n2 ≥ Nc, then all infinite words
v satisfy one of the following.

(1) There is j 6∈ D such that w(j) 6= v(j), or
(2) For all n1 + |Q|n2 +m ≤ p ≤ n1 + |Q|n2 +m + g − 1 and 1 ≤ i ≤ |Cacc|,

either L(Afin) does not contain words of length p, or v[p + 1, p + i · n2] is
c · ε-far from L(Bfin).

Proof: Assume by way of contradiction that there exists 0 < c < 1 such that for
all N ∈ IN there exist words w and v as follows:

• The word w is (n1, n2)-lasso-shaped,
• n1 ≥ N and n2 ≥ N ,
• the word v differs from w only in letters that are located between n1+(k+|Q|)n2

and n1 + (k + |Q|)n2 + 2m+ g − 1, for all k ≥ 0, and
• there exist integers p and i such that n1+|Q|n2+m ≤ p ≤ n1+|Q|n2+m+g−1
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and 1 ≤ i ≤ |Cacc|, v is (p, i · n2)-lasso-shaped, the language L(Afin) contains
words of length p, and dist(v[p+ 1, p+ i · n2], L(Bfin)) < c · ε · i · n2.

Let N = (2m+g−1)
ε(1−c)

, and let w and v be the words as above. Let p = n1 + |Q|n2 + l.
We know that m ≤ l ≤ m+ g− 1. We note that dist(w, v) = dist(w[p+ 1, p+ i ·
n2], v[p+ 1, p+ i · n2]) ≤ i(2m+ g − 1). Let u1 be a word in L(Afin) of length p.
Recall that the distance dist(v[p+1, p+ i ·n2], L(Bfin)) is defined as the minimum
of distances between v[p + 1, p + i · n2] and words in L(Bfin) of the same length.
Let u2 be the word in L(Bfin) where this minimum is reached. Then, u2 is of length
i ·n2 and dist(v[p+ 1, p+ i ·n2], u2) < c · ε · i ·n2. Now consider the lasso-shaped
word u = u1 · (u2)

ω. By Lemma 3.1, u ∈ L(A). We compute dist(w, u). The least
common multiplier of n2 and i · n2 is i · n2. Thus, by the definition of distance,

dist(w, u) = dist(w[p+ 1, p+ i · n2], u[p+ 1, n1 + i · n2]),

Since dist(w[p+ 1, p+ i · n2], v[p+ 1, p+ i · n2]) ≤ i(2m+ g − 1), we have that

dist(w, u) ≤ dist(w[p+ 1, p+ i · n2], v[p+ 1, p+ i · n2]) + dist(v[p+ 1, p+ i · n2], u[p+ 1, p+ i · n2]) <

i(2m + g − 1) + c · ε · i · n2.

Since dist(w, u) ≥ ε · i · n2, we receive that

i(2m + g − 1) + c · ε · i · n2 > ε · i · n2,

and thus

c >
ε · n2 − (2m + g − 1)

εn2
,

but we chose c ≤ ε·n2−(2m+g−1)
εn2

, and thus we reach a contradiction. This concludes
the proof of the lemma. 2

In fact, in the proof of Lemma 4.3, we show that Nc = 2m+g−1
ε(1−c)

.

We are now ready to prove the following theorem, which gives a reduction from
infinite lasso-shaped words to finite words, where the complexity of the reduction
is independent of the size of the input.

Theorem 4.4 Consider a Büchi automaton A = 〈Σ, Q, δ, q0, {qacc}〉. For every
(n1, n2)-lasso-shaped word w ∈ Σω, the following hold.

(1) If w ∈ L(A), then there exists a lasso-shaped word v ∈ L(A) as follows.
(a) dist(w, v) ≤ 2m+ g − 1.
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(b) For all j 6∈ D we have w(j) = v(j).
(c) There exist integers n1 + |Q|n2 + m ≤ p ≤ n1 + |Q|n2 + m + g − 1

and 1 ≤ i ≤ |Cacc|, such that v[1, p] ∈ L(Afin) and v[p+ 1, p+ i · n2] ∈
L(Bfin).

(2) If w is ε-far from L(A), then for all lasso-shaped words v ∈ Σω such that
w(j) = v(j) for all j 6∈ D, all integers p and i such that n1+|Q|n2+m ≤ p ≤

n1 + |Q|n2 +m + g − 1 and 1 ≤ i ≤ |Cacc|, and all 0 < c ≤ εn2−(2m+g−1)
εn2

},
either L(Afin) does not contain words of length p, or dist(v[p + 1, p + i ·
n2], L(Bfin)) ≥ c · ε · i · n2.

