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Abstract8

A regular language R of finite words induces three repetition languages of infinite words: the language9

lim(R), which contains words with infinitely many prefixes in R, the language ∞R, which contains10

words with infinitely many disjoint subwords in R, and the language Rω, which contains infinite11

concatenations of words in R. Specifying behaviors, the three repetition languages provide three12

different ways of turning a specification of a finite behavior into an infinite one. We study the expressive13

power required for recognizing repetition languages, in particular whether they can always be recognized14

by a deterministic Büchi word automaton (DBW), the blow up in going from an automaton for R to15

automata for the repetition languages, and the complexity of related decision problems. For lim R and16

∞R, most of these problems have already been studied or are easy. We focus on Rω. Its study involves17

some new and interesting results about additional repetition languages, in particular R#, which18

contains exactly all words with unboundedly many concatenations of words in R. We show that Rω is19

DBW-recognizable iff R# is ω-regular iff R# = Rω, and there are languages for which these criteria20

do not hold. Thus, Rω need not be DBW-recognizable. In addition, when exists, the construction21

of a DBW for Rω may involve a 2O(n log n) blow-up, and deciding whether Rω is DBW-recognizable,22

for R given by a nondeterministic automaton, is PSPACE-complete. Finally, we lift the difference23

between R# and Rω to automata on finite words and study a variant of Büchi automata where a word24

is accepted if (possibly different) runs on it visit accepting states unboundedly many times.25
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1 Introduction29

Finite automata on infinite objects were first introduced in the 60’s, and were the key to30

the solution of several fundamental decision problems in mathematics and logic [6, 14, 17].31

Today, automata on infinite objects are used for specification, verification, and synthesis of32

nonterminating systems. The automata-theoretic approach reduces questions about systems33

and their specifications to questions about automata [11, 22], and is at the heart of many34

algorithms and tools. Industrial-strength property-specification languages such as the IEEE35

1850 Standard for Property Specification Language (PSL) [7] include regular expressions and/or36

automata, making specification and verification tools that are based on automata even more37

essential and popular.38

One way to classify an automaton is by the type of its branching mode, namely whether it39

is deterministic, in which case it has a single run on each input word, or nondeterministic, in40

which case it may have several runs, and the input word is accepted if at least one of them41

is accepting. A run of an automaton on finite words is accepting if it ends in an accepting42

state. A run of an automaton on infinite words does not have a final state, and acceptance is43

determined with respect to the set of states visited infinitely often during the run. Another44

way to classify an automaton on infinite words is the class of its acceptance condition. For45

example, in Büchi automata, some of the states are designated as accepting states, and a run46
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XX:2 On Repetition Languages

is accepting iff it visits states from the accepting set infinitely often [6].47

The different classes of automata have different expressive power. For example, unlike48

automata on finite words, where deterministic and nondeterministic automata have the same49

expressive power, deterministic Büchi automata (DBWs) are strictly less expressive than50

nondeterministic Büchi automata (NBWs). That is, there exists a language L over infinite words51

such that L can be recognized by an NBW but cannot be recognized by a DBW. The different52

classes also differ in their succinctness. For example, while translating a nondeterministic53

automaton on finite words (NFW) into a deterministic one (DFW) is always possible, the54

translation may involve an exponential blow-up [19].55

There has been extensive research on expressiveness and succinctness of automata on infinite56

words [21, 9]. Beyond the theoretical interest, the research has received further motivation57

with the realization that many algorithms, like synthesis and probabilistic model checking,58

need to operate on deterministic automata [5, 4], as well as the discovery that many natural59

specifications correspond to DBWs. In particular, it is shown in [10] that given a linear temporal60

logic (LTL) formula ψ, there is an alternation-free µ-calculus (AFMC) formula equivalent to ∀ψ61

iff ψ can be recognized by a DBW. Since AFMC is as expressive as weak alternating automata62

and the weak monadic second-order theory of trees [18, 16, 3], this relates DBWs also with63

them.64

Proving that NBWs are more expressive than DBWs, Landweber characterized languages65

that are DBW-recognizable as these that are the limit of some regular language on finite words.66

Formally, for an alphabet Σ and a language R ⊆ Σ∗, we define lim(R) as the set of infinite67

words in Σω that have infinitely many prefixes in R. For example, if R = (0 + 1)∗ · 0, namely68

the set of finite words over {0, 1} that end with a 0, then lim(R) = ((0 + 1)∗ · 0)ω, namely the69

set of words with infinitely many 0’s. On the other hand, we cannot point to a language R70

such that lim(R) is the set of all words with only finitely many 0’s. Landweber proved that a71

language L ⊆ Σω is DBW-recognizable iff there is a regular language R such that L = lim(R)72

[12].73

Beyond the limit operator, another natural way to obtain a language of infinite words from74

a language R of finite words is to require the words in R to repeat infinitely often. This actually75

induces two “repetition languages". The first is ∞R, where w ∈ ∞R iff w contains infinitely76

many disjoint subwords inR. Formally,∞R = {Σ∗·w1·Σ∗·w2·Σ∗·w3 · · · : wi ∈ R for all i ≥ 1 }.77

The second is Rω, where w ∈ Rω iff w is an infinite concatenation of words in R. Formally,78

Rω = {w1 · w2 · w3 · · · : wi ∈ R for all i ≥ 1}. For example, for the language R = (0 + 1)∗ · 079

above, we have lim(R) =∞R = Rω = ((0 + 1)∗ · 0)ω. In order to see that the three repetition80

languages may be different, consider the language R = 0 · (0 + 1)∗ · 0, namely of all words81

that start and end with 0. Now, lim(R) = 0 · ((0 + 1)∗ · 0)ω, ∞R = ((0 + 1)∗ · 0)ω, and82

Rω = 0 · ((0 + 1)∗ · 0 · 0)ω. When specifying on-going behaviors, the three repetition languages83

induce three different ways for turning a finite behavior into an infinite one. For example, if84

R = call · true∗ · return describes a sequence of events that starts with a call and ends with a85

return, then limR describes behaviors that start with a call followed by infinitely many returns,86

∞R behaviors with infinitely many calls and returns, and Rω behaviors with infinitely many87

successive calls and returns.88

In this paper we study expressiveness, succinctness, and complexity of repetition languages.89

We start with expressiveness, where we examine which of the repetition languages are ω-regular,90

and for those that are ω-regular, whether they are also DBW-recognizable. By [12], for lim(R)91

the answer is positive – it is DBW-recognizable for all regular languages R. For a finite regular92

language R, we show that Rω = lim(R∗), implying a positive answer too. Our main result is93

a negative answer in the general Rω case: we point to a regular language R such that Rω is94

not DBW-recognizable. In order to find such a language, we study repetition languages in95
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general, and introduce the language R# = {w ∈ Σω : for all i ≥ 1 there exists a prefix of w96

in Ri}, namely the language of exactly all words with unboundedly many concatenations of97

words in R. As detailed below, R# is strongly related to Rω and turns out to be also strongly98

related to our question. We show that when R# is ω-regular, then R# = Rω, in which case,99

by Landweber’s characterization of DBW-recognizable languages as countable intersections of100

open sets in the product topology over Σω, both are DBW-recognizable. In other words, we101

show (Theorem 5) that R# is ω-regular iff R# = Rω iff Rω is DBW-recognizable.102

The above characterization enables us to point to a language R that does not satisfy the103

three criteria (Theorem 9). In short, R = $ + (0 · {0, 1, $}∗ · 1). It is easy to see that for every104

word w ∈ Rω, if w contains infinitely many 1’s, then w contains infinitely many 0’s. Hence,105

the word w = 011$1$$1$$$1$$$$ · · · = 0 ·
∏∞
k=0 1$k is not in Rω, yet for all i ≥ 1, its prefix106