Proof: We start with the case w ∈ L(A). Let v be as in Lemma 4.2. Then v differs
from w only in letters that are located between n1 + (k + |Q|)n2 and n1 + (k +
|Q|)n2 + m + g − 1 for all k ≥ 0, as required, and there exists an integer p such
that n1 + n2 +m ≤ p ≤ n1 + |Q|n2 +m+ g− 1 and there exists a run rv of A on
v such that rv(p) = qacc. Therefore, v[1, p] ∈ L(Afin). In addition, there exists an
integer 1 ≤ i ≤ |Cacc| such that rv(p+ i · n2) = qacc. Let rv(p+ 1) = q. Clearly, q
is a successor of qacc. Furthermore, there is a path from qacc to q and from q to qacc.
Thus, v[p+ 1, p+ i · n2] ∈ L(Bfin).

We now consider the case wherew is ε-far fromL(A). Let c ≤ ε·n2−(2m+g−1)
ε·n2

. Then,
we have n2 >

(2m+g−1)
ε(1−c)

. Then, according to Lemma 4.3, for all v that differ from w

only in letters that are located between n1 + (k + |Q|)n2 and n1 + (k + |Q|)n2 +
m + g − 1 for all k ≥ 0, and for all integers p and i such that n1 + |Q|n2 + m ≤
p ≤ n1 + |Q|n2 + m + g − 1 and 1 ≤ i ≤ |Cacc|, either L(Afin) does not contain
words of length p, or v[p+ 1, p+ i · n2] is c · ε-far from L(Bfin). 2

By the definition of c, it is always greater than 0 and is smaller than 1. If we take
c > 1/2, Theorem 4.4 holds for all n2 that are greater than 3(2m+g−1)

ε(1−c)
.

Theorem 4.4 leads to our ε-test, which is described in Figure 2. The algorithm gets
five parameters: a lasso-shaped word w, the length of the prefix of w, the length of
the lasso of w, a Büchi automaton A, and 0 < ε ≤ 1. It invokes two algorithms: an
algorithm Check Length, which gets as input an automaton Afin and an integer p
and checks whether the language L(Afin) contains words of length p, and an algo-
rithm Fin Test, which, from reasons we explain below, differs from the algorithm
of [AKNS99]. The algorithm Check Length is deterministic, and it checks whether
Afin contains words of length p by computing several modulo operations on p. We
describe the algorithm Check Length later in this section. The algorithm Fin Test
gets four parameters: a finite word w′, the length of w′, an automaton on finite
words Bfin , and 0 < ε′ ≤ 1. Like the algorithm in [AKNS99], when w′ ∈ L(Bfin),
it outputs “yes”, and when w′ is ε′-far from L(Bfin), it outputs “no” with prob-
ability at least 2/3. We will describe the algorithm Fin Test in more detail later.
Essentially, Fin Test is a simpler version of the algorithm in [AKNS99] that also
discards from the random sample the letters of the input that are located in the gray
areas in Figure 1. Thus, the algorithm Fin Test gives the same answer for all words

13



that differ one from another only in letters that are located in these areas. We note
that Fin Test can handle general alphabet and nondeterministic automata, never-
theless it is not hard to see that the algorithm in [AKNS99] can be applied also to
general alphabets and nondeterministic automata.

procedure LS Test (w, n1, n2, A, ε)
for p = n1 + |Q|n2 +m to n1 + |Q|n2 +m+ g − 1 do

if Check Length (Afin , p) then
for i = 1 to |Q| do

if Fin Test (w[p + 1, p + i · n2], p, Bfin , ε −
2m+g−1

n2

) then return
“yes”;

return “no”.

Fig. 2. Testing of Lasso-Shaped Words

The algorithm LS Test first calls the algorithm Check Length with the automaton
Afin and the length p, for all n1 + |Q|n2 +m ≤ p ≤ n1 + |Q|n2 +m+ g− 1. Thus,
the first part of LS Test invokes Check Length at most g times. If LS Test gets a
positive answer for some p, it calls Fin Test with the word w[p + 1, p + i · n2] of
length i ·n2, the automaton Bfin , and ε′ = ε− 2m+g−1

n2
, for all 1 ≤ i ≤ |Cacc|. Now,

since the the query complexity of Check Length is 0, and the query complexity
of Fin Test is Õ(1/ε′), and since m, g, and |Q| do not depend on w, the query
complexity of LS Test is Õ(1/ε).

Readers not familiar with [AKNS99] may be happy at this point and wonder about
the need to modify the algorithm in [AKNS99]. The need for it arises from three dif-
ferences between our situation here and the situation in [AKNS99]. The first differ-
ence has to do with the fact that LS Test calls Fin Test several times, and it returns
“yes” if for some p and i the language L(Afin) contains words of length p and the
corresponding call to Fin Test returned “yes”. Consequently, if we want to bound
the probability of error of LS Test by 1/3, the probability of error of Fin Test has
to be much lower. The second difference comes from the fact that [AKNS99] con-
siders general automata, that is, automata whose graphs consists of several strongly
connected components, whereas in our case the graph of automatonBfin is strongly
connected (since the graph of Bfin is the maximal strongly connected component
Cacc of A that contains the accepting state qacc). The third difference has to do with
the intervals in the set D of positions in which we allowed a modification of w.

Let us describe the algorithm Fin Test. For 1 ≤ i ≤ log(4m/ε) we define ri =
26−im log 1/ε

ε
. The algorithm proceeds as follows.

1. For each 1 ≤ i ≤ log(4m/ε) choose xri random subwords in w of length 2i+1

each, where x = b− log(1 − ( 2
3
)

1

|Cacc|·g )/2c.
2. Discard chosen subwords that intersect with D.
3. Check feasibility of the remaining subwords for the automaton Bfin . If all these

subwords are feasible, accept. Otherwise (at least one infeasible subword is
found), reject.
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Now we prove that the probability of error of Fin Test is bounded by 1/4x, where x
is the parameter from the step 1 of the algorithm. Formally, we prove the following
lemma.

Lemma 4.5 the probability of error for Fin Test is bounded by 1/4x, where x is
the factor by which the algorithm increases the number of chosen subwords.

Proof: Clearly, if the input word belongs to L(Bfin), then all its subwords are fea-
sible and the algorithm always accepts. We now compute the probability of (erro-
neous) positive answer in case of w being ε-far from L(A). We need to estimate the
number of infeasible subwords among the chosen subwords. We use the following
lemma.

Lemma 4.6 [AKNS99] Assume that the language L = L(A) contains some words
of length n, and that A is essentially strongly connected. Let m be the reachability
constant of A. Assume that εn ≥ 64m log(4m/ε). Then if for a word w of length
|W | = n, dist(w,L) ≥ εn, then there exists an integer 1 ≤ i ≤ log(4m/ε) such
that the number of infeasible subwords of w of length 2i+1 is at least 2i−4εn

m log(4m/ε)
.

By Lemma 4.6, there exists 1 ≤ i ≤ log (4m/ε) such that the number of infeasible
subwords of w is at least 2i−4εn

m log(4m/ε)
. At most |Cacc|(2m + g − 1) of them may

intersect with intervals [n1 + (x+ |Q|)n2, n1 + (x+ |Q|)n2 + 2m+ g− 1] for 1 ≤

x ≤ |Cacc|. For sufficiently large n, we have that at least 2i−4εn
m log(4m/ε)

− |Cacc|(2m+

g − 1) ≥ 2i−5εn
m log(1/ε)

of the infeasible subwords were not discarded. If a random
sample contains one of these subwords, it provides a certificate for the fact that w
does not belong to the language. A random sample of x · ri subwords of length 2i+1

misses all these infeasible subwords with probability at most

(1 −
1

n

2i−5εn

m log(1/ε)
)x·ri < e−2x = (e−2)x <

1

4x
. (1)

2

It remains to show that for integer x such that x = b−
log(1−( 2

3
)

1

|Cacc|·g )

2
c and for each

w that is ε-far from L(A), the algorithm LS Test outputs “no” with probability at
least 2/3.

Let w be an input word that is ε-far from L(A). The algorithm LS Test invokes the
procedure Check Length with the automaton Afin and the length p · g times for all
possible values of p between n1 + |Q|n2 + m and n1 + |Q|n2 + m + g − 1. In a
case of the positive answer, LS Test invokes Fin Test with the automaton Bfin and
the word w[p + 1, p + i · n2] for all possible values of i between 1 and |Cacc|. By
Lemma 4.3, for each p and i as above, either the language L(Afin) does not contain
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words of length p, or w[p+ 1, p+ i · n2] is c · ε-far from Bfin .

• Assume that the language L(Afin) does not contain words of length p. The al-
gorithm Check Length returns the negative answer with probability 1 (since it is
deterministic).

• Assume that w[p+ 1, p+ i · n2] is c · ε-far from Bfin for all 1 ≤ i ≤ |Cacc|. Then
the algorithm LS Test returns the negative answer iff all calls to Fin Test with
the automaton Bfin return the negative answer. Each call to Fin Test returns the
negative answer with probability at least 1− 1

4x , by Equation 1. Thus, |Cacc| calls
to Fin Test return the negative answer with probability at least (1 − 1

4x )|Cacc|.