0 ·
∏i
k=0 1$k = (0 · (

∏i−1
k=0 1$k) · 1) · $i is in Ri, and so w ∈ R#. It follows that w ∈ R# \Rω,107

which by our characterization implies that Rω is not DBW-recognizable. We also study the108

problem of deciding, given an NFW A, whether L(A)ω is DBW-recognizable, and show that it109

is PSPACE-complete. We lift the difference between R# and Rω to automata on finite words110

and define the #-language of a Büchi automaton A as the set of words w such that for all111

i ≥ 1, there is a run of A on w that visits the set of accepting states at least i times. We show112

that the #-language of A is ω-regular iff the #-language of A coincides with its ω-regular113

language, iff L(A) is DBW-recognizable.114

We continue and study the size of automata for the repetition languages. We consider the115

cases R is given by a DFW or an NFW, and the automaton for the repetition language is a116

DBW or an NBW. By [12], going from a DFW for R to a DBW for lim(R) involves no blow up117

– we only have to view the DFW as a Büchi automaton. We show that the cases of ∞R and118

Rω are more complicated, and involve a 2O(n) and a 2O(n logn) blow-up, respectively. Beyond119

the relevancy to our study, the family of languages we use is a new witness to the known lower120

bound for NBW determinization [13]. The succinctness analysis for the cases the automata for121

the repetition languages are nondeterministic are much easier, as we show that, except for the122

case of lim(R), simple constructions with no blow-ups are possible, even when we start with an123

NFW for R. For the case of lim(R), going from an NFW for R to an NBW for lim(R) is not124

trivial and the best known upper bound is O(n3) [2]. Our results are summarized in Section 7.125

2 Preliminaries126

2.1 Automata127

An alphabet Σ is a finite set of letters. A word over Σ is a finite or infinite sequence w =128

σ1, σ2, σ3, · · · of letters from Σ. We use |w| to denote the length of w, with |w| = ∞ for an129

infinite word w. For 1 ≤ i ≤ |w|, we use w[i] to denote σi, that is, the i-th letter in w, and for130

1 ≤ i ≤ j ≤ |w|, we use w[i, j] to denote the infix σi, σi+1, · · · , σj of w. We use Σ∗ and Σω to131

denote the set of all finite and infinite words over Σ, respectively. For two words x ∈ Σ∗ and132

y ∈ Σ∗ ∪ Σω, we use x · y to denote the concatenation of x and y. We say that x is a prefix of133

a w, denoted x ≺ w, if there is 1 ≤ i ≤ |w| such that x = w[1, i]. Equivalently, if x 6= ε, and134

there is y ∈ Σ∗ ∪ Σω, such that x · y = w. Thus, y = [i+ 1, |w|], and we call it a suffix of w.135

Note that we do not consider the empty word ε as a prefix of a word.136

A nondeterministic automaton is A = 〈Σ, Q, δ,Q0, α〉, where Σ is a finite input alphabet,137

Q is a finite set of states, δ : Q× Σ→ 2Q is a transition function, Q0 ⊆ Q is a set of initial138

states, and α ⊆ Q is an acceptance condition. Intuitively, δ(q, σ) is the set of states A may139

move to when reading the letter σ from state q. Formally, a run of A on a word w is the140

function r : {i ∈ N0 : 0 ≤ i ≤ |w|} → Q, such that r(0) ∈ Q0, i.e., the run starts from an141
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initial state, and for all i ≥ 0, we have that r(i + 1) ∈ δ(r(i), σi+1), i.e., the run obeys the142

transition function. Note that as A may have several initial states and the transition function143

may specify several possible successor states, the automaton A may have several runs on w. If144

|Q0| = 1 and for all q ∈ Q and σ ∈ Σ, it holds that |δ(q, σ)| = 1, then A has a single run on w,145

and we say that A is deterministic. We sometimes refer to a run also as a sequence of states;146

that is, r = r(0), r(1), . . . ∈ Q|w|+1.147

When A runs on finite words, the run r is finite, and it is accepting iff it ends in an148

accepting state, thus r(|w|) ∈ α. When A runs on infinite words, acceptance depends149

on the set inf(r), of the states that r visits infinitely often. Formally inf(r) = {q ∈ Q :150

for infinitely many i ∈ N, we have that r(i) = q}. As Q is finite, the set inf(r) is guaranteed151

not to be empty. In Büchi automata, the run r is accepting iff inf(r) ∩ α 6= ∅. Otherwise, r152

is rejecting. The automaton A accepts a word w if there exists an accepting run r of A on153

w. The language of A, denoted L(A), is the set of words that A accepts. We also say that A154

recognizes L(A).155

We use three letter acronyms in {D,N} × {F,B} × {W} to denote classes of word automata.156

The first letter indicates whether the automaton is deterministic or nondeterministic, and the157

second letter indicates whether it is an automaton on finite words or a Büchi automaton on158

infinite words. For example, DBW is a deterministic Büchi automaton.159

Throughout the paper, we use R and L to represent languages of finite and infinite words,160

respectively. A language R ⊆ Σ∗ is finite if |R| < ω, where |R| is the cardinality of R as a set. A161

language R ⊆ Σ∗ is regular if there is an NFW that recognizes R. Likewise, a language L ⊆ Σω162

is ω-regular if there is an NBW that recognizes L. We sometimes refer to the three-letter163

acronyms as describing sets of languages, thus NBW is also the set of ω-regular languages, and164

DBW is its subset of languages recognizable by DBW.165

2.2 Repetition languages166

Consider a language R ⊆ Σ∗, and assume ε /∈ R. We refer to R as the base language and define167

the following repetition languages of words induced by R. We start with languages of finite168

words:169

1. For i ≥ 0, we define Ri = {w1 · w2 · · ·wi : wj ∈ R for all 1 ≤ j ≤ i}.170

2. R∗ =
⋃
i≥0 R

i.171

3. R+ =
⋃
i≥1 R

i.172

We continue with languages of infinite words:173

3. lim(R) = {w ∈ Σω : w[1, i] ∈ R for infinitely many i’s}.174

4. ∞R = {Σ∗ · w1 · Σ∗ · w2 · Σ∗ · w3 · · · : wi ∈ R for all i ≥ 1 }.175

5. Rω = {w1 · w2 · w3 · · · : wi ∈ R for all i ≥ 1}.176

6. R# = {w ∈ Σω : for all i ≥ 1 there exists j ≥ 1 such that w[1, j] ∈ Ri}.177

Thus, Ri, R∗, R+, and Rω are the standard bounded, finite, finite and positive, and infinite178

concatenation operators. Then, lim(R) contains exactly all infinite words with infinitely many179

prefixes in R, and∞R contains exactly all infinite words with infinitely many disjoint infixes in180

R. Finally, R# contains exactly all words with prefixes with unboundedly many concatenations181

of words in R. The language R# may seem equivalent to Rω, and the difference between Rω182

and R# is in fact one of our main results.183

I Example 1. Let R = (0 + 1)∗ · 0. Then, lim(R) =∞R = Rω = R# =∞0.184

Now, let R = {0n · 1m, 1n · 0m : 0 ≤ m ≤ n}. While R is not regular, we have that185

lim(R) = {0ω, 1ω} and ∞(R) = Rω = R# = {0, 1}ω are in DBW.186

Finally, for all R ⊆ Σ∗, we have Rω ⊆ lim(R∗) and Rω ⊆ ∞R. Thus, Rω ⊆ lim(R∗) ∩∞R.187

One may suspect that Rω = lim(R∗) ∩∞R. As a counterexample, consider R = 0 · (0 + 1)∗ · 0.188
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Then, Rω = 0 · ((0 + 1)∗ · 0 · 0)ω, lim(R∗) = 0 · ((0 + 1)∗ · 0)ω, and ∞R = ((0 + 1)∗ · 0)ω =∞0.189

Thus, the word 0 · (1 · 0)ω is in lim(R∗) ∩ (∞R) but is not in Rω. J190

As another warm up, we state the following lemma, which would be helpful in the sequel.191

I Lemma 2. Consider languages R ⊆ Σ∗ and P ⊂ Σω such that ε /∈ R. If P ⊆ R · P , then192