Thus, the probability of the negative answer for a specific value of p is at least
(1− 1

4x )|Cacc|, and therefore for g possible values of p the probability of the negative
answer is at least (1− 1

4x )|Cacc|·g, which is at least 2/3 by the choice of x. Thus, the
probability of error for LS Test with x as above is bounded by 1/3.

We are now ready to prove the correctness of the algorithm LS Test.

Theorem 4.7 For a Büchi automaton A = 〈Σ, Q, δ, q0, {qacc}〉, and an (n1, n2)-
lasso-shaped word w ∈ Σω, if w ∈ L(A), then the algorithm LS Test always out-
puts “yes”, and if w is ε-far from L(A), then the algorithm LS Test outputs “no”
with probability at least 2/3.

Proof: Assume that w ∈ L(A). Then, by Theorem 4.4, there exists a lasso-shaped
word v ∈ L(A) that is very close to w, and there exist n1 + |Q|n2 + m ≤ p ≤
n1 + |Q|n2 +m+g and 1 ≤ i ≤ |Cacc| such that v[1, p] ∈ L(Afin) (which means in
particular that L(Afin) contains words of length p), and v[p+1, p+i·n2] ∈ L(Bfin).
Thus, LS Test returns “yes” for v. It remains to show that LS Test returns the same
answer for w. Recall that LS Test does not choose subwords that have letters in
positions in D, and that v and w may differ only in letters in such positions. It
follows that LS Test does not distinguish between v and w, and we are done.

Assume now that w is ε-far from L(A). Then, by Theorem 4.4, for all words v such
that w(j) = v(j) for all j 6∈ D, and for all p and i as above, either L(Afin) does
not contain words of length p, or w[p + 1, p + i · n2] is ε′-far from L(Bfin). In the
former case we receive negative answer with probability 1 (since Check Length is
deterministic), or each one of the calls to Fin Test returns the negative answer with
probability (1 − 1

4x ), where x is the factor by which we have increased the number

of chosen subwords in step 1. In particular, for x = b− log(1 − ( 2
3
)

1

|Cacc|·g )/2c,
LS Test returns “no” with probability at least 2/3. 2

Remark 4.8 The algorithm LS Test can be extended to handle multiple accepting
states by running it for each accepting state separately. This increases the running
time by at most the size of α. The algorithm LS Test, as well as the algorithm of
[AKNS99], are described for the case of a single initial state. They can be extended
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to handle multiple initial states by running it for each initial state separately. This
increases the running time by at most the number of initial states. 2

4.0.0.1 Description of Check Length The algorithm Check Length is deter-
ministic. For an automatonAfin and an integer p it checks whether there exist words
of length p accepted by Afin . The check is done by considering all possible traver-
sals of a word in the automatonA∈fin described by the list of traversed components
and the sequence of entrance and exit states for each component. For each traver-
sal, Check length checks whether it can fit a word of length p. The algorithm uses
Lemma 4.1 and the well known fact that for a set of integers {ai} with the great-
est common divisor g, each large enough integer that is divisible by g is a linear
combination of the numbers ai with non-negative coefficients.

Each possible traversal of a word in the automaton Afin can be described by a pair
〈A, P 〉, where A is the list of traversed components and P is the sequence of en-
trance and exit states for each component. A pair is called admissible if the last
component in A contains the accepting state qacc (that is, admissible pairs corre-
spond to accepting runs). Note that the number of admissible pairs depends only
on the size of Afin , and not on the size of the input word. Let 〈A, P 〉 be an ad-
missible pair, where A = C1, . . . , Ck is the list of traversed components, and
P = {〈pi

2, p
i+1
1 〉 : 1 ≤ i ≤ k} is the list of “portals”. For each i, the state pi

1 is
the entrance state to the component, and pi

2 is the exit state of the component. For
the last component Ck, pk

2 is the state qacc. We now use Lemma 4.1 for each compo-
nent separately. For a componentCi, let gi be the period of Ci, and let V i

0 , . . . , V
i
gi−1

be the partition of the states of Ci according to Lemma 4.1. Let V i
j be the set that

contains pi
1, and V i

l be the set that contains pi
2. By Lemma 4.1, all paths from pi

1 to
pi

2 are of length (l − j) mod gi. Let remi = (l − j) mod gi for the component Ci.
Thus, a traversal 〈A, P 〉 corresponds to a possible traversal of a word of length p in
the automatonAfin iff there exist integers p1, . . . , pk such that

∑k
i=1 pi+(k−1) = p

and pi = remi mod gi for 1 ≤ i ≤ k (pi is the length of the traversal in the compo-
nent Ci, and the term k − 1 in the sum is the sum of lengths of edges that connect
the components). Therefore, the check of existence of words of length p in the lan-
guage L(Afin) reduces to the check of whether there exist integers x1, . . . , xk such
that p =

∑k
i=1 xigi +

∑k
i=1 remi + (k − 1). It is well known that if g is the great-

est common divisor of g1, . . . , gk, then there exists t such that each integer that
is larger than t and is divisible by g is a linear combination of {g1, . . . , gk} with
nonnegative coefficients. Moreover, t is smaller than the square of the maximal
number among g1, . . . , gk [Lew72,Dix90]. That is, there exist x1, . . . , xk as above
iff p −

∑k
i=1 remi − (k − 1) is divisible by g. Thus, the algorithm Check Length

checks whether p−
∑k

i=1 remi − (k − 1) is divisible by g for each admissible pair
〈A, P 〉, and returns “yes” if one such pair exists. We note that we assumed that all
Ci are truly connected components. In the case that Ci is a state, we do not count it
in the sum. The algorithm works correctly for all p ≥ 3|Q|2, and for smaller p all
possible traversals can be checked directly.
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4.1 Query complexity and running time of the algorithm LS Test

The procedure Check Length does not query the input word. The algorithm LS Test
executes the procedure Fin Test at most |Caccg times. Each call to the procedure
Fin Test samples x · ri subwords of length 2i+1 for all i between 1 and log(4m/ε).

Recall that x = b−
log(1−( 2

3
)

1

|Cacc|·g )

2
c. Thus, the number of bits queried by Fin Test

is

log(4m/ε)
∑

i=1

2i+1(−
log(1 − (2

3
)

1

|Cacc|·g )

2
)
26−im log(1/ε)

ε
< (−

log(1 − (2
3
)

1

|Cacc|·g )

2
)
28m log2(1/ε)

ε
,

and the number of bits queried by LS Test is bounded by the number of bits queried
by Fin Test multiplied by (|Cacc| + 1)g.

The running time of the algorithm depends on the query complexity, and for each
queried subword w of the input on the length of the feasibility check. Each such
check involves checking whether there are words u and v of matching lengths such
that uwv is accepted by the matching automaton on finite words. This check is done
using Lemma 4.1 in case the words u and v are longer than m, or by checking all
|Σ|m possible words in case one of the words u or v is shorter than m (see also
[AKNS99]).

4.2 Requirements for ε, n1, and n2

Similarly to other property-testing algorithms, our algorithm works correctly for
long input words. The restrictions on the size of the input word follow from the
inequalities listed below.

(1) c ≤ ε·n2−(2m+g−1)
ε·n2

.
(2) ε < (1/e)log 4m+1.
(3) n2 >

25−im log 1/ε log 4m/ε|Cacc|(2m+g−1)
ε

.

5 Safety Languages

Of special interest in formal verification are safety properties, asserting that the ob-
served behavior of the system always stay within some allowed region, in which
nothing “bad” happens. Intuitively, a property ψ is a safety property if every vio-
lation of ψ occurs after a finite execution of the system. Consider a language L of
infinite words over Σ. A finite word x over Σ is a bad prefix for L iff for all infinite
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words y over Σ, the concatenation x · y of x and y is not in L. Thus, a bad prefix
for L is a finite word that cannot be extended to an infinite word in L. A language
L is a safety language if every word not in L has a finite bad prefix [AS85]. For
example, if Σ = {0, 1}, then L = {0ω, 1ω} is a safety language. Indeed, every word
not in L contains either the sequence 01 or the sequence 10, and a prefix that ends
in one of these sequences cannot be extended to a word in L.

In this section we consider ε-testability of safety properties. Given a nondeterminis-
tic Büchi automaton A that recognizes a safety language (the latter can be checked
in PSPACE [Sis94]), it is possible to construct a deterministic automaton Abad on
finite words that accepts exactly all the bad prefixes of L(A) [KV99]. Clearly, an in-
finite word w belongs to L iff there is no finite prefix of w that belongs to L(Abad).
Lemma 5.1 below shows that for lasso-shaped words, it is enough to check one
prefix.

Lemma 5.1 Consider nondeterministic Büchi automatonA that recognizes a safety
language. Let |Q| be the number of states of the automaton Abad, and let w be an
(n1, n2)-lasso-shaped word. Then, w ∈ L(A) iff w[1, n1 + |Q|n2] 6∈ L(Abad).

Proof: The idea of the proof is similar to the one used in Lemma 3.1, and is based
on analyzing the possible combinations of a state of Abad with a position of w. Note
that if x ∈ Σ∗ is a bad prefix, then x·y is a bad prefix for all y ∈ Σ∗. Thus, it suffices
to show that w 6∈ L(A) iff there exists a bad prefix of w of length less or equal to
n1 + |Q|n2.