P ⊆ Rω.193

Proof. Consider a word w0 ∈ P . Since P ⊆ R · P , then w0 = x1 · w1, for some x1 ∈ R and194

w1 ∈ P . Have defined x1, . . . , xi ∈ R and wi ∈ P , such that w0 = x1 · · ·xi ·wi, we can continue195

and define xi+1 ∈ R and wi+1 ∈ P such that wi = xi+1 · wi+1. Overall, we have defined196

{xi}∞i=1 ⊆ R such that w0 = x1 · x2 · x3 · · · . Hence, w0 ∈ Rω, and we are done. J197

Note that if ε ∈ R, then P ⊆ R ·P trivially holds for all P ⊆ Σω, whereas possibly P 6⊆ Rω.198

Also, if ε ∈ R, then ∞R, Rω, and R# as defined above include also finite words, in particular199

ε is a member of all of those languages. In order to circumvent the technical issues that the200

above entails, for R ⊆ Σ∗ such that ε ∈ R, we define ∞R =∞(R \ {ε}), Rω = (R \ {ε})ω, and201

R# = (R \ {ε})#, and accordingly assume, throughout the paper, that ε /∈ R.202

We conclude the preliminaries with the case the base language R is finite. As we shall see,203

then Rω = R# = lim(R∗), implying that they are all in DBW.204

I Theorem 3. For every finite language R ⊆ Σ∗, we have that Rω = R# = lim(R∗).205

Proof. Consider a finite language R ⊆ Σ∗. We prove that Rω ⊆ lim(R∗) ⊆ R# ⊆ Rω. First,206

it is easy to see, regardless of R being finite, that Rω ⊆ lim(R∗).207

We prove that lim(R∗) ⊆ R#. Clearly Rn+1 ·Σω ⊆ Rn ·Σω, and thus we only need to show208

that for all w ∈ lim(R∗), we have that w ∈ Rn · Σω for infinitely many n’s. Since R is finite,209

there exists some k ≥ 1 such that for all x ∈ R, we have that |x| ≤ k. It follows that for all210

x ∈ R∗, if |x| ≥ m · k, then x ∈ Rn for some n ≥ m. Consider some word w ∈ lim(R∗). By211

definition, w has infinitely many prefixes in R∗, thus for all m ≥ 1, there exists a prefix x ∈ R∗212

of w such that |x| ≥ m · k. Hence, x ∈ Rn for some n ≥ m, implying that w ∈ Rn · Σω for213

infinitely many n’s, and we are done.214

It is left to prove that R# ⊆ Rω. Consider a word w ∈ R#. Intending to use König’s215

Lemma, we build a tree with set of nodes V = {(x, i) : x ≺ w and x ∈ Ri}. Since w ∈ R#, the216

set V is infinite. As the parent of a node (x, i+ 1) ∈ V , we set some (y, i) ∈ V that satisfies217

x = y · z for some z ∈ R. Since x ∈ Ri+1, such a prefix y exists. Note that there might be218

several y’s and only a single (y, i) is chosen to be the parent of (x, i + 1). Observe that all219

nodes (x, i) are connected to (ε, 0) by a single path of length i, and thus we have defined an220

infinite tree above V . The out degree of each node is bounded by |R| <∞. Hence, by König’s221

Lemma, the tree has an infinite path π = 〈(ε, 0), (x1, 1), (x2, 2), . . .〉. By construction, for all222

i ≥ 0 there exists some yi such that xi+1 = xi · yi and yi ∈ R. It follows that w = y1 · y2 · · · ,223

and hence w ∈ Rω, and we are done. J224

For every regular language R ⊆ Σ∗, the language R∗ is regular. Hence, by [12], the language225

lim(R∗) is in DBW, and so Theorem 3 implies the following.226

I Corollary 4. For every finite language R ⊆ Σ∗, we have that Rω and R# are in DBW.227

As we shall see in Section 3, the case of an infinite base language R is much more difficult.228
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3 Expressiveness229

In this section we examine which of the repetition languages are ω-regular, and for these that230

are ω-regular, whether they are also DBW-recognizable. Note that going in the other direction231

need not be possible. For example, the language L = 0 · 1ω is DBW-recognizable, but there is232

no regular language R such that L =∞R, L = R#, or L = Rω. By [12], a language L ⊆ Σω is233

in DBW iff there exists a regular language R ⊆ Σ∗ such that L = lim(R). In particular, this234

means that for every R ⊆ Σ∗ regular, we have that lim(R) ∈ DBW. We study this question for235

∞R, Rω, and R#.236

It is well known that for every regular language R, the language Rω is ω-regular. This237

follows, for example, from the translation of ω-regular expressions to NBWs. Studying whether238

Rω is always DBW-recognizable is much harder, and is out main result:239

I Theorem 5. For all regular languages R ⊆ Σ∗, the following are equivalent.240

(1) Rω = R#.241

(2) Rω is in DBW.242

(3) R# is ω-regular.243

The proof of Theorem 5 is partitioned into Lemmas 6, 7, and 8.244

I Lemma 6. [(1) → (2) and (3)] If Rω = R#, then Rω is in DBW and R# is ω-regular.245

Proof. By Landweber’s Theorem [12], an ω-regular language L is in DBW iff L is a countable246

intersection of open sets in the product topology over Σω, induced by the discrete topology over247

Σ. Specifically, the topology that is induced by the basis B = {Nx : x ∈ Σ∗}, where Nx = x ·Σω.248

That is, A ⊆ Σω is an open set in the product topology if there is a B ⊆ Σ∗ such that249

A = ∪x∈BNx = B · Σω. Equivalently, the topology induced by the metric d : Σω × Σω → R≥0,250

defined d(x, y) = 1
2n , where n is the first position that x and y differ, and d(x, y) = 0, if x = y.251

That is, A ⊆ Σω is an open set if for all x ∈ A there exists γ > 0 such that {y : d(x, y) < γ} ⊆ A.252

As discussed above, an open set is a set of the form K · Σω for some K ⊆ Σ∗. Thus,253

Landweber’s Theorem states that an ω-regular language L is in DBW iff there exists {Ki}i∈N,254

Ki ⊆ Σ∗, such that L =
⋂
iKi · Σω. By definition, the language R# fulfills the topological255

condition in Landweber’s Theorem. Hence, if R# is ω-regular, then R# is in DBW.256

Since R is regular, the language Rω is ω-regular. Thus, R# = Rω is ω-regular, and by the257

above, both are also in DBW. J258

I Lemma 7. [(2) → (1)] If Rω is in DBW , then Rω = R#.259

Proof. Since, by definition, Rω ⊆ R#, we only have to prove that R# ⊆ Rω. Assume that260

A = 〈Σ, Q, q0, δ, α〉 is a DBW for Rω. Let n = |Q|. Consider a word w ∈ R#, and let261

r : N → Q be the run of A on w. Let t be a position from which r is contained in inf(r),262

i.e., for all t′ ≥ t, we have that r(t′) ∈ inf(r). Let w = w1 · w2 · · ·wt+n · y be a partition of263

w to words such that for all 1 ≤ j ≤ t + n, we have that wj ∈ R. Since w ∈ R#, such a264

partition exists. Let qj = r(|w1 · · ·wj |), i.e., qj is the state A reaches when reading the prefix265

w1 · · ·wj . Observe that since there are only n states, there must exist indices j1 and j2 such266

that t ≤ j1 < j2 ≤ t+ n and qj1 = qj2 .267

Consider the word w′ = w1 · w2 · · ·wj1 · (wj1+1 · · ·wj2)ω, and let r′ be the run of A on268

w′. Since all the words wj are in R, then w′ ∈ Rω, and so inf(r′) ∩ α 6= ∅. Moreover,269

since |w1 · · ·wj1 | ≥ t and wj1+1 · · ·wj2 closes a cycle from qj1 , then inf(r′) ⊆ inf(r). Hence,270

inf(r) ∩ α 6= ∅. Thus, the run of A on w is accepting, and so w ∈ Rω. J271

I Lemma 8. [(3) → (1)] If R# is ω-regular, then Rω = R#.272
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Proof. Since, by definition, Rω ⊆ R#, we only have to prove that R# ⊆ Rω. Let R ⊆ Σ∗273

be such that R# is ω-regular. Then, as Rω is ω-regular, so is K = R# \ Rω. Let A be an274

NBW with n states for K. Assume by way of contradiction that L(A) 6= ∅. There exist some275

accepting state q that is reachable from both an initial state by a path labeled with some276

u ∈ Σ∗, and from itself by a cycle labeled with some v ∈ Σ∗. Thus, the word w = u.vω is a277

lasso-shaped word in L(A). Let x be a prefix of w with x ∈ R|u|+|v|, and let x = y0.y1...y|v|278

be a partition of x such that y0 ∈ R|u| and yi ∈ R for all i > 0. Note that |y0| ≥ |u|, thus279

for i > 0, the yi’s are nonempty subwords of {v}+. For 0 ≤ i ≤ |v|, let ki be the position in280

v that is reached after reading y0.y1...yi. I.e., ki = j, for 0 ≤ j ≤ |v| − 1, such that y0...yi =281

u.vt.v[1, j] for some t ≥ 0. For example, if y0 = u.v, then k0 = 0, and if y0.y1 = u.v.v.v[1, 2],282

then k1 = 2. Since 0 ≤ ki ≤ |v| − 1 for all 0 ≤ i ≤ |v|, there are indices i and j such that i < j,283

and ki = kj . Therefore, there exist t1, t2 ≥ 0 such that the following hold:284

1. z1 = y0...yi = u.vt1 .v[1, ki] ∈ R+, and285

2. z2 = yi+1...yj = v[ki + 1, |v|].vt2 .v[1, kj ] = v[ki + 1, |v|].vt2 .v[1, ki] ∈ R+.286

Clearly, z1.(z2)ω ∈ Rω. Also, (z2)ω = v[ki + 1, n].vω, thus z1.(z2)ω = u.vω = w. Thus, w ∈ Rω,287

contradicting the assumption that L(A) = R# \Rω. Hence, L(A) = ∅; thus R# ⊆ Rω. J288

This completes the proof of Theorem 5. We now show that the theorem is not trivial, thus289

there is a language R that does not satisfy the three criteria in the theorem, in particular the290

criteria about DBW, which is our main interest.291

I Theorem 9. There exists a regular language R ⊆ Σ∗, such that Rω is not in DBW.292

Proof. We define the regular language R ⊆ {0, 1, $}∗ by the regular expression R = ($ + 0 ·
{0, 1, $}∗ · 1). It is easy to see that for every word w ∈ Rω, if w contains infinitely many 1’s,
then w contains infinitely many 0’s. Indeed, the only way to have only finitely many 1’s in a
word in Rω is to have an infinite tail of $’s. Hence, the word

w = 011$1$$1$$$1$$$$1$$$$$ . . . = 0 ·
∞∏
i=0

1$i

is not in Rω. We prove that w ∈ R#. For n ∈ N, consider the word wn = 0 ·
∏n
i=0 1$i =293

(0 · (
∏n−1
i=0 1$i) · 1) · $n. It is easy to see that wn ∈ Rn+1. Since all of the wn’s are prefixes of w,294

it follows that w ∈ R#.295

Thus, w ∈ R# \Rω, implying that R# 6= Rω. Then, by Theorem 5, we have that Rω is not296

in DBW, and we are done. J297

I Corollary 10. For every regular language R ⊆ Σ∗, we have that Rω is ω-regular. Yet, Rω298

need not be in DBW, and R# need not be ω-regular.299

We continue to ∞R, showing it is an easy special case of Rω. Given a regular language300

R ⊆ Σ∗, let P = Σ∗ ·R. It is easy to see that ∞R = Pω. As we argue below, the special form301

of P implies it satisfies all the three criteria in Theorem 5:302

I Theorem 11. For every regular language R ⊆ Σ∗, we have that (Σ∗ ·R)# = (Σ∗ ·R)ω.303

Proof. Let P = Σ∗ · R. We prove that P# ⊆ P · P#. By Lemma 2, the latter implies that304

P# = Pω. Consider a word w ∈ P#, and let x0 ≺ w be a word of minimal length such305

that x0 ∈ P . Let w′ ∈ Σω be such that w = x0 · w′. We prove that w′ ∈ P#, implying306

that w ∈ P · P#. For all i ≥ 1, let xi · yi ≺ w, with xi ∈ P and yi ∈ P i. Note that by the307

minimality of x0, it holds that x0 ≺ xi for all i ≥ 1. Now, for all i ≥ 1, let zi ∈ Σ∗ be the308

suffix of xi, with xi = x0 · zi, and consider ui = zi · yi ≺ w′. Observe that for all i ≥ 1 we have309

ui ∈ Σ∗ · P i = (Σ∗ ·R) · P i−1 = P i. Hence, w′ ∈ P#. J310

I Corollary 12. For every regular language R ⊆ Σ∗, the language ∞R is in DBW.311
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4 Complexity312

In this section we study the complexity of deciding, given an NFW A, whether L(A)ω is313

DBW-recognizable. We first describe a simple linear translation of an NFW for R to an NBW314

for Rω.315

I Theorem 13. For every NFA A with n states, there exists an NBW A′ with O(n) states316

such that L(A′) = L(A)ω.317

Proof. Consider an NFWA = 〈Q,Σ, q0, δ, α〉, and let R = L(A). For simplicity, we assume that318

A has a single initial state. We construct an NBW A′ for Rω. We define A′ = 〈Q′,Σ, Q′0, δ′, α′〉,319

where Q′ = Q ∪ {q′0}, for some state q′0 6∈ Q, and Q′0 = α′ = {q′0}. Intuitively, we simulate a320

run of A and allow non-deterministic “jumps" from states in α to q0. We accept words for321

which the simulation makes infinitely many jumps. The positions of the jumps partition the322

input word into a concatenation of infinitely many words in R. The NBW A′ implements a323

“jump” by introducing a new state q′0, which replaces q0 and inherits its outgoing transitions.324

In addition, whenever δ may move to a state in α, the NBW A′ may move to q′0 instead.325

Consequently, closing a loop from q′0 corresponds to reading a word in R. Thus, visiting q′0326

infinitely many times corresponds to reading a word in Rω. Formally, the transition function327

δ′ is defined, for every q ∈ Q′ and σ ∈ Σ, as follows.328

δ′(q, σ) =


δ(q, σ) if q 6= q′0 and δ(q, σ) ∩ α = ∅,
δ(q, σ) ∪ {q′0} if q 6= q′0 and δ(q, σ) ∩ α 6= ∅,
δ(q0, σ) if q = q′0 and δ(q0, σ) ∩ α = ∅,
δ(q0, σ) ∪ {q′0} if q = q′0 and δ(q0, σ) ∩ α 6= ∅.

329

In Appendix A.1 we prove that indeed L(A′) = Rω. J330

I Theorem 14. Deciding whether L(A)ω is DBW-recognizable, for an NFW A, is PSPACE-331

complete.332

Proof. We start with the upper bound. As described in the proof of Theorem 13, given an333

NFW A with n states, we can construct an NBW for L(A)ω with n+1 states. By [10], deciding334

whether the language of a given NBW is DBW-recognizable can be done in PSPACE. Hence,335

membership in PSPACE for our result follows.336

For the lower bound, we describe a logspace reduction from the universality problem337

for NFWs, proved to be PSPACE-hard in [15]. For two alphabets Σ1 and Σ2, and two338

words w1 ∈ Σω
1 and w2 ∈ Σω

2 , let w1 ⊕ w2 ∈ (Σ1 × Σ2)ω be the word obtained by merging339

w1 and w2. Formally, if w1 = σ1
1 · σ1

2 · σ1
3 · · · and w2 = σ2

1 · σ2
2 · σ2

3 · · · , then w1 ⊕ w2 =340

〈σ1
1 , σ

2
1〉 · 〈σ1

2 , σ
2
2〉 · 〈σ1

3 , σ
2
3〉 · · · . We use the operator ⊕ also for merging two finite words341

w1 ∈ Σ∗1 and w2 ∈ Σ∗1 of the same length. Note that then, |w1 ⊕ w2| = |w1| = |w2|.342

Consider an NFW A over some alphabet Σ, and assume ⊥ /∈ Σ. Consider the language343

R = $∗+ 0 · {0, 1, $}∗ · 1. Note that R is similar to the language used in the proof of Theorem 9344

– here we include in R words in $∗. This does not change R# or Rω, and the word 0 ·
∏∞
i=0 1 · $i345

is in R# \Rω, witnessing that Rω is not DBW-recognizable.346

We define the language RA over the alphabet (Σ ∪ {⊥})× {0, 1, $} as follows.