Assume first that w 6∈ L(A). Let x be the shortest bad prefix of w. The run of
Abad on w reaches an accepting state for the first time after |x| steps. The same
construction as in Lemma 3.1 shows that if an accepting state is reached, then it is
reached within the first n1 + |Q|n2 steps of the run. Thus, |x| ≤ n1 + |Q|n2. For
the other direction, assume that there exists a prefix of w of length m ≤ n1 + |Q|n2

such that w[1, m] ∈ Abad. Then, w has a bad prefix, implying it is not in L(A). 2

It follows that an ε-test for the membership of an (n1, n2)-lasso shaped word in
the language of an automaton A that recognizes a safety property can invokes the
ε-test of regular languages of [AKNS99] with the word w[1, n1 + |Q|n2] and the
automaton Abad.

6 Lower Bound for Lasso-Shaped Infinite Words

In this section we prove a lower bound of Ω(1/ε) for query complexity of ε-
testing of lasso-shaped infinite words. The proof is similar to the one presented
in [AKNS99] for query complexity of ε-testing regular languages. We note that
since testing infinite words is a harder problem than testing finite words, and given
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the fact that there is a lower bound of Ω(1/ε) on testing finite words, the same
lower bound on testing infinite words is quite expected. However, since our test-
ing algorithm of infinite words is restricted to lasso-shaped words, the lower bound
does not follow immediately from the finite case.

The proof uses the renowned principle of Yao [Yao77], saying that if there ex-
ists a probability distribution on the union U of positive and negative examples
such that any deterministic testing algorithm of query complexity d is correct with
probability less than 2/3 for an input randomly chosen from U according to this
distribution, then d is a lower bound on the query complexity of any randomized
testing algorithm.

As the proof of lower bound for testing finite words [AKNS99], the proof of lower
bound for testing infinite words uses the algorithm that is presented in Section 4
in order to create the required probability distribution. The difference between the
finite case and the lasso-shaped case stems from the fact that a finite word obtained
by several unwindings of the lasso of length n has a particular structure: it is pe-
riodic with period n. The proof of [AKNS99] starts with a word of length m in
the language and then changes it in randomly chosen εm places in order to obtain a
word which is far from the language. In our case,m = i·n for some i ≥ 1, however
in order to preserve the lasso structure of the input words, we have to perform our
random choice of runs not from m, but from n. We start with the following lemma,
that demonstrates this idea on a very simple language.

Lemma 6.1 Let L = {1ω} be the language over the alphabet {0, 1}. Then, for any
n, an ε-test of a (0, n)-lasso-shaped word has query complexity of at least 1

3ε
.

Proof: The proof is essentially the same as in [AKNS99] for finite words. Clearly,
L is recognized by a Büchi automaton. We define a distribution on the set of positive
and negative instances with a prefix of length 0 and a lasso of length n as follows.
The word (1n)ω gets the probability 1/2. Next we partition the index set [1, . . . , n]
into t = 1/ε parts I1, . . . , It, each of size εn, and for each 1 ≤ i ≤ t we assign the
probability 1/(2t) to the word yi that is created from (1n)ω by flipping all bits in Ii

from 1 to 0. It is easy to see that dist(yi, L) = εn, thus all yi are negative instances.
Now we apply the Yao principle. Let A be a deterministic ε-testing algorithm with
query complexity d. If A gives the wrong answer on (1n)ω, then it is incorrect with
probability at least 1/2. Otherwise, it should accept the input if all d tested bits
are equal to 1. Then it accepts also at least t − d of the inputs yi. Therefore, A
gives an incorrect answer with probability at least (t − d)/(2t) < 1/3, implying
d > t/3 = 1/3ε. 2

The proof of Lemma 6.1 can be generalized to all non-trivial languages that are rec-
ognized by Büchi automata in essentially the same way as it is done in [AKNS99].
First, we formally define non-trivial languages.

Definition 6.2 A language L that is recognized by a Büchi automaton is non-trivial
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if it is infinite, and there exists a constant 0 < εL < 1 such that for all n1, n2 ≥ 0
there exists an (n1, n2)-lasso-shaped word w such that dist(w,L) ≥ (εLn1, εLn2).

Now we prove the lower bound of Ω(1/ε) for the query complexity of non-trivial
languages. Essentially, the proof is a generalization of the idea used in Lemma 6.1.
For a lasso-shaped word w in the language L, we construct a set of lasso-shaped
words v that are ε-far from w by randomly choosing a set of subwords of total
length O(εn), where n is the length of the lasso, and changing w in these places
such that the resulting set “fools” any deterministic algorithm that asks less than
Ω(1/ε) queries. The main difference between our construction and the construction
used in [AKNS99] is that all words v should be lasso-shaped with lasso of length
n.

Lemma 6.3 For each non-trivial language on infinite words L, for all sufficiently
small ε > 0, any ε-testing algorithm for L requires Ω(1/ε) queries.

Proof: The idea that we use to prove this bound is similar to the one used in
[AKNS99]. We choose a positive example with lasso of size n, and change it in
randomly chosen εn places, thus creating a negative instance which is hard to dis-
tinguish from the positive one.

Let L be a non-trivial language that is recognized by a Büchi automaton. Let w be
an (0, n)-lasso-shaped word that is ε0-far from L. Recall that the algorithm LS Test
invokes the algorithm Check Length for w[1, p] and then the algorithm Fin Test for
w[p+1, p+ i ·n2] for all n1 + |Q|n2 +m ≤ p ≤ n1 + |Q|n2+m+g−1 and 1 ≤ i ≤
|Cacc|, where n1 is the length of the prefix of w and n2 is the length of the lasso. In
our case, LS Test invokes Check Length for all |Q|n+m ≤ p ≤ |Q|n+m+g−1.
Since L is non-trivial, the algorithm Check Length accepts at least for one value
of p. The algorithm Fin Test chooses a random set of subwords and checks the
feasibility of each subword with respect to the corresponding language on finite
words. The algorithm has one-sided error, that is, in case of w ∈ L, the algorithm
always accepts, and in case of w that is ε0-far from L the algorithm rejects with
probability at least 2/3. Thus, if we choose a random set of subwords as above,
it will cause the algorithm to reject w with probability at least 2/3 and will not
coincide with any word u ∈ L.

According to Theorem 4.4, if w is ε0-far from L, then there exists a constant 0 <
c < 1 such that either there are no words of length p in Lfin , or w[p+ 1, p+ i · n2]
is c · ε0-far from Lq

fin for all |Q|n+m ≤ p ≤ |Q|n+m+ g − 1, 1 ≤ i ≤ |Q|, and
q ∈ S, where Lfin denotes the corresponding language on finite words, and Lq

fin

denotes the language on finite words that is limited to Cacc with the initial state q. It
is enough to check the case where Check Length accepts. That is, w[p+1, p+ i ·n]
is ε0-far from Lq

fin . This implies that with a probability at least 2/3 a random choice
of a set of runs built as described in the Fin Test algorithm and having total length
Õ(1/ε0), will cause the algorithm to reject w[p + 1, p + i · n] (and thus also w).
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Since the algorithm has one-sided error, a random set of runs with probability 2/3
will cause the algorithm to reject w and will not coincide with any word in L.

Each such run is a set of intervals in {p+ 1, . . . , p+ i · n} of total length bounded
by Õ(1/ε0). Let u be a (0, n)-lasso-shaped word in L. Our goal is to create a proba-
bility distribution over positive and negative instances of L, where u is the positive
instance, and negative instances are created from u by changing the bits of u, cor-
responding to some random run, to those of w. The difficulty that arises here and
does not exist in [AKNS99] is that the changed words should also be (0, n)-lasso-
shaped. That is, not only the chosen runs should be pairwise disjoint, but also their
projections on [1, n] should be pairwise disjoint, since for every 1 ≤ i ≤ n and
1 ≤ j ≤ |Q|, the indices i and i+ jn correspond to the same position on the lasso.
Note, however, that for a subword of length r there are at most r · |Q| subwords
that correspond to the same position on the lasso. Thus, choosing ε small enough
we can ensure that we have sufficiently many sets of runs that are both pairwise
disjoint and for each run all subwords in it correspond to different positions on the
lasso.

The rest of the proof is as in [AKNS99]. We construct t = c/ε families of runs
Si, each of cardinality εn, where the constant c depends only on ε0. For each Si as
above we define a word wi that is obtained from u by changing the bits of u that
correspond to Si to those of w. Clearly, each wi is ε-far from L. The distribution
is defined as follows. The word u gets the probability 1/2, and each of the t words
wi gets the probability 1/(2t). Then, a deterministic testing algorithm has to query
at least Ω(t) = Ω(1/ε) bits of the input word in order to answer correctly with
probability at least 2/3. The lemma now follows from Yao principle.

2

7 Discussion

The main technical contribution of this paper is an ε-test for ω-regular languages
and lasso-shaped words. This result is an extension of the ε-test for regular lan-
guages presented in [AKNS99]. The extension is not trivial. In fact, already the
definition of distance, which is straightforward for finite words, involves subtle
considerations, and discussion has to be restricted to infinite words with a finite
representation. We describe a reduction from ε-test of infinite words to a constant
number of ε-tests for finite words. The main difficulty that is posed by the fact the
word is infinite is that, unlike the case of finite words, we do not know the position
in the word in which an accepting run of A on the word visits an accepting state.
For general (not lasso-shaped) words, this difficulty cannot be circumvented. We
show that for lasso-shaped words, we can bound the number of positions where an
accepting run can visit an accepting state. Moreover, we show that a word in the
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language of A can be modified slightly to ensure that an accepting run would visit
an accepting state inside a specific interval of a constant length.