RA = {(w1 · ⊥)⊕ w2 : w1 ∈ L(A) or w2 ∈ R} .

Note that since NFWs for R and for (Σ ∪ {⊥})∗ · ⊥ are of a fixed size, the size of an NFW347

for RA is linear in the size of A and it can be constructed from A in logspace. We prove that348
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L(A) = Σ∗ iff RωA ∈ DBW. First, observe that if L(A) = Σ∗, then RωA = (∞⊥)⊕ {0, 1, $}ω,349

and so RωA ∈ DBW. For the other direction, assume that L(A) 6= Σ∗, and consider a word350

x ∈ Σ∗ \ L(A). Let wx = (x · ⊥)ω. Observe that for every partition y1 · y2 · y3 · · · of wx into351

subwords with yi ∈ (Σ ∪ {⊥})∗ · ⊥, for all i ≥ 1, it must be that yi /∈ L(A) · ⊥ for all i ≥ 1. It352

follows that for every w ∈ {0, 1, $}ω, if wx ⊕ w ∈ RωA, then w ∈ Rω.353

Let m = |x · ⊥|, and consider the word w = 0m ·
∏∞
i=0 1m · $im, obtained from 0 ·

∏∞
i=0 1 · $i354

by replacing each letter σ ∈ {0, 1, $} by the word σm. Using the same arguments used in the355

proof of Theorem 9, we have that w 6∈ Rω. Hence, wx ⊕ w /∈ RωA.356

We prove that wx ⊕ w ∈ R#
A. Note that wx ⊕ w = (x · ⊥)ω ⊕ 0m ·

∏∞
i=0 1m · $im =357

((x ·⊥)⊕ 0m) ·
∏∞
i=0((x ·⊥)⊕ 1m) · ((x ·⊥)⊕ $m)i. For all j ≥ 1, we have ((x ·⊥)⊕ $m)j) ∈ RjA,358

and ((x · ⊥) ⊕ 0m) · (
∏j−1
i=0 ((x · ⊥) ⊕ 1m) · ((x · ⊥) ⊕ $m)i) · ((x · ⊥) ⊕ 1m) ∈ RA. Hence,359

yj = ((x · ⊥)⊕ 0m) ·
∏j
i=0((x · ⊥)⊕ 1m) · ((x · ⊥)⊕ $m)i ∈ Rj+1

A . Since yj ≺ wx ⊕ w, for all360

j ≥ 1, we conclude that wx ⊕ w ∈ R#
A.361

Thus, wx ⊕ w ∈ R#
A \RωA, and so, by Theorem 5, we have that RωA /∈ DBW. J362

5 Succinctness363

In this section we study the blow-up in going from an automaton for R to automata for lim(R),364

∞R, and Rω. Note that, by Theorem 5, a DBW for Rω is also a DBW for R#, and thus we365

do not consider R# explicitly.366

Studying succinctness, we also refer to the Rabin acceptance condition. There, α =367

{〈G1, B1〉 , . . . , 〈Gk, Bk〉} ⊆ 2Q × 2Q, and a run r is accepting iff there is a pair 〈G,B〉 ∈ α368

such that inf(r) ∩ G 6= ∅ and inf(r) ∩ B = ∅. We use DRW to denote deterministic Rabin369

word automata. By [8], DRWs are Büchi type: if a DRW A recognizes a DBW-recognizable370

language, then a DBW for L(A) can be defined on top of A. In other words, if L(A) is in371

DBW, then we can obtain a DBW for L(A) by redefining the acceptance condition of A.372

Our study of succinctness considers the cases R is given by a DFW or an NFW, and the373

automaton for the repetition language is DBW, DRW, or NBW. We start with the case both374

automata are deterministic. Then, the case of lim(R) is easy and well known: Given a DFW375

A for R, viewing A as a DBW results in an automaton for lim(R) [12]. Hence, there is no376

blow-up in going from a DFW for R to a DBW for lim(R). We continue to the case of ∞R.377

We first consider the case we are given an NFW or DFW for Σ∗ ·R.378

I Theorem 15. For every regular language R ⊆ Σ∗, there is no blow-up in going from an379

NFW (DFW) for Σ∗ ·R to an NBW (resp. DBW) for ∞R.380

Proof. Let A = 〈Q,Σ, δ, q0, α〉 be an NFW with a single initial state that recognizes Σ∗ · R.381

We define an NBW A′ for (Σ∗ · R)ω = ∞R as follows. Intuitively, A′ simulates a run of A,382

each time the simulation reaches a state in α it “restarts" the simulation, and it accepts an383

infinite word iff simulation has been restarted infinitely often. The partition to successful384

simulations also partitions accepted words to infixes in L(A)ω, thus accepted words are in ∞R.385

In addition, if a word is in ∞R, then a word in Σ∗ ·R start in all positions, implying that a386

successful simulation is always eventually completed. Formally, A′ = 〈Q,Σ, δ′, q0, α〉, where δ′387

is defined for all q ∈ Q and σ ∈ Σ as follows:388

δ′(q, σ) =
{
δ(q, σ) : q /∈ α,
δ(q0, σ) : q ∈ α.

389

390

In Appendix A.2, we prove that L(A′) = (Σ∗ · R)ω = ∞R. Note that since ε /∈ R, then391

q0 /∈ α. Also, note that when A is deterministic, so is A′. J392
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Going from a DFW for R to a DFW for Σ∗ ·R may involve an exponential blow-up. To see393

this, consider for example the language R = 0 · (0 + 1)n. While it can be recognized by a DFW394

with n+ 2 states, a DFA for (0 + 1)∗ · 0 · (0 + 1)n needs at least 2n states. Theorem 16 shows395

that this blow-up is inherited to the construction of a DBW for ∞R.396

I Theorem 16. The blow-up in going from a DFW for R to a DBW for ∞R is 2O(n).397

Proof. For the upper bound, starting with a DFW with n states for R, one can construct an398

NFW with n+ 1 states for Σ∗ ·R. Its determinization results in a DFW with 2n+1 states for399

Σ∗ ·R. Then, by Theorem 15, we end up with a DBW with 2n+1 states for ∞R.400

For the lower bound, we describe a family of languages R1, R2, . . . of finite words, such that401

for all n ≥ 1, the language Rn can be recognized by a DFW with O(n) states, yet a DBW for402

∞Rn needs at least 2n−1

n states.403

Let Σ = {0, 1}. For n ≥ 1, we define Rn ⊆ Σ∗ as the set of words of length n+ 1 that start404

and end with the same letter. That is, Rn = {σ ·w ·σ : for σ ∈ Σ and w ∈ Σn−1}. Equivalently,405

Rn = 0 · (0 + 1)n−1 · 0 + 1 · (0 + 1)n−1 · 1. It is easy to see that Rn can be recognized by a406

DFW with 2n+ 3 states. In Appendix A.3 we prove that a DBW for ∞Rn needs at least 2n−1

n407

states. J408

We continue to Rω. While it is easy, given a DFW for R, to construct an NBW for Rω409

(see Theorem 13), staying in the deterministic model is complicated, and not only in terms of410

expressive power. Formally, we have the following.411

I Theorem 17. The blow-up in going from a DFW for R to a DBW for Rω, when exists, is412