Today’s rapid development of complex and safety-critical systems requires formal
verification methods. In model checking, we verify that a system meets a desired be-
havior by executing an algorithm that checks whether a mathematical model of the
system satisfies a formal specification that describes the behavior. The systems we
verify are non-terminating, and their specifications describe an on-going behavior
of the system (c.f., “every request is eventually granted”). The algorithmic nature of
model checking makes it fully automatic, and thus attractive to practitioners. At the
same time, model checking is very sensitive to the size of the mathematical model
of the system. Commercial model-checking tools need to cope with the exceed-
ingly large state spaces that are present in real-life designs, making the so-called
state-explosion problem perhaps the most challenging issue in computer-aided ver-
ification [CGP99].

Almost all previous efforts and heuristics for coping with the state-explosion prob-
lem, such as symbolic methods [McM93] and modular verification [dRLP98], do
not deviate from the strict definition of model checking, where the algorithm is
not allowed to err. Consequently, complexity lower bounds for the model-checking
problem apply also for these heuristics. We believe that a major improvement of
currently used heuristics should involve a deviation from the strict definition of
model checking. The setting of property testing seems very appealing for this task:
the specifications are small, the systems are exceedingly large, and it is the com-
plexity in terms of the system that we wish to bound, which is exactly what property
testing does. Indeed, the complexity of ε-testing algorithms depends only on ε and
on the size of the property, and is independent of the size of the input.

The one-sided error allowed in property testing means that if the system is correct,
the testing algorithm always say it is correct, yet when the system is incorrect, the
testing algorithm may say it is correct. This at first seems like the unfortunate side,
as a model-checking algorithm that reports the correctness of an incorrect system
may be more harmful than an algorithm that reports the incorrectness of a correct
system. It is now agreed, however, that the anticipated goal of formal verification,
of providing a “correctness stamp” on the system, has turned out to involve too
many obstacles (e.g., exact modeling of the system, comprehensive specification,
etc.), and the primary use of model checking nowadays is falsification. There, as in
debugging, the goal is to detect errors, rather than to serve as a correctness stamp
[BCCZ99,Sip99]. The one-sided error of property testing fits well in this approach:
whenever the testing algorithm reports a dissatisfaction of the property, an error
indeed exists. In addition, as with all other randomized algorithms, repeated runs
can be used in order to reduce the error to any desirable constant.

Naturally, the ultimate goal of applying property testing to model checking is an ε-
test that gets as input a Kripke structure that models an entire system (rather than a
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single computation), and distinguishes between the case where the system satisfies
a specification and the case where it is far from satisfying it. Technically, this can
be achieved by extending the ε-test here to ω-regular tree languages. Our efforts
in this direction are still unsuccessful. The difficulty is already in an extension of
[AKNS99] to regular tree languages, and it lies in the fact that local changes in the
tree influence several paths in it. While the ultimate goal seems hard to achieve,
some helpful applications can arise already from our result here.

Our ε-test can replace model checking of lasso-shaped words. While the complex-
ity of the ε-test is independent of n1 and n2, the best time complexity known for
the model-checking problem of (n1, n2)-lasso-shaped words is O((n1 + n2) ∗m),
where m is the size of the specification, represented as a nondeterministic Büchi
automaton. The restriction to lasso-shape words is not really restrictive in the con-
text of model checking: as proven in [CD88], if a system violates an LTL property
ψ, there is a lasso-shaped computation of the system that violates ψ. In addition,
counter examples for LTL properties (that is, descriptions of computations that vi-
olate the specification) are given by model-checking tools in terms of lasso-shaped
computations [VW94], and several random simulation algorithms that are based on
sampling and checking individual computations of the system consider, or can be
easily modify to consider, lasso-shaped words [Wes89,Hol91].

Our ε-test, however, has an additional crucial requirement on the input, namely
the ability to perform local queries of the input in a constant time (also known as
random access to the input). On the other hand, current random-simulation methods
construct the sampled computations “on-the-fly,” and a naive application of our
algorithm on top of them involves storing of the sampled computation and would
cause the time and space complexity to depend on the size of the input word. Still,
our ε-test is useful in combination with a random simulator as running the model
checker on the output of the random simulator causes a significant slow-down in the
performance of the simulator [Fix02]. Thus, storing the sampled computations and
then running our ε-test on them seems a promising way to reduce the complexity
of model checking of sampled computations.
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