2O(n logn).413

Proof. For the upper bound, one can determinize the NBW for Rω. Thus, starting with a414

DFW with n states for R, we construct an NBW with n+ 1 states for Rω, and determinize it415

to a DRW with 2O(n logn) states [20]. Since DRWs are Büchi type, the result follows.416

For the lower bound, we describe a family of languages R1, R2, . . . of finite words, such that417

for all n ≥ 1, the language Rn can be recognized by a DFW with O(n) states, Rωn is in DBW,418

yet a DBW for Rωn needs at least n! states.419

Given n ≥ 1, let Σn = [n] ∪ {#}, where [n] = {1, . . . , n}. We define the language Rn ⊆ Σ∗n420

as the set of all finite words that start and end with the same letter from [n]. That is,421

Rn = {σ · x · σ : for x ∈ Σ∗n and σ ∈ [n]}. It is easy to see that Rn is regular and a DFW for422

Rn needs 2n+ 1 states. In Appendix A.4, we prove that Rωn is in DBW, and that a DBW for423

Rωn needs at least n! states. J424

Since DRWs are Büchi type, Lemma 23 and Theorems 16 and 17 imply the following.425

I Theorem 18. The blow-ups in going from a DFW with n states for R to DRWs for ∞R426

and Rω are 2O(n) and 2O(n logn), respectively.427

The succinctness analysis for case the automaton for the repetition languages is non-428

deterministic is much easier, as the construction described above involve no blow-up, and429

except for the case of lim(R), they are valid also when R is given by an NFW. The case of430

lim(R) is more complicated and is studied in [2]. It is easy to see that just viewing an NFW431

for R as a Büchi automaton does not result in an NBW for lim(R). For example, an NFW for432

(0 + 1) · 0 that guesses whether each 0 is the last letter, in which case it moves to an accepting433

state with no successors, is empty when viewed as an NBW. The best known construction of434

an NBW for lim(R) from an NFW A for R is based on a characterization of the limit of L(A)435

as the union of languages, each associated with a state q of A and containing words that have436

infinitely many prefixes whose accepting run reaches q. Following this characterization, it is437

possible to construct, starting with A with n states, an NBW with O(n3) states for lim(R) [2].438
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6 On Unboundedly Many vs. Infinitely Many439

Essentially, the definition of R# replaces the “infinite" nature of Rω by an “unbound" one.440

In this section we examine an analogous change in the definition of acceptance in Büchi441

automata. Consider a nondeterministic automaton A = 〈Σ, Q, δ,Q0, α〉. When we view A442

as a #-automaton, it accepts a word w ∈ Σω if for all i ≥ 0, there is a run of A on w that443

visits α at least i times. Formally, for for all i ≥ 0, there is a run ri = qi0, q
i
1, q

i
2, . . . of A on444

w such that rij ∈ α for at least i indices of j ≥ 0. The #-language of A, denoted L#(A), is445

the set of words that A accepts as above. We use the notations LF (A) and LB(A) to refer446

the languages of A when viewed as an automaton on finite words and a Büchi automaton,447

respectively. It is not hard to see that when A is deterministic, then LB(A) = L#(A). Indeed,448

in both cases, A accepts a word w if its single run on w visits α infinitely often. When, however,449

A is nondeterministic, its #-language may contain words accepted via infinitely many different450

runs, none of which visits α infinitely often.451

I Example 19. Consider the automaton A1 in Figure 1. Note that LF (A1) = R, for R = ($+0·452

{0, 1, $}∗ · 1), namely the language used in Theorem 9 for demonstrating a language with R# 6=453

Rω. Here, we have that L#(A1) 6= LB(A1). For example, w = 011$1$$1$$$1$$$$1$$$$$ · · · =454

0 ·
∏∞
i=0 1$i ∈ L#(A1) \ LB(A1).455

Consider now the automaton A2. Here, LB(A2) = (0 + 1)∗ · 1ω. On the other hand, for456

every i ≥ 1, there is a run of A2 on w = 01011011101111 · · · =
∏∞
i=0 01i that visits α at least i457

times. Thus, w ∈ L#(A2) even though it has infinitely many 0’s and is not in LB(A2). Note458

that the word w is also used to differentiate the Büchi and prompt-Büchi acceptance conditions.459

A prompt-Buch automaton A accepts a word w iff there is i ≥ 1 and a run r of A on w, such460

that r visits α at least once in every i successive states [1]. It is not hard to see that w is not461

accepted by all DBWs for (1∗ · 0)ω. J462

A1 :

q0 q1q2

0

1
1

$ $, 0, 1$, 0, 1

A2 :

q0 q1 q2
1 0

0, 1 1 0, 1

Figure 1 Automata with a non-regular #-language.

I Remark 20. Defining L#(A), we require the transition function δ of A to be defined for all463

states and letters. Indeed, a rejecting sink in a #-automaton may support acceptance. To see464

this, consider A2 from Example 19, and assume that rather than going with the letter 0 to the465

rejecting sink q2, the state q1 would have no outgoing transitions labeled 0. Then, no run of466

A2 on the word w from the example can visit q1 even once without getting stuck. Note that467

rather than requiring δ to be total, we could also define L#(A) as these words for which, for468

all i ≥ 0, there is a run of A on a prefix of w that visits α at least i times. J469

Interestingly, the relation between L#(A) and LB(A) is similar to the one obtained for R#
470

and Rω. Formally, we have the following.471

I Theorem 21. For all finite automata A, the following are equivalent.472

(1) L#(A) is ω-regular.473

(2) LB(A) = L#(A).474

(3) L#(A) is in DBW.475
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Proof. Clearly, both (2)→ (1) and (3)→ (1). We prove that (1)→ (2) and (1)→ (3).476

We start with (1)→ (2). First, clearly, for all automata A, we have that LB(A) ⊆ L#(A).477

We prove that L#(A) ⊆ LB(A). Since L#(A) is ω-regular, then, as ω-regular languages are478

closed under complementation, there is an NBW B for L#(A) \ LB(A). If L#(A) 6⊆ LB(A),479

then LB(B) is not empty, which implies B accepts a lasso-shaped word, namely a word of the480

form u · vω for u, v ∈ Σ∗ \ {ε}. But L#(A) and LB(A) agree on all lasso-shaped words. Indeed,481

u · vω ∈ L#(A) iff A has a cycle that visits α and is traversed when the vω suffix is read, iff482

u · vω ∈ LB(A). Hence, B is empty, L#(A) ⊆ LB(A), and we are done.483

We continue to (1)→ (3). For all i ≥ 0, let Li be the set of words w ∈ Σ∗ such that there484

exists a run of A on w that visits α exactly i times. Observe that L#(A) =
⋂
i≥0 Li ·Σω. Thus,485

L#(A) is a countable intersection of open sets. Hence, by Landweber, L#(A) being ω-regular486

implies that L#(A) is in DBW. J487

7 Discussion488

The expressiveness and succinctness of different classes of automata on infinite words have been489

studied extensively in the early days of the automata-theoretic approach to formal verification490

[21]. Specification formalisms that combine regular expressions or automata with temporal-logic491

modalities have been the subject of extensive research too [23, 22]. Quite surprisingly, the492

expressiveness and succinctness of repetition languages, which are at the heart of this study,493

have been left open. The research described in this paper started following a question asked494

by Michael Kaminski about Rω being DBW-recognizable for every regular language R. We495

had two conjectures about this question. First, that the answer is positive, and second, that496

this must have been studied already. We were not able to prove either conjecture, and in497

fact refuted the first. In the process, we developed the full theory of repetition languages,498

their expressiveness, and succinctness, as well the notion of #-languages which goes beyond499

ω-regular languages. Our results are summarized in Table 2 below. The
√

and× symbols500

indicate whether a translation always exists. All blow-ups except for the one from [2] are501

tight. The blow-ups in translations to DBWs apply also to DRWs (Th. 18). Finally, for R#,502

translations exist whenever Rω is DBW-recognizable (Th. 5), in which case the blow-ups agree503

with the one described for Rω.

lim(R) ∞R Rω

√ √ ×
DFW to DBW O(n) 2O(n) 2O(n log n)

[12] Ths. 15 and 16 Ths. 9 and 17
√ √ √

DFW to NBW O(n) O(n) O(n)
[12] Th. 15 Th. 13
√ √ √

NFW to NBW O(n3) O(n) O(n)
[2] Th. 15 Th. 13

Figure 2 Translations from an automaton for R to automata for its repetition languages.
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A Proofs560

A.1 Correctness of the Construction in the proof of Theorem 13561

We prove that a finite word x ∈ Σ∗ closes a cycle from q′0 iff x ∈ R∗. Thus, A′ has a run on an562

infinite word w ∈ Σω that visits q′0 infinitely often iff w ∈ Rω. It is sufficient to prove that A′563

has a run on x that visits q′0 exactly twice, at the first and last states, iff x ∈ R.564

Consider a word x ∈ R. We first prove that there is a cycle from q′0 labeled by x. Let l = |x|,565

and let r : {0, . . . , l} → Q be an accepting run of A over x. Clearly q′0, r(1), r(2), . . . , r(l − 1)566

is a legal run of A′ on x[1, l − 1]. Since r is accepting, we have that r(l) ∈ α, and hence567

δ(r(l−1), x[l])∩α 6= ∅. If l = 1, then q′0 ∈ δ′(q′0, x[l]), otherwise l > 1, and q′0 ∈ δ′(r(l−1), x[l]).568

In either case, we have that q′0, r(1), r(2), . . . , r(l − 1), q′0 is a finite run of A′ on x. That is, x569

closes a cycle from q′0, and we are done.570

For the other direction, we show that any cycle from q′0, that visits q′0 exactly twice, is571

labeled by some word in R. Consider a cycle π = q′0, s1, . . . , sl−1, q
′
0 in A′, and assume that572

si 6= q′0 for all 1 ≤ i ≤ l − 1. Let x ∈ Σ∗ be a word that traverses π, note that |x| = l. We573

prove that x ∈ R. If l = 1, that is π = q′0, q
′
0, it follows that δ(q0, x[1]) ∩ α 6= ∅. Hence,574

x ∈ L(A) = R, and we are done. If l ≥ 2, then as si 6= q′0 for 1 ≤ i ≤ l − 1, we have that575

q0, s1, . . . , sl−1 is a run of A over x[1, l− 1]. In addition, since q′0 ∈ δ′(sl−1, x[l]) and sl−1 6= q′0,576

there exist sl ∈ δ(sl−1, u[l])∩α. Thus, q0, s1, . . . , sl−1, sl is an accepting run of A on x. Hence,577

x ∈ L(A) = R, and we are done.578

A.2 Correctness of the Construction in the Proof of Theorem 15579

We first prove that L(A′) ⊆ (Σ∗ · R)ω. Consider a word w ∈ L(A′), and let r be an580

accepting run of A′ on w. Since r is accepting, there is an infinite sequence of positions581

0 = i0 < i1 < i2 < . . . such that for all j ≥ 1, we have that r(ij) ∈ α, and for all ij−1 < t < ij ,582

the state r(t) is not in α. Thus, i1, i2, . . . is the sequence of positions in which r visits α.583

We show that for all j ≥ 0, it holds that w[ij + 1, ij+1] ∈ Σ∗ · R. Consider the segment584

r(ij), r(ij + 1), . . . , r(ij+1) of the run r on the infix w[ij + 1, ij+1] of w. Recall that r(ij) ∈ α585

and r(t) /∈ α for ij < t < ij+1. It follows that the sequence q0, r(ij + 1), . . . , r(ij+1) is a legal586

run of A, the NFW for Σ∗ ·R, on w[ij + 1, ij+1]. This run is accepting, and so w[ij + 1, ij+1]587

is in Σ∗ ·R. Hence, w = w[i0 + 1, i1] · w[i1 + 1, i2] · · · ∈ (Σ∗ ·R)ω.588

It is left to prove that (Σ∗ · R)ω ⊆ L(A′). Consider a sequence of words w1, w2, . . . ∈589

Σ∗ · R, and assume that for all n ≥ 1, the word wn is minimal with respect to ’≺′. I.e.590

if x ≺ wn and x ∈ Σ∗ · R, then x = wn. For n ≥ 1, let ln be the length of wn, and591

rn = 〈q0, q
n
1 , . . . , q

n
ln
〉 be an accepting run of A on wn. We prove that for all i, j ≥ 0, the592

concatenation ri · rj [1, lj ] = 〈q0, . . . , q
i
li
, qj1, . . . , q

j
lj
〉 is a legal run of A′ on wi ·wj . Observe that593

since the wn’s are minimal, it holds that qnt ∈ α iff t = ln. Thus, by definition of δ′, we only594

need to show that qj1 ∈ δ′(qili , wj [1]). Since qili ∈ α, we have that δ
′(qili , wj [1]) = δ(q0, wj [1]). By595

definition of rj , it holds that qj1 ∈ δ(q0, wj [1]), and thus qj1 ∈ δ′(qili , wj [1]). It follows that the596

infinite concatenation r = r1 ·
∏∞
i=2 r[1, li] = 〈q0, q

1
1 , . . . , q

1
l1
, q2

1 , . . . , q
2
l2
, q3

1 , . . .〉, is a legal run of597

A′ on w1 ·w2 ·w3 · · · . Clearly, r visits α infinitely many times, and hence w1 ·w2 ·w3 · · · ∈ L(A′).598

Thus, we are only left showing that if w ∈ (Σ∗ ·R)ω, then there exists a sequence of minimal599

words w1, w2, . . . ∈ Σ∗ ·R, such that w = w1 ·w2 · · · . Equivalently, let K be the set of minimal600

words in Σ∗ ·R, and prove that (Σ∗ ·R)ω ⊆ Kω. We prove that (Σ∗ ·R)ω ⊆ K · (Σ∗ ·R)ω, and601

conclude by Lemma 2 that (Σ∗ ·R)ω ⊆ Kω. Consider a word w ∈ (Σ∗ ·R)ω, and let x ≺ w, be602

the minimal prefix of w with which x ∈ Σ∗ ·R, and let y ∈ Σω be such that w = x · y. As a603

suffix of w, we have that y ∈ (Σ∗ ·R)ω, and thus, w ∈ K · (Σ∗ ·R)ω, and we are done.604
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A.3 Lower Bound on the DBWs from the Proof of Theorem 16605

For a word x ∈ Σ∗, denote by x ∈ Σ∗ the negative of x; that is, the word obtained from x606

by flipping 0’s and 1’s. Formally, for all 1 ≤ i ≤ |x|, we have that x[i] = 0 iff x[i] = 1. For607

example, if x = 010, then x = 101, and if x = 1110, then x = 0001. Proving a lower bound on608

the number of states of a DBW for ∞Rn, it is more convenient to characterize ∞Rn through609

its complement. Observe that a word w ∈ Σω is not in ∞Rn iff there exists a position t0 ≥ 1,610

such that for all t ≥ t0, we have that w[t] 6= w[t+ n]. Equivalently, there exists a finite word611

u ∈ Σn, such that (u · u)ω is a suffix of w.612

For two words u1, u2 ∈ Σn, we say that u1 ∼ u2 iff u1 ·u1 is a cyclic shift of u2 ·u2. That is,613

u1 ∼ u2 iff exists 1 ≤ i ≤ 2n such that u1 · u1 = (u2 · u2)[i, 2n] · (u2 · u2)[1, i− 1]. For example,614

011 ∼ 000, as 011100 is a cyclic shift of 000111. It is easy to see that ∼ is an equivalence615

relation. Moreover, since there are 2n cyclic shifts of a word of length 2n, it follows that each616

equivalence class has at most 2n members. Thus, there are at least 2n

2n = 2n−1

n equivalence617

classes.618

We are now ready to prove that a DBW for ∞Rn needs at least 2n−1

n states. Consider a619

DBW An = 〈Σ, Q, q0, δ, α〉 for ∞Rn, and consider a finite word u ∈ Σn. Let wu = (u · u)ω,620

and recall that wu /∈ ∞Rn. Let ru be the rejecting run of An on wu, and let Su be the set621

of states visited by ru infinitely often. We prove that for every two finite words u1 and u2622

of length n such that u1 6∼ u2, it must be that Su1 ∩ Su2 = ∅. Since there are at least 2n−1

n623

different equivalence classes, this implies that An must have at least 2n−1

n states. Assume by624

way of contradiction that u1 and u2 are such that Su1 ∩ Su2 6= ∅. For brevity, for i ∈ {1, 2},625

let ri = rui
and Si = Sui

. Let q ∈ Q be a state in S1 ∩ S2. For i ∈ {1, 2}, let hi · yωi be a word626

induced by ri, such that the following hold.627

hi is a prefix of (ui.ui)ω with which ri moves from q0 to q and stays in Si. That is,628

ri(|hi|) = q and ri(t) ∈ Si for all t ≥ |hi|, and629

yi labels a cycle from q to itself that includes (ui.ui) as a subword.630

Consider the word w = h1 · (y1 · y2)ω, and let rw be the run of An over w. Observe that631

inf(rw) ⊆ S1 ∪ S2. Thus, since S1 and S2 are both rejecting, so is inf(rw). Hence w /∈ ∞Rn,632

implying that there is x ∈ Σn such that (x · x)ω is a suffix of (y1.y2)ω. Since u1 · u1 and u2 · u2,633

are subwords of y1 and y2, respectively, it follows that both are also subwords of (x · x)ω. This634

is possible only if u1 · u1 and u2 · u2 are cyclic shifts of x · x. That is, u1 ∼ x ∼ u2, which635

contradicts the assumption that u1 6∼ u2, and we are done.636

A.4 On Rω
n from the Proof of Theorem 17637

In Lemma 22, we prove that Rωn is in DBW. Then, in Lemma 23, we prove that a DBW for638

Rωn needs at least n! states.639

I Lemma 22. For all n ≥ 1, we have that Rωn is in DBW.640

Proof. We prove that for all n ≥ 1, we have that Rωn = R#
n . By Theorem 5, we then have641

that Rωn is in DBW. We need to show that R#
n ⊆ Rωn . Consider a word w ∈ R#

n . For i ≥ 1,642

let xi, yi, ui,∈ Σ∗n be such that xi and yi are in Rn, ui is in Rin, the word xi · yi · ui is a prefix643

of w, and all the words yi start and end with the same letter σ ∈ [n]. Since [n] is finite and644

w ∈ R#
n , we know that such xi, yi, and ui exist.645

For i ≥ 1, let li = |xi|. Let t ≥ 1 be such that lt is minimal, and let w′ ∈ Σω
n be such646

that w = xt · w′. Observe that, by the minimality of t, we have that xt ≺ xj for all j ≥ 1.647

Specifically, xj = xt · (xj [lt + 1, lj ]). Note that xj [lt + 1, lj ] = ε when lj = lt. For j ≥ 1, let648

zj = xj [lt + 1, lj ] · yj . Note that the first letter of zj is the (lt + 1)-th letter of w, which is also649

the first letter of yt. Therefore, the word zj starts and ends with the letter σ. It follows that650
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for all j ≥ 1, we have that zj ∈ Rn and xj · yj = xt · zj . Hence, for all j ≥ 1, the word zj · uj is651

a prefix of w′, implying that w′ ∈ R#
n . Recall that w = xt · w′. Hence, w ∈ Rn ·R#

n , and so,652

by Lemma 2, we have that w ∈ Rωn , and we are done. J653

I Lemma 23. A DBW for Rωn needs at least n! states.654

Proof. Consider a DBW An = 〈Σn, Q, q0, δ, α〉 for Rωn , and consider a permutation π =655

〈σ1, . . . , σn〉 of {1, . . . , n}. Note that the word wπ = (σ1 · · ·σn ·#)ω is not in Rωn . Thus, wπ is656

not accepted by An. Let rπ be the rejecting run of An on wπ, and let Sπ ⊆ Q be the set of657

states that are visited infinitely often in rπ. We prove that for every two different permutations658

π1 and π2 of {1, ..., n}, it must be that Sπ1 ∩Sπ2 = ∅. Since there are n! different permutations,659

this implies that An must have at least n! states. Assume by way of contradiction that π1660

and π2 are such that Sπ1 ∩ Sπ2 6= ∅. For brevity, for i ∈ {1, 2}, let wi = wπi
, ri = rπi

, and661

Si = Sπi
. Let q ∈ Q be a state in S1 ∩ S2. We define four finite words in Σ∗n, for i = 1, 2, as662

follows.663

Let hi be a prefix of wi with which ri moves from q0 to q and stays in Si. That is, ri(|hi|) = q664

and ri(t) ∈ Si for all t ≥ |hi|.665

Let zi be the suffix of wi such that wi = hi · zi. Let ui be a prefix of zi such that ui includes666

the permutation πi and with which ri moves from q back to q by visiting exactly all the667

states in Sπi
.668

Consider the word w = h1 · (u1 · u2)ω, and let rw be the run of An on w. We prove that669

w ∈ Rωn and w /∈ L(An), which is a contradiction for An being a DBW for Rωn . First, observe670

that inf(rw) = S1 ∪ S2. Since both w1 and w2 are not in Rωn , then (S1 ∪ S2) ∩ α = ∅. Thus,671

inf(rw) ∩ α = ∅. Hence, w /∈ L(An). It is left to prove that w ∈ Rωn . Let π1 =
〈
σ1

1 , . . . , σ
1
n

〉
672

and π2 =
〈
σ2

1 , . . . , σ
2
n

〉
. We prove the following two claims.673

B Claim 24. There exists v = v0, v1, . . . , vk−1 ∈ [n]∗ such that for all 0 ≤ t ≤ k − 1, the pairs674

vt · vt+1(mod k) appear in w infinitely often.675

Proof. Let j ≥ 1 be the minimal index for which σ1
j 6= σ2

j . Note that j < n. There must exist676

m and l such that j < m, l ≤ n, σ1
j = σ2

m, and σ2
j = σ1

l . We define v = v0, v1, . . . , vk−1 =677

σ1
j , . . . , σ

1
l−1, σ

2
j , . . . , σ

2
m−1. Indeed, the pairs vt · vt+1(mod k), for 0 ≤ t ≤ k − 1, repeat in678

(u1 · u2)ω infinitely many times as they all are subwords of π1 or π2, and πi is a subword of ui679

for i ∈ {1, 2}. J680

B Claim 25. For all 1 ≤ j ≤ n, there exists xj ∈ R∗n such that xj · σ1
j ≺ w.681

Proof. For j = 1, observe that since h1 · u1 ≺ w1, we have that σ1
1 ≺ h1 · (u1 · u2)ω = w. Thus,682

we can take x1 = ε. Assume that xj has been defined for some j < n. The pair σ1
j · σ1

j+1683

repeats infinitely many times in w, as it is a subword of π1. Hence, there exists y ∈ Σ∗n such684

that xj · σ1
j · y · σ1

j · σ1
j+1 ≺ w. Thus, by taking xj+1 = xj · (σ1

j · y · σ1
j ) ∈ R∗n, we have that685

xj+1 · σ1
j+1 ≺ w. J686

We conclude that w = x · w′, for w′ ∈ v0 · Σω
n, and for all 0 ≤ t ≤ k − 1, the pair687

vt · vt+1(mod k) appears in w′ infinitely often. Thus, we may iteratively define yj ∈ Σ∗n,688

for j ≥ 0, such that (
∏j
t=0(vt(mod k) · yt · vt(mod k))) · vj+1(mod k) ≺ w′. It follows that689

w′ =
∏∞
t=0(vt(mod k) · yt · vt(mod k)) ∈ Rωn . Hence, w = x ·w′ ∈ R∗n ·Rωn = Rωn , and we are done.690
